Matematik Chalmers

TMA026/MMA430 Partial differential equations II Partiella differentialekvationer II, 2014–05–27 f V

Telefon: Elin Solberg 0703-088304

Inga hjälpmedel. Kalkylator ej tillåten. No aids or electronic calculators are permitted.

You may get up to 10 points for each problem plus points for the hand-in problems.

Grades: 3: 20–29p, 4: 30–39p, 5: 40–.

1. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain, with boundary Γ . Consider Laplace equation with $g \in C^2(\Omega)$,

$$\begin{cases} -\Delta u = 0, & \text{in } \Omega, \\ u = g, & \text{on } \Gamma. \end{cases}$$

- (a) Derive the weak form. Hint: Let $u = u_0 + g$ and seek $u_0 \in H_0^1(\Omega)$.
- (b) Bound $||u||_{L^{\infty}(\Omega)}$ (the max norm) using the maximum principle.
- (c) Formulate the finite element method with boundary data $g_h = I_h g$ and derive an error estimate in energy norm $\|\nabla(u u_h)\|$.
- **2.** Let $\Omega \subset \mathbb{R}^d$ be a bounded domain, with boundary Γ , and I = (0, T). Consider the initial value problem,

(1)
$$\begin{cases} \dot{u} - \Delta u = 0, & \text{in } \Omega \times I, \\ u = 0, & \text{on } \Gamma \times I, \\ u(\cdot, 0) = v, & \text{in } \Omega, \end{cases}$$

with $v \in L^2(\Omega)$.

- (a) Express the solution in terms of the eigenfunctions and eigenvalues of $-\Delta$.
- (b) Show that the $L^2(\Omega)$ norm of the solution decays exponentially in time.
- (c) Assuming $v \in H_0^1(\Omega)$ show that

$$|u|_{H^1(\Omega)} \le \min(Ct^{-1/2}||v||_{L^2(\Omega)}, |v|_{H^1(\Omega)}).$$

3. Let $\Omega \subset \mathbb{R}^3$ be a bounded domain, with boundary Γ , and let I = (0, T). Consider the semi-linear parabolic problem,

(2)
$$\begin{cases} \dot{u} - \Delta u = f(u) := u(1-u), & \text{in } \Omega \times I, \\ u = 0, & \text{on } \Gamma \times I, \\ u(\cdot, 0) = v, & \text{in } \Omega. \end{cases}$$

Assume $||v||_{H^1(\Omega)} \leq R_0$.

(a) Let $||u(t)||_{H^1(\Omega)} \leq R$ and $||w(t)||_{H^1(\Omega)} \leq R$ for $0 \leq t \leq T$. Show that,

$$||f(u) - f(w)||_{L^2(\Omega)} \le C(R)||u - w||_{H^1(\Omega)}, \quad t \in [0, T].$$

 $\textit{Hint: The inequality } \|w\|_{L^p(\Omega)} \leq C \|w\|_{H^1(\Omega)} \textit{ holds for } 1 \leq p \leq 6.$

(b) The solution to equation (2) can be written using the parabolic solution operator E(t) (the solution operator to equation (1)), in the following way,

$$u(t) = E(t)v + \int_0^t E(t-s)f(u(s)) ds.$$

Let $Su(t) = E(t)v + \int_0^t E(t-s)f(u(s)) ds$, $\mathcal{B} = \{w : \max_{0 \le t \le \tau} \|w(t)\|_{H^1(\Omega)} \le R\}$, and show that $S : \mathcal{B} \to \mathcal{B}$ for sufficiently large R and small τ .

Continued on page 2!

(c) Show that S is also a contraction mapping (and therefore has a fixed point u = Su), i.e. show

$$\max_{t \in [0,\tau]} \|Su - Sw\|_{H^1(\Omega)} \le \gamma \max_{t \in [0,\tau]} \|u - w\|_{H^1(\Omega)},$$

where $\gamma < 1$, for sufficiently small τ .

4. Consider the following abstract elliptic problem in weak form: find $u \in H_0^1(\Omega)$ such that,

$$a(u, v) = l(v),$$

where a is a bilinear form, l is a linear functional, and Ω is a bounded domain.

- (a) Show that $H_0^1(\Omega)$ is a closed subspace of $H^1(\Omega)$. The trace theorem for functions in $H^1(\Omega)$ can be used without proof.
- (b) Give sufficient assumptions on a and l so that the problem has a unique solution in $H_0^1(\Omega)$.
- (c) Let $\Omega \subset \mathbb{R}^2$. Give an example of a non-constant b so that the bilinear form $a(u, v) = (\nabla u, \nabla v) + (b \cdot \nabla u, v)$ fulfills the conditions in (b).
- **5.** Let $\Omega \subset \mathbb{R}^2$ be convex with smooth boundary, $v \in L^2(\Omega)$, and $f(t) \in L^2(\Omega)$, for $0 \le t \le T$. Show that the L^2 -error in the semi-discrete Galerkin finite element approximation of the parabolic problem,

$$\begin{cases} \dot{u} - \Delta u &= f, & \text{in } \Omega \times (0, T) \\ u &= 0, & \text{on } \Gamma \times (0, T), \\ u(\cdot, 0) &= v, & \text{in } \Omega, \end{cases}$$

is bounded in the following way:

$$||u_h(t) - u(t)||_{L^2(\Omega)} \le ||v - v_h||_{L^2(\Omega)} + Ch^2 \left(||v||_{H^2(\Omega)} + \int_0^t ||u_t||_{H^2(\Omega)} \, ds \right), \quad t > 0.$$

/axel