Matematik Chalmers

TMA026/MMA430 Partial differential equations II Partiella differentialekvationer II, 2014-05-27 f V

Telefon: Elin Solberg 0703-088304
Inga hjälpmedel. Kalkylator ej tillåten. No aids or electronic calculators are permitted.
You may get up to 10 points for each problem plus points for the hand-in problems.
Grades: 3: 20-29p, 4: 30-39p, 5: 40-.

1. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain, with boundary Γ. Consider Laplace equation with $g \in C^{2}(\Omega)$,

$$
\left\{\begin{aligned}
&-\Delta u=0, \text { in } \Omega \\
& u=g, \\
& \text { on } \Gamma .
\end{aligned}\right.
$$

(a) Derive the weak form. Hint: Let $u=u_{0}+g$ and seek $u_{0} \in H_{0}^{1}(\Omega)$.
(b) Bound $\|u\|_{L^{\infty}(\Omega)}$ (the max norm) using the maximum principle.
(c) Formulate the finite element method with boundary data $g_{h}=I_{h} g$ and derive an error estimate in energy norm $\left\|\nabla\left(u-u_{h}\right)\right\|$.
2. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain, with boundary Γ, and $I=(0, T)$. Consider the initial value problem,

$$
\left\{\begin{align*}
\dot{u}-\Delta u=0, & \text { in } \Omega \times I, \tag{1}\\
u=0, & \text { on } \Gamma \times I, \\
u(\cdot, 0)=v, & \text { in } \Omega,
\end{align*}\right.
$$

with $v \in L^{2}(\Omega)$.
(a) Express the solution in terms of the eigenfunctions and eigenvalues of $-\Delta$.
(b) Show that the $L^{2}(\Omega)$ norm of the solution decays exponentially in time.
(c) Assuming $v \in H_{0}^{1}(\Omega)$ show that

$$
|u|_{H^{1}(\Omega)} \leq \min \left(C t^{-1 / 2}\|v\|_{L^{2}(\Omega)},|v|_{H^{1}(\Omega)}\right) .
$$

3. Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain, with boundary Γ, and let $I=(0, T)$. Consider the semi-linear parabolic problem,

$$
\left\{\begin{align*}
\dot{u}-\Delta u & =f(u):=u(1-u), & & \text { in } \Omega \times I, \tag{2}\\
u & =0, & & \text { on } \Gamma \times I, \\
u(\cdot, 0) & =v, & & \text { in } \Omega .
\end{align*}\right.
$$

Assume $\|v\|_{H^{1}(\Omega)} \leq R_{0}$.
(a) Let $\|u(t)\|_{H^{1}(\Omega)} \leq R$ and $\|w(t)\|_{H^{1}(\Omega)} \leq R$ for $0 \leq t \leq T$.

Show that,

$$
\|f(u)-f(w)\|_{L^{2}(\Omega)} \leq C(R)\|u-w\|_{H^{1}(\Omega)}, \quad t \in[0, T]
$$

Hint: The inequality $\|w\|_{L^{p}(\Omega)} \leq C\|w\|_{H^{1}(\Omega)}$ holds for $1 \leq p \leq 6$.
(b) The solution to equation (2) can be written using the parabolic solution operator $E(t)$ (the solution operator to equation (1)), in the following way,

$$
u(t)=E(t) v+\int_{0}^{t} E(t-s) f(u(s)) d s
$$

Let $S u(t)=E(t) v+\int_{0}^{t} E(t-s) f(u(s)) d s, \mathcal{B}=\left\{w: \max _{0 \leq t \leq \tau}\|w(t)\|_{H^{1}(\Omega)} \leq R\right\}$, and show that $S: \mathcal{B} \rightarrow \mathcal{B}$ for sufficiently large R and small τ.
(c) Show that S is also a contraction mapping (and therefore has a fixed point $u=S u$), i.e. show

$$
\max _{t \in[0, \tau]}\|S u-S w\|_{H^{1}(\Omega)} \leq \gamma \max _{t \in[0, \tau]}\|u-w\|_{H^{1}(\Omega)}
$$

where $\gamma<1$, for sufficiently small τ.
4. Consider the following abstract elliptic problem in weak form: find $u \in H_{0}^{1}(\Omega)$ such that,

$$
a(u, v)=l(v)
$$

where a is a bilinear form, l is a linear functional, and Ω is a bounded domain.
(a) Show that $H_{0}^{1}(\Omega)$ is a closed subspace of $H^{1}(\Omega)$. The trace theorem for functions in $H^{1}(\Omega)$ can be used without proof.
(b) Give sufficient assumptions on a and l so that the problem has a unique solution in $H_{0}^{1}(\Omega)$.
(c) Let $\Omega \subset \mathbb{R}^{2}$. Give an example of a non-constant b so that the bilinear form $a(u, v)=(\nabla u, \nabla v)+$ ($b \cdot \nabla u, v$) fulfills the conditions in (b).
5. Let $\Omega \subset \mathbb{R}^{2}$ be convex with smooth boundary, $v \in L^{2}(\Omega)$, and $f(t) \in L^{2}(\Omega)$, for $0 \leq t \leq T$. Show that the L^{2}-error in the semi-discrete Galerkin finite element approximation of the parabolic problem,

$$
\left\{\begin{array}{rll}
\dot{u}-\Delta u=f, & \text { in } \Omega \times(0, T) \\
u=0, & \text { on } \Gamma \times(0, T), \\
u(\cdot, 0) & =v, & \text { in } \Omega,
\end{array}\right.
$$

is bounded in the following way:

$$
\left\|u_{h}(t)-u(t)\right\|_{L^{2}(\Omega)} \leq\left\|v-v_{h}\right\|_{L^{2}(\Omega)}+C h^{2}\left(\|v\|_{H^{2}(\Omega)}+\int_{0}^{t}\left\|u_{t}\right\|_{H^{2}(\Omega)} d s\right), \quad t>0
$$

/axel

