Matematik Chalmers

TMA026/MMA430 Partial differential equations II Partiella differentialekvationer II, 2014-08-29 f V

Telefon: Elin Solberg 0703-088304

Inga hjälpmedel. Kalkylator ej tillåten. No aids or electronic calculators are permitted.

You may get up to 10 points for each problem plus points for the hand-in problems.

Grades: 3: 20-29p, 4: 30-39p, 5: 40-.

1.

(a) Find $u \in H_0^1(\Omega)$ such that, $(\nabla u, \nabla v) + (cu, v) = (f, v)$, for all $v \in H_0^1(\Omega)$.

(b) Let $V_h \subset H_0^1(\Omega)$ be the space of continuous piecewise linear functions defined on a triangulation of Ω . The finite element method reads: find $u_h \in V_h$ such that,

$$a(u_h, v) = (f, v), \quad \forall v \in V_h.$$

The Galerkin Orthogonality $a(u - u_h, v) = 0$ for all $v \in V_h$ follows directly and gives us,

$$\begin{split} \|\nabla(u - u_h)\|_{L^2(\Omega)}^2 &\leq a(u - u_h, u - u_h) \\ &= a(u - u_h, u - v) \\ &\leq \|\nabla(u - u_h)\|_{L^2(\Omega)} \|\nabla(u - v)\| + \beta \|u - u_h\|_{L^2(\Omega)} \|u - v\|_{L^2(\Omega)} \\ &\leq (1 + C^2 \beta) \|\nabla(u - u_h)\|_{L^2(\Omega)} \|\nabla(u - v)\|_{L^2(\Omega)}, \end{split}$$

where C is the Poincare-Friedrich constant and $v \in V_h$ is arbitrary. We conclude

$$\|\nabla(u - u_h)\|_{L^2(\Omega)} = (1 + C^2 \beta) \inf_{v \in V_h} \|\nabla(u - v)\|_{L^2(\Omega)}$$

(c) Yes, let $\lambda_1 > 0$ be the smallest eigenvalue of $-\Delta$. Then with $c = -\frac{\lambda_1}{2}$ we have,

$$a(v,v) = (\nabla v, \nabla v) - \frac{\lambda_1}{2}(v,v) \ge \frac{1}{2}(\nabla v, \nabla v) + \frac{\lambda_1}{2}(v,v) - \frac{\lambda_1}{2}(v,v) = \frac{1}{2} \|\nabla v\|_{L^2(\Omega)}^2,$$

i.e. a is coercive.

2.

- (a) Let $\{\lambda_i, \phi_i\}_{i=1}^{\infty}$ be the set of eigenvalues and (orthonormal) eigenvectors of $-\Delta$. We note that $u(x,t) = \sum_{i=1}^{\infty} \alpha_i(t)\phi_i$ with $\alpha_i(0) = (v,\phi_i)$ and $\alpha_i(t) = (v,\phi_i)e^{-(\lambda_i+\gamma)t}$.
- (b) Therefore,

$$||u(\cdot,t)||_{L^2(\Omega)}^2 = \sum_{i=1}^{\infty} |(v,\phi_i)|^2 e^{-2t(\lambda_i+\gamma)},$$

i.e. the norm decreases exponentially with increasing γ for fix t.

(c) We multiply by \dot{u} and integrate in over Ω and [0,t] to get,

$$\begin{split} \int_0^t \|\dot{u}(s)\|_{L^2(\Omega)}^2 \, ds + \frac{1}{2} \left(\|\nabla u(t)\|_{L^2(\Omega)}^2 + \gamma \|u(t)\|_{L^2(\Omega)}^2 \right) - \frac{1}{2} \left(\|\nabla v\|_{L^2(\Omega)}^2 + \gamma \|v\|_{L^2(\Omega)}^2 \right) \\ &= \int_0^t (\dot{u}, \dot{u}) + (\nabla u, \nabla \dot{u}) + \gamma (u, \dot{u}) \, ds \\ &= 0. \end{split}$$

Therefore $\int_0^t \|\dot{u}(s)\|_{L^2(\Omega)}^2 ds \le \frac{1}{2} \left(\|\nabla v\|_{L^2(\Omega)}^2 + \gamma \|v\|_{L^2(\Omega)}^2 \right)$.

3.

- (a) We have $||f(u) f(w)||_{L^2(\Omega)} \le ||u w||_{L^2(\Omega)} + ||u^2 + uv + v^2||_{L^3(\Omega)} ||u w||_{L^6(\Omega)} \le (1 + C2R^2)||u w||_{H^1(\Omega)}.$
- (b) We have

$$||Su(t)||_{H^1(\Omega)} \le ||v||_{H^1(\Omega)} + \int_0^t (t-s)^{-1/2} ||f(u(s))||_{L^2(\Omega)} ds$$

$$\le R_0 + C\tau^{1/2} R,$$

since $||f(u)||_{L^2(\Omega)} \le ||f(u) - f(0)||_{L^2(\Omega)} \le C||u||_{H^1(\Omega)} \le C \cdot R$. Let $R = 2R_0$ and τ be small enough for $C\tau^{1/2}R \le R_0$.

(c) We have,

$$||Su - Sw||_{H^1(\Omega)} \le \int_0^t (t-s)^{-1/2} ||f(u(s)) - f(w(s))||_{L^2(\Omega)} ds$$

$$\le C(R)\tau^{1/2} \max_{0 \le t \le \tau} ||u(t) - w(t)||_{H^1(\Omega)}.$$

By taking $\max_{0 \le t \le \tau}$ and choosing τ small enough for $\tau^{1/2}C(R) < 1$ we prove that S is a contraction.

4.

(a) Let $V_h \subset H_0^1(\Omega)$ be the space of continuous piecewise linear functions defined on a triangulation of Ω . The BE-FEM approximation fulfills: find $u_h^n \in V_h$ such that,

$$(u_h^n - u_h^{n-1}, v) + k(\nabla u_h^n, \nabla v) = 0, \quad \forall v \in V_h,$$

with k being the time-step, $u_h^0 = P_h v$ and $P_h : L^2(\Omega) \to V_h$ is the L^2 -projection.

(b) We get,

$$\|u_h^n\|_{L^2(\Omega)}^2 \leq (u_h^n, u_h^n) + k(\nabla u_h^n, \nabla u_h^n) = (u_h^{n-1}, u_h^n) \leq \|u_h^n\|_{L^2(\Omega)} \|u_h^{n-1}\|_{L^2(\Omega)},$$

i.e. $\|u_h^n\|_{L^2(\Omega)} \le \|u_h^{n-1}\|_{L^2(\Omega)}$ and therefore $\|u_h^n\|_{L^2(\Omega)} \le \|v\|_{L^2(\Omega)}$.

(c) For smooth data it holds,

$$||u(n \cdot k) - u_h^n||_{L^2(\Omega)} \le C_1 h^2 + C_2 k.$$

5. See the proof of Theorem A.4 in *Partial differential equations with numerical methods* by Thomée and Larsson. /axel