
TMA026, Partial Differential Equations - second course
Computer Exercise 1

FEM, Convergence and Adaptivity

3 Bonus Points

March 19, 2019

Hand-in format The hand-in format is an informal report. Each task should
be presented and then followed by its solution. Make sure that everything that
is asked for is included such as tables, figures, conclusions, etc. The code should
be presented in an appendix at the end of the report and it should be well-
structured, well-commented, and easy to read and understand. Use of LATEX
and anslistings.sty is encouraged.

Introduction The purpose of this computer exercise is to get acquainted with
the FEniCS software by performing a convergence study for an elliptic problem
and adaptive mesh refinement based on a goal functional. For a domain Ω ⊂ R2

whose boundary ∂Ω is partitioned into the three parts ΓD, ΓN , and ΓR, consider
the following boundary value problem: Find u : Ω→ R such that:

−∇ · (a∇u) + bu = f in Ω,
u = uD on ΓD,
−a ∂u

∂n = uN on ΓN ,
−a ∂u

∂n = k(u− uR) on ΓR,

(1)

for some non-constant functions a, b, f, k and some non-zero functions uD, uN , uR.

Task 1 (Model Problem) Create an “exact solution” in the following way.
Choose a rather simple domain Ω (rectangle, circle, square), a simple partition
of the boundary ∂Ω = ΓD ∪ ΓN ∪ ΓR, and some simple coefficient functions
a, b, k. Then choose a nontrivial function u and compute the corresponding
data functions f, uD, uN , uR. That is f = −∇ · (a∇u) + bu and so on.

Task 2 (FEniCS-implementation) Derive a variational formulation for
your problem (1). Implement and solve the discrete variational problem us-
ing FEniCS. Save both the exact solution u and the finite element solution uh
to file and make a visual comparison using, e.g., ParaView.

Implementation hint : Have a look at some suitable FEniCS demos to find
out how functions, boundary conditions, forms, etc. are implemented.

1

Task 3 (Error Convergence) Compute the finite element solution uh to
your discrete problem in Task 2 for a sequence of meshes, and create a table of
the errors ‖u−uh‖L2 and |u−uh|1 as functions of the mesh-size h. Determine the
order of convergence. This kind of convergence study is not only an illustration
of the theory but more importantly it is used as a test of the computer program:
a minor programming error can result in a non-optimal convergence rate.

Implementation hint : Create a callable Python-function and put the rele-
vant code from Task 2 in its function body. The Python-function should take
as input a parameter for defining a mesh of some size and return the finite el-
ement solution and mesh-size or relevant computed norms. Useful commands:
mesh.hmax(), errornorm, numpy.polyfit.

Task 4 (Devious Domain) Let the computational domain Ω be a circle sec-
tor with exterior angle α. Consider the following Dirichlet problem for Poisson’s
equation in Ω. In problem (1), let ΓD = ∂Ω, and ΓN = ΓR = ∅, which means
that we can neglect k, uN , and uR. Furthermore, let a = 1, b = 0, f = 1,
and uD = 0. For some decreasing exterior angles, αi, of the circle sector, e.g.,
αi = π/2i for i = 0, 1, 2, . . . , 7, compute the order of convergence in the energy
norm |u− uh|1 with respect to the number of degrees of freedom. Use the solu-
tion on the finest mesh as a reference solution in the convergence study. How is
the order of convergence affected by the angle α?

Implementation hint : Import the FEniCS module mshr to create more in-
teresting domains. Useful commands: Circle, Polygon, generate_mesh,
len(u.vector()).

Task 5 (Adaptivity) Consider again the problem in Task 4 and take α to
be the smallest angle used in the convergence study in Task 4, e.g., α = π/100.
There is a convenient adaptive mesh refinement framework in FEniCS based on
supplying a goal functional. Use this framework to adaptively refine a coarse
starting mesh for the problem considered. The goal functional can be the same
as in the recommended demo below. For the sequence of meshes obtained,
compute the order of convergence in the energy norm |u − uh|1 with respect
to the number of degrees of freedom. Use the solution on the finest mesh as
a reference solution in the convergence study. Compare the results with the
results from Task 4 for the same angle α. For comparison one may plot the
errors versus the degrees of freedom using, e.g., matplotlib, and/or put them
in a table. Comment on the results.

Implementation hint : Have a look at the FEniCS demo “Auto adaptive Pois-
son Equation”. Useful commands: u.root_node(), u.leaf_node(), u.child(),
u.depth(), len(u.vector()).

Notice that the FEniCS book is freely available online1. The study of the
first chapter, “A FEniCS tutorial”, pages 1− 73, is strongly recommended.

1https://fenicsproject.org/book/

2

