TMA026 (MAN665) Partiella differentialekvationer fk, 2003-10-22 fm V

Telefon: Johan Jansson 0740–459022 (Stig Larsson 0733–409006) Inga hjälpmedel. Kalkylator ej tillåten. Uppgifterna är värda 10 poäng vardera.

 Ω is a bounded convex domain in \mathbf{R}^2 whose boundary Γ is a polygon and $||v|| = ||v||_{L_2(\Omega)}$, $|v|_1 = ||\nabla v||$, $||v||_k = ||v||_{H^k(\Omega)}$.

- 1. (a) Formulate one of the maximum principles that we studied in the course.
- (b) Present the main idea of its proof.
- (c) Present one application of this maximum principle.
- **2.** Let u be a solution of the initial-boundary value problem

$$u_t - \nabla \cdot (a(x)\nabla u) = 0,$$
 in $\Omega \times \mathbf{R}_+$,
 $u = 0,$ in $\Gamma \times \mathbf{R}_+$,
 $u(\cdot, 0) = v,$ in Ω .

Make the usual assumptions about the coefficient a and show that

$$\begin{aligned} &\|u(t)\| \leq \|v\|, & t \geq 0, \\ &\|u(t)\|_1 \leq C\|v\|_1, & t \geq 0, \\ &\|u(t)\|_2 \leq C\|v\|_2, & t \geq 0, \\ &|u(t)|_1 \leq Ct^{-1/2}\|v\|, & t > 0. \end{aligned}$$

- **3.** Formulate the semidiscrete finite element method for the problem in Problem 2. Prove an error estimate.
- 4. Consider the initial-boundary value problem

$$u_t + a \cdot \nabla u + a_0 u = f,$$
 in $\Omega \times \mathbf{R}_+,$
 $u = g,$ in $\Gamma_- \times \mathbf{R}_+,$
 $u(\cdot, 0) = v,$ in $\Omega.$

- (a) Present the method of characteristics for this problem.
- (b) Prove an energy estimate for u under suitable assumptions on the coefficients a and a_0 .
- **5.** Consider the Navier-Stokes equations for the motion of an incompressible fluid: find a vector field $u = (u_1, u_2)$ and a scalar field p such that

$$u_{t} - \Delta u + (u \cdot \nabla)u + \nabla p = f, \quad \text{in } \Omega \times \mathbf{R}_{+},$$

$$\nabla \cdot u = 0, \quad \text{in } \Omega \times \mathbf{R}_{+},$$

$$u = 0, \quad \text{on } \Gamma \times \mathbf{R}_{+},$$

$$u(\cdot, 0) = v, \quad \text{in } \Omega.$$

$$(1)$$

Here f=f(x,t) and v=v(x) are given vector fields and we define $u\cdot\nabla=\sum_{i=1}^2u_i\frac{\partial}{\partial x_i}$ so that

$$((u \cdot \nabla)u)_j = \sum_{i=1}^2 u_i \frac{\partial u_j}{\partial x_i}$$
. Let $(L_2)^2 = \{v = (v_1, v_2) : v_i \in L_2\}$ with scalar product $(u, v) = (u \cdot \nabla)u$

 $\int_{\Omega} u \cdot v \, dx \text{ and } (H_0^1)^2 = \{ v = (v_1, v_2) : v_i \in H_0^1 \} \text{ with norm } |v|_1^2 = \sum_{i=1}^2 \sum_{j=1}^2 \|\partial v_i / \partial x_j\|^2.$

(a) Show that, for all $p \in H^1$, $u, v, w \in (H_0^1)^2$,

$$(\nabla p, u) = -(p, \nabla \cdot u),$$

$$((u \cdot \nabla)v, w) = -((\nabla \cdot u)v, w) - (v, (u \cdot \nabla)w).$$

(b) Assume that u, p satisfy (1). Show that $((u \cdot \nabla)u, u) = 0$ and $(\nabla p, u) = 0$. Prove an energy estimate for u.

/stig

 Ω is a bounded convex domain in \mathbf{R}^2 whose boundary Γ is a polygon and $||v|| = ||v||_{L_2(\Omega)}$, $|v|_1 = ||\nabla v||, ||v||_k = ||v||_{H^k(\Omega)}$.

- 1. See the book.
- **2.** The weak formulation is

(1)
$$u(t) \in H_0^1(\Omega), \ u(0) = v,$$
$$(u_t, \varphi) + a(u, \varphi) = 0, \quad \forall \varphi \in H_0^1(\Omega),$$

where $a(\cdot,\cdot) = (a\nabla\cdot,\nabla\cdot)$. As usual we assume: $0 < a_0 \le a(x) \le a_1$ for all $x \in \bar{\Omega}$, so that

$$a(v,v) \ge a_0 |v|_1^2, \quad \forall v \in H_0^1,$$

 $|a(v,w)| \le a_1 |v|_1 |w|_1, \quad \forall v, w \in H_0^1.$

Here $|v|_1 = ||\nabla v||$.

(a) Take $\varphi = u$:

$$(u_t, u) + a(u, u) = 0,$$

$$\frac{1}{2} \frac{d}{dt} ||u||^2 + a(u, u) = 0,$$

$$||u(t)||^2 + 2 \int_0^t a(u, u) \, ds = ||v||^2,$$

$$||u(t)|| \le ||v||.$$

(b) Take $\varphi = u_t$:

(4)
$$||u_t||^2 + a(u, u_t) = 0,$$

$$||u_t||^2 + \frac{1}{2} \frac{d}{dt} a(u, u) = 0,$$
 [because $a(\cdot, \cdot)$ is symmetric]
$$2 \int_0^t ||u_t||^2 ds + a(u(t), u(t)) = a(v, v),$$

$$a(u(t), u(t)) \le a(v, v),$$

$$a_0 ||\nabla u(t)||^2 \le a(u(t), u(t)) \le a(v, v)$$

$$\le a_1 ||\nabla v||^2 + ||v||^2 \le (a_1 + c) ||\nabla v||^2,$$

$$||\nabla u(t)|| \le C ||\nabla v||.$$

Together with (3) this proves

$$||u(t)||_1 \le ||v||_1$$
.

(c) Differentiate (1) with respect to t and then take $\varphi = u_t$:

$$\begin{split} &(u_{tt}, u_t) + a(u_t, u_t) = 0, \\ &\frac{1}{2} \frac{d}{dt} \|u_t\|^2 + a(u_t, u_t) = 0, \\ &\|u_t(t)\|^2 + 2 \int_0^t a(u_t, u_t) \, ds = \|u_t(0)\|^2, \\ &\|u_t(t)\| \le \|u_t(0)\|. \end{split}$$

Now $u_t = \nabla \cdot (a\nabla u) = a\Delta u + \nabla a \cdot \nabla u$. Therefore $||u_t(0)|| = ||a\Delta v + \nabla a \cdot \nabla v|| \le C||v||_2$, so that $||u_t(t)|| \le C||v||_2$.

Also, using elliptic regularity and the previous estimates of $||u_t(t)||$ and $||u(t)||_1$,

$$||u(t)||_2 \le C||\Delta u|| \le C||a\Delta u|| = C||u_t - \nabla a \cdot \nabla u|| \le C(||u_t(t)|| + ||u(t)||_1) \le C||v||_2.$$

(d) Multliply (4) by t:

$$t||u_t||^2 + \frac{1}{2}t\frac{d}{dt}a(u,u) = 0,$$

$$2t||u_t||^2 + \frac{d}{dt}(ta(u,u)) = a(u,u),$$

$$2\int_0^t s||u_t||^2 ds + ta(u(t),u(t)) = \int_0^t a(u,u) ds,$$

$$a_0t||\nabla u(t)||^2 \le ta(u(t),u(t)) \le \int_0^t a(u,u) ds \le \frac{1}{2}||v||^2, \quad [by (2)]$$

$$||\nabla u(t)|| \le Ct^{-1/2}||v||.$$

- **3.** See the book, essentially the same as in Chapter 10.
- **4.** (a) The characteristics x = x(s), t = t(s) are given by

$$\frac{dx}{ds} = a(x(s), t(s)),$$
$$\frac{dt}{ds} = t.$$

Hence t = s + C, choose C = 0 so that s = 0 at the initial time. Then t = s and the first equation becomes

$$\frac{dx}{dt} = a(x(t), t).$$

Then w(t) = u(x(t), t) satisfies the equation

(6)
$$\frac{dw(t)}{dt} + a_0(x(t), t)w(t) = f(x(t), t).$$

To find the solution at (\bar{x}, \bar{t}) we follow the characteristic thru (\bar{x}, \bar{t}) backwards until we hit t = 0 at x_0 or hit Γ_- at (x_0, t_0) . Then we solve (6) with the initial condition $w(0) = v(x_0)$ or $w(t_0) = g(x_0)$.

(b) We assume $a_0(x) - \frac{1}{2}\nabla \cdot a(x) \ge \alpha > 0$. Then it is easy to show

$$\|u(t)\|^2 + \int_0^t \int_{\Gamma_+} u^2 \, n \cdot a \, ds \, dt + \alpha \int_0^t \|u\|^2 \, dt \leq \|v\|^2 + \int_0^t \|f\|^2 \, dt + \int_0^t \int_{\Gamma_-} g^2 |n \cdot a| \, ds \, dt.$$

- **5.** (a) Integrate by parts using Green's formula and use the fact that u, v, w are = 0 on Γ .
- (b) That $((u \cdot \nabla)u, u) = 0$ and $(\nabla p, u) = 0$ follows directly from (a). Then the standard energy argument gives

$$||u(t)||^2 + \int_0^t |u|_1^2 ds = ||v||^2 + C \int_0^t ||f||^2 dt.$$

/stig