Matematik Chalmers

TMA026/MMA430 Partial differential equations II Partiella differentialekvationer II, 2014-08-29 f V

Telefon: Elin Solberg 0703-088304
Inga hjälpmedel. Kalkylator ej tillåten. No aids or electronic calculators are permitted.
You may get up to 10 points for each problem plus points for the hand-in problems.
Grades: 3: 20-29p, 4: 30-39p, 5: 40-.

1. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain, with boundary Γ. Consider the diffusion-reaction problem,

$$
\left\{\begin{aligned}
&-\Delta u+c u=f, \\
& \text { in } \Omega, \\
& u=0, \\
& \text { on } \Gamma,
\end{aligned}\right.
$$

with $f \in L^{2}(\Omega)$ and $0 \leq c \leq \beta<\infty$.
(a) Derive the weak form.
(b) Formulate the finite element method and derive an error estimate in energy norm $\| \nabla(u-$ $\left.u_{h}\right) \|_{L^{2}(\Omega)}$.
(c) Is there a negative constant $c<0$ such that the bilinear form $a(u, v)=(\nabla v, \nabla v)+(c v, v)$ is still coercive? (Motivate your answer)
2. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain, with boundary Γ, and $I=(0, T)$. Consider the initial value problem,

$$
\left\{\begin{aligned}
\dot{u}-\Delta u+\gamma u & =0, & & \text { in } \Omega \times I, \\
u & =0, & & \text { on } \Gamma \times I, \\
u(\cdot, 0) & =v, & & \text { in } \Omega,
\end{aligned}\right.
$$

with $v \in L^{2}(\Omega)$ and $\gamma \in \mathbb{R}^{+}$.
(a) Express the solution in terms of the eigenfunctions and eigenvalues of $-\Delta$.
(b) How does the $L^{2}(\Omega)$ norm of the solution for a fixed time t depend on the parameter γ.
(c) Show that $\int_{0}^{t}\|\dot{u}(s)\|_{L^{2}(\Omega)}^{2} d s$ is bounded for all $t \geq 0$.
3. Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain, with boundary Γ, and let $I=(0, T)$. Consider the semi-linear parabolic problem,

$$
\left\{\begin{align*}
\dot{u}-\Delta u & =f(u):=u-u^{3}, & & \text { in } \Omega \times I, \tag{1}\\
u & =0, & & \text { on } \Gamma \times I, \\
u(\cdot, 0) & =v, & & \text { in } \Omega .
\end{align*}\right.
$$

Assume $\|v\|_{H^{1}(\Omega)} \leq R_{0}$.
(a) Let $\|u(t)\|_{H^{1}(\Omega)} \leq R$ and $\|w(t)\|_{H^{1}(\Omega)} \leq R$ for $0 \leq t \leq T$. Show that,

$$
\|f(u)-f(w)\|_{L^{2}(\Omega)} \leq C(R)\|u-w\|_{H^{1}(\Omega)}, \quad t \in[0, T]
$$

Hint: The inequality $\|w\|_{L^{p}(\Omega)} \leq C\|w\|_{H^{1}(\Omega)}$ holds for $1 \leq p \leq 6$.
(b) The solution to equation (2) can be written using the parabolic solution operator $E(t)$ (the solution operator to equation (3)), in the following way,

$$
u(t)=E(t) v+\int_{0}^{t} E(t-s) f(u(s)) d s
$$

Let $S u(t)=E(t) v+\int_{0}^{t} E(t-s) f(u(s)) d s, \mathcal{B}=\left\{w: \max _{0 \leq t \leq \tau}\|w(t)\|_{H^{1}(\Omega)} \leq R\right\}$, and show that $S: \mathcal{B} \rightarrow \mathcal{B}$ for sufficiently large R and small τ.
(c) Show that S is also a contraction mapping (and therefore has a fixed point $u=S u$), i.e. show

$$
\max _{t \in[0, \tau]}\|S u-S w\|_{H^{1}(\Omega)} \leq \gamma \max _{t \in[0, \tau]}\|u-w\|_{H^{1}(\Omega)}
$$

where $\gamma<1$, for sufficiently small τ.
4. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain, with boundary Γ, and $I=(0, T)$. Consider the initial value problem,
(2)

$$
\left\{\begin{aligned}
\dot{u}-\Delta u=0, & \text { in } \Omega \times I, \\
u=0, & \text { on } \Gamma \times I, \\
u(\cdot, 0)=v, & \text { in } \Omega,
\end{aligned}\right.
$$

with $v \in L^{2}(\Omega)$.
(a) Formulate the Galerkin finite element method with Backward Euler time-stepping for the problem.
(b) Show that the $L^{2}(\Omega)$ norm of the solution is bounded by the initial value for all $t \geq 0$.
(c) Assume we have a problem with a smooth solution for all times discretized using FEMBackward Euler with continuous piecewise linear basis functions. Further assume we can evaluate the error in $L^{2}(\Omega)$ norm for a fixed time t. How will the error change with the time-step k and the mesh parameter h respectively?
5. Let $\Omega=[0,1]^{2}$ be the unit square. Show that for all $v \in C^{1}(\bar{\Omega})$,

$$
\|v\|_{L^{2}(\partial \Omega)} \leq C\|v\|_{H^{1}(\Omega)} .
$$

/axel

