
TMA026, Partial Differential Equations - second course
Computer Exercise 2

FEM, Time-dependent and Non-linear Problems

2.5 Bonus Points

April 2, 2018

Hand-in format The hand-in format is an informal report. Each task should
be presented and then followed by its solution. Make sure that everything that
is asked for is included such as tables, figures, conclusions, etc. The code should
be presented in an appendix at the end of the report and it should be well-
structured, well-commented, and easy to read and understand. Use of LATEX
and anslistings.sty is encouraged.

Introduction The purpose of this computer exercise is to solve time-dependent
and nonlinear problems using the FEniCS software and to perform convergence
studies. For a domain Ω ⊂ R2 with boundary Γ, and a time T > 0, consider
the following initial-boundary value problem u̇− ε∆u = f(u) in Ω× (0, T ],

u = 0 on Γ× [0, T ],
u = u0 in Ω× {0},

(1)

for some functions ε, f and u0.

Task 1 (Time-dependency) Consider problem (1) with Ω = [0, 1]2 and
let ε = 1, f(u) = 0 and u0 = 1. Derive a variational formulation and im-
plement code for solving the discrete version in FEniCS. Use the generalized
theta-method for applying finite difference in time. Compute the solution using
both the Backward Euler and Crank-Nicolson time stepping scheme. Save both
solutions to file and plot them using, e.g., ParaView.

Implementation hint : Have a look at some suitable FEniCS demos to find
out how functions, boundary conditions, forms, etc. are implemented.

Task 2 (Error Convergence) For the problem in Task 1, let the final time
T = 0.3. Compute the order of convergence of the L2-error at the final time with
respect to both the mesh-size h and time-step k, one at a time. Instead of an
exact solution, compute a reference solution using a fine mesh in both space and
time. For the h-convergence study, use Crank-Nicholson and a fixed sufficiently
small k. For the k-convergence study, compute the order of convergence for both
Backward Euler and Crank-Nicholson, one at a time, using a fixed sufficiently
small h. Comment on the results.

1



Implementation hint : Create a callable Python-function and put the relevant
code from the previous task in its function body. The Python-function should
take as input discretization parameters for defining a spatial and temporal mesh
and return the finite element solution or relevant norm of the error and mesh-
size. Useful commands: mesh.hmax(), errornorm, numpy.polyfit.

Task 3 (Error Estimate) Here we are going to recover the result of Thm
10.3 by studying the error in the previous task for short final times T . For
T = 10−p, where p = 1, 2, 3, . . . , 9, compute the order of h-convergence of the
L2-error at the final time. For each T , let k = 0.01T . What happens? Now let
the initial condition fulfill the boundary conditions, e.g., u0 = x(1− x)y(1− y)
and redo the convergence study. Do you get the same behaviour?

Implementation hint : Put the convergence code from Task 2 in a callable
Python-function and modify inputs in order to enable looping over final times
and initial conditions.

Task 4 (Non-linearity) This task concerns the non-linear Allen-Cahn equa-
tion. Consider problem (1). Take 0 < ε � 1 and f(u) = u − u3. For a subset
D ⊂ Ω, let u0(D) = 1 and u0(Ω \ D) = 0. The subset D may be anything
from a connected polygon to unconnected pseudorandom spots. Implement the
following Implicit-Explicit Euler type time-stepping method in FEniCS: For
n = 1, . . . , N , find unh ∈ Vh such that:

unh − u
n−1
h

k
+ ε(∇unh,∇v) = (un−1

h − (un−1
h )3, v), ∀v ∈ Vh.

Save the solution to file and plot it using, e.g., ParaView.
Implementation hint : Import the FEniCS module mshr to create more in-

teresting domains and to define subdomains. For defining the initial value,
you may want to define a subclass of Expression and overload the eval_cell
function. Maybe let it use a MeshFunction. Useful commands: Rectangle,
domain.set_subdomain, generate_mesh, domain.inside, project.

Task 5 (Error Convergence) Consider again the Allan-Cahn problem in
Task 4, but without possible random and mesh-dependent initial conditions.
Let, e.g., Ω = [0, 1]2 and u0 = sin(2πx) sin(2πy). Compute the order of con-
vergence of the L2-error at the final time with respect to both the mesh-size h
and the time-step k, one at a time. Compute a reference solution using a fine
spatial and temporal mesh. Comment on the results.

Implementation hint : See the implementation hint for Task 2.

Notice that the FEniCS book is freely available online1. The study of the
first chapter, “A FEniCS tutorial”, pages 1− 73, is strongly recommended.

1https://fenicsproject.org/book/

2


