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You may get up to 10 points for each problem plus points for the hand-in problems.

Grades: 3: 20–29p, 4: 30–39p, 5: 40–.

1. Let T = {Th}h>0 be a quasi-uniform family of triangulations of a polygonal domain Ω ⊂ R2.
This means that there is a constant c such that

hK ≥ ch ∀K ∈ Th, ∀Th ∈ T , where hK = diam(K), h = max
K∈Th

hK .

Let Sh be the usual piecewise linear finite element space. Prove the inverse inequality

‖∇vh‖ ≤ Ch−1‖vh‖ ∀vh ∈ Sh

by the following steps.

(a) Assume for simplicity that K is obtained by translation and dilation of the unit size reference

triangle K̂ with corners x̂ = (0, 0), (0, 1), (1, 0), that is, K = {x : x = hK x̂+ xK , x̂ ∈ K̂} for some
xK . Let v̂h(x̂) = v(hK x̂+ xK). Show

‖v‖L2(K) = hK‖v̂‖L2(K̂), ‖∇v‖L2(K) = ‖∇v̂‖L2(K̂) ∀v ∈ H1(K).

(b) Finish the proof by using that all norms on a finite-dimensional space are equivalent. In

particular, ‖ ·‖H1(K̂) and ‖ ·‖L2(K̂) are equivalent on Π1(K̂), the space of all polynomials of degree
≤ 1.

2. State and prove the maximum principle for the elliptic operator Au = −∇ · (a∇u).

3. Consider the spatially semidiscrete finite element approximation of the heat equation

ut −∆u = f, in Ω×R+,

u = 0, on Γ×R+,

u(·, 0) = v, in Ω.

(a) Show the error estimate

‖uh(t)− u(t)‖ ≤ ‖vh − v‖ + Ch2
{
‖v‖2 +

∫ t

0

‖ut(s)‖2 ds
}
.

(b) Assume f = 0 and prove

‖uh(t)− u(t)‖ ≤ ‖vh − v‖ + Ch2‖v‖2.

4. Let uh(t) = Eh(t)vh denote the spatially semidiscrete finite element solution of the heat equation
in Problem 3 with f = 0 and initial approximation vh ∈ Sh, vh ≈ v. Show that

‖Eh(t)vh‖ ≤ ‖vh‖, t ≥ 0,(1)

‖DtEh(t)vh‖ ≤ Ct−1‖vh‖, t > 0,(2)

‖Eh(t)vh − vh‖ ≤ Ct1/2|vh|1, t ≥ 0.(3)

5. (a) What do we mean by a ”Friedrichs system” (”symmetric hyperbolic system”)?

(b) Write the pure initial value problem for the wave equation in R2×R+ as a Friedrichs system.

(c) Prove a stability estimate for the system in (b) or (a).
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1. (a) We have dx = h2K dx̂ and
∂v

∂xj
=

∂v̂

∂x̂j

∂x̂j
∂xj

= h−1K

∂v̂

∂x̂j
, so that

‖v‖2L2(K) =

∫
K

|v|2 dx =

∫
K

|v̂|2h2K dx̂ = h2K‖v̂‖2L2(K̂)
,

‖∇v‖2L2(K) =

2∑
j=1

∫
K

∣∣∣ ∂v
∂xj

∣∣∣2 dx =

2∑
j=1

∫
K

h−2K

∣∣∣ ∂v̂
∂x̂j

∣∣∣2 h2K dx̂ = ‖∇v̂‖2
L2(K̂)

.

(b) The equivalence of ‖ · ‖H1(K̂) and ‖ · ‖L2(K̂) on Π1(K̂) implies that

‖∇v‖2
L2(K̂)

≤ ‖v‖2
L2(K̂)

+ ‖∇v‖2
L2(K̂)

= ‖v‖2
H1(K̂)

≤ C‖v‖2
L2(K̂)

∀v ∈ Π1(K̂),

Let vh ∈ Sh. Then v̂h|K̂ ∈ Π1(K̂) and using also the assumption hK ≥ ch we obtain

‖∇vh‖2 =
∑

K∈Th

‖∇vh‖2L2(K) =
∑

K∈Th

‖∇v̂h‖2L2(K̂)
≤ C

∑
K∈Th

‖v̂h‖2L2(K̂)

= C
∑

K∈Th

h−2K ‖vh‖
2
L2(K) ≤ Cc

−2h−2
∑

K∈Th

‖vh‖2L2(K) = Ch−2‖vh‖2

with a new C.

2. See Chapter 3.

3. (a) See Theorem 10.1.

(b) See the hint for Problem 10.4 (a) in the book.

4. (a) The finite element problem is

uh(t) ∈ Sh, uh(0) = vh,

(uh,t, χ) + (∇uh,∇χ) = 0 ∀χ ∈ Sh, t > 0.
(4)

Take χ = uh(t):

1

2
Dt‖uh‖2 + ‖∇uh‖2 = 0

so that

1

2
‖uh(t)‖2 +

∫ t

0

‖∇uh(s)‖2 ds =
1

2
‖vh‖2.(5)

This proves (1).

(b) Differentiate the finite element problem:

(uh,tt, χ) + (∇uh,t,∇χ) = 0 ∀χ ∈ Sh, t > 0.

Take χ = uh,t(t):

1

2
Dt‖uh,t‖2 + ‖∇uh,t‖2 = 0

Multiply by t2:

1

2
Dt(t

2‖uh,t‖2) + t2‖∇uh,t‖2 = t‖uh,t‖2
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so that

1

2
t2‖uh,t(t)‖2 +

∫ t

0

s2‖∇uh,t(s)‖2 ds =

∫ t

0

s‖uh,t(s)‖2 ds

To bound the righ-hand side we we take χ = uh,t(t) in (4) and multiply by t:

t‖uh,t‖2 +
1

2
Dt(t‖∇uh‖2) =

1

2
‖∇uh‖2,

so that, in view of (5),∫ t

0

s‖uh,t(s)‖2 ds+
1

2
t‖∇uh(t)‖2 =

1

2

∫ t

0

‖∇uh(s)‖2 ds ≤ 1

4
‖vh‖2.

Therefore:

1

2
t2‖uh,t(t)‖2 ≤

∫ t

0

s‖uh,t(s)‖2 ds ≤ 1

4
‖vh‖2.

This proves (2) (with C = 1/
√

2).

(c) To prove (3) we note

‖uh(t)− vh‖2 =
∥∥∥∫ t

0

uh,t(s) ds
∥∥∥2 ≤ (∫ t

0

‖uh,t(s)‖ ds
)2
≤ t
∫ t

0

‖uh,t(s)‖2 ds,

where we have ∫ t

0

‖uh,t(s)‖2 ds ≤ 1

2
‖∇vh‖2 =

1

2
|vh|21

by taking χ = uh,t(t) in (4). This proves (3) (with C = 1/
√

2).

5. (a) See Section 11.4, page 178.

(b) Set u1 = ut, u2 = ux1 , u3 = ux2 . Then

∂u1
∂t

= utt = ux1x1
+ ux2x2

=
∂u2
∂x1

+
∂u3
∂x2

∂u2
∂t

= ux1t =
∂u1
∂x1

∂u3
∂t

= ux2t =
∂u1
∂x2

that is

∂

∂t

u1u2
u3

 =

0 1 0
1 0 0
0 0 0

 ∂

∂x1

u1u2
u3

+

0 0 1
0 0 0
1 0 0

 ∂

∂x2

u1u2
u3


or

∂U

∂t
−

0 1 0
1 0 0
0 0 0

 ∂U

∂x1
−

0 0 1
0 0 0
1 0 0

 ∂U

∂x2
= 0

[
U(0)

]
=

 wvx1

vx2

 .
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(c) See Theorem 11.5. In the particular case of part (b) above we have B = 0, B̃ = B −
1
2

∑2
j=1 ∂Aj/∂xj = 0, so that

1

2
Dt‖U‖2 = 0,

1

2
‖U(t)‖2 =

1

2
‖U(0)‖2,

1

2
‖u1(t)‖2 +

1

2
‖ux1(t)‖2 +

1

2
‖ux2(t)‖2 =

1

2
‖w‖2 +

1

2
‖vx1‖2 +

1

2
‖vx2‖2,

which means that the usual energy is conserved.
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