
Matematik Chalmers

TMA026/MMA430 Partial differential equations II
Partiella differentialekvationer II, 2015–06–02 f V
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You may get up to 10 points for each problem plus points for the hand-in problems.
Grades: 3: 20p–29p, 4: 30p–39p, 5: 40p–, G: 20p–34p, VG: 35p–

1.

(a) The weak derivative of |x+ 2| is −1 for −4 < x < −2 and 1 for −2 < x < 4.
(b) We use polar coordinates and note that v′(r) = 2

r log(r2) = 1
r log(r) . We change variables

y = log(r) to get,

|v|2H1(Ω) = 2π

∫ 1/2

0

1

r log(r)2
dr = 2π

∫ − log(2)

−∞
y−2e−yey dy = 2π

∫ − log(2)

−∞
y−2 dy < ∞.

In L2(Ω) norm the singularity is weaker so it is also bounded by similar calculation.

(c) ∥x∥H−1(Ω) = supv∈H1
0 (Ω)

∫ 1
0
xv(x) dx

∥v′∥L2(Ω)
= supv∈H1

0 (Ω)
−

∫ 1
0

x2

2 v′(x) dx+[ x
2

2 v(x)]10
∥v′∥L2(Ω)

≤ ∥x2

2 ∥L2(Ω) =
1

2
√
5
.

2.

(a) Find ũ ∈ H1
0 (Ω) such that (ã∇ũ,∇v) = (f, v), for all v ∈ H1

0 (Ω). Furthermore,

a0∥∇(u−ũ)∥2L2(Ω) ≤ (a∇(u−ũ),∇(u−ũ)) = ((ã−a)∇ũ,∇(u−ũ)) ≤ ∥ã−a∥L∞(Ω)∥∇ũ∥∥∇(u−ũ)∥.

Furthermore, by letting v = ũ in the weak form we get a0∥∇ũ∥2L2(Ω) ≤ (ã∇ũ,∇ũ) = (f, ũ) ≤
C∥f∥L2(Ω)∥∇ũ∥ with a Poincare constant C. We conclude,

∥∇(u− ũ)∥L2(Ω) ≤ Ca−2
0 ∥ã− a∥L∞(Ω)∥f∥L2(Ω).

(b) Find ũh ∈ Vh such that (ã∇ũh,∇v) = (f, v), for all v ∈ Vh. For this formulation we have full
Galerkin Orthogonality between ũ− ũh and Vh. We get,

a0∥∇(ũ− ũh)∥2L2(Ω) ≤ (ã∇(ũ− ũh),∇(ũ− ũh)) ≤ a1∥∇(ũ− ũh)∥∥∇(ũ− Ihũ)∥L2(Ω),

i.e. ∥∇(ũ− ũh)∥L2(Ω) ≤ C a1

a0
h∥D2ũ∥L2(Ω). Using the triangle inequality we get,

∥∇(u− ũh)∥L2(Ω) ≤ Ca−2
0 ∥ã− a∥L∞(Ω)∥f∥L2(Ω) + C

a1
a0

h∥D2ũ∥L2(Ω).

(c) It may be computationally expensive or impossible to integrate the diffusion coefficient ex-
actly. Then numerical quadrature is the only option. The quadrature error committed can be
bounded with the analysis above.

3.

(a) We divide (0, T ) into N time steps of equal size k = T/N and let ∂̄tU
n = k−1(Un − Un−1).

The backward-Euler Galerkin method reads, find {Un} ∈ Vh such that,

(∂̄tU
n, w) + (∇Un,∇w) = (f(tn), w), ∀v ∈ Vh, n ≥ 1,

U0 = vh.

(b) Let w = Un. Since (∇Un,∇Un) ≥ 0,

(∂̄tU
n, Un) ≤ ∥fn∥L2(Ω)∥Un∥L2(Ω) ≤ 0.

This means that,

∥Un∥2L2(Ω) ≤ (Un, Un−1) ≤ ∥Un∥L2(Ω)∥Un−1∥L2(Ω),

i.e. ∥Un∥L2(Ω) is decreasing as n increases.
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(c) For smooth solution u the errors are bounded in the following way:

∥u− Un
BE∥L2(Ω) ≤ C1h

2 + C2k,

∥u− Un
CN∥L2(Ω) ≤ C1h

2 + C2k
2.

4.

(a) Let {λj}∞j=1 be the eigenvalues with corresponding eigenfunctions {φj}∞j=1. Let,

u(x, t) =
∞∑
j=1

ûj(t)ϕj(x).

We insert this into the wave equation and get,
∞∑
j=1

(û′′
j (t) + λj ûj(t))ϕj(x) = 0.

Correspondingly v = u(x, 0) =
∑∞

j=1 ûj(0)φj(x) and w = u′
t(x, 0) =

∑∞
j=1 û

′
j(0)φj(x). Since

the eigenfunctions are orthogonal in L2(Ω) we conclude that,

û′′
j (t) + λj ûj(t) = 0, t > 0,

ûj(0) = (v, ϕj),

û′
j(0) = (w, ϕj).

Therefore,

ûj(t) = (v, ϕj) cos(λ
1/2
j t) +

(w, ϕj)

λ
1/2
j

sin(λ
1/2
j t),

for j ≥ 1, i.e.,

u(x, t) =

∞∑
j=1

((v, ϕj) cos(λ
1/2
j t) +

(w, ϕj)

λ
1/2
j

sin(λ
1/2
j t))φj .

(b) We multiply the equation by ut and integrate in space to get,

0 = (utt, ut) + (∇u,∇ut) =
1

2

∂

∂t
(ut, ut) +

1

2

∂

∂t
(∇u,∇u) :=

1

2

∂

∂t
E(t),

for all t > 0.

5. See proof of Theorem 3.1 in Larsson and Thomeé Partial differential equations with numerical
methods, 2005.
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