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TMA026/MMA430 Partial differential equations IT
Partiella differentialekvationer II, 2015-06—02 f V

Telefon: Axel Malqgvist 031-7723599
Inga hjilpmedel. Kalkylator ej tillaten. No aids or electronic calculators are permitted.

You may get up to 10 points for each problem plus points for the hand-in problems.
Grades: 3: 20p—29p, 4: 30p-39p, 5: 40p—, G: 20p-34p, VG: 35p—

1.

(a) The weak derivative of |z + 2| is —1 for —4 <2 < —2 and 1 for -2 < x < 4.
(b) We use polar coordinates and note that v'(r) = We change variables

y = log(r) to get,
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In L%(Q) norm the singularity is weaker so it is also bounded by similar calculation.
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2.
(a) Find @ € H}(Q) such that (aVi, Vo) = (f,v), for all v € H}(Q2). Furthermore,
aollV (4= 0) 2o gy < (0¥ (u—i0), ¥ (u—0)) = (=) Vi, ¥ (u—0)) < [fa—all ooy IV IV (w3,
Furthermore, by letting v = @ in the weak form we get a0||V12||2L2(Q) < (aVa,Va) = (f,u) <
C|lfll2( V@l with a Poincare constant C. We conclude,
IV (= @) 2(0) < Cag*[la — al| L () || 20 -

(b) Find 4y € V}, such that (aVap, Vv) = (f,v), for all v € V},. For this formulation we have full
Galerkin Orthogonality between 4 — @, and V3. We get,

ao||V (@ — an)||72() < (@V(@ —an), V(i@ — an)) < a1 | V(@ — a)|[[|V(@ — Ina)|| 22 (e,

e [|V(@—an)| 20 < C%h”DQ{LHLZ(Q). Using the triangle inequality we get,
- —21~ ay -
IV (u —@n)llz2 () < Caglla — all Lo | fll L2 + C%hHD2u”L2(Q)~

(¢) It may be computationally expensive or impossible to integrate the diffusion coeflicient ex-
actly. Then numerical quadrature is the only option. The quadrature error committed can be
bounded with the analysis above.

3.

(a) We divide (0,T) into N time steps of equal size k = T/N and let 0, U™ = k~1(U™ — U™~ 1).
The backward-Euler Galerkin method reads, find {U™} € V}, such that,

(0 U™, w) + (VU™ Vw) = (f(tn),w), Yv €V, n>1,
U° = vy.
(b) Let w = U™, Since (VU™, VU™) > 0,
QU™ U™) < |If™"l L2 llU" || 2(e2) < 0.
This means that,
U™ 1220y < (U™, U™ ) < UM L2@) U™ Iz (9

ie. |[U™||L2(q) is decreasing as n increases.
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(¢) For smooth solution u the errors are bounded in the following way:
lu — Upgllr2) < C1h* + Caok,
lu— Ulxllr2(0) < C1h® + Cok>.
4.
(a) Let {A;}32; be the eigenvalues with corresponding eigenfunctions {;}32;. Let,

)= i;(t)¢;(x)
j=1

We insert this into the wave equation and get,

Z t) + Aty (t))pj(x) = 0

Correspondingly v = u(z,0) = 3772, 4;(0)p;(z) and w = uj(x,0) = 372, @;(0)p;(x). Since

the eigenfunctions are orthogonal in LZ(Q) we conclude that,
ay(t) + At (t) =0, >0,
;(0) = (v, ¢;),
@;(0) = (w, ¢5).
Therefore,
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for j > 1, ie.,
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(b) We multiply the equation by u; and integrate in space to get,
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for all ¢ > 0.

5. See proof of Theorem 3.1 in Larsson and Thomeé Partial differential equations with numerical
methods, 2005.
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