Matematik Chalmers

TMA026/MMA430 Partial differential equations II Partiella differentialekvationer II, 2015-08-28 f V

Telefon: Frida Svelander 0703-088304
Inga hjälpmedel. Kalkylator ej tillåten. No aids or electronic calculators are permitted.
You may get up to 10 points for each problem plus points for the hand-in problems.
Grades: 3: 20p-29p, 4: 30p-39p, 5: 40p-, G: 20p-34p, VG: 35p-

1. Consider the unit square, $\Omega=[0,1] \times[0,1]$.
(a) Compute $\left\|x_{1}^{2}\right\|_{L^{2}(\Omega)}$, where x_{1} is the first component of an element in \mathbb{R}^{2}.

Sol. $\left\|x_{1}^{2}\right\|_{L^{2}(\Omega)}^{2}=\int_{0}^{1} \int_{0}^{1} x_{1}^{4} d x_{1} d x_{2}=\frac{1}{5}$ i.e. $\left\|x_{1}^{2}\right\|_{L^{2}(\Omega)}=\frac{1}{\sqrt{5}}$.
(b) Show that $\|v\|_{L^{2}(\Omega)} \leq\|\nabla v\|_{L^{2}(\Omega)}$, for all $v \in H_{0}^{1}(\Omega)$.

Sol. See proof of Theorem A.6.
(c) Show that $\|v\|_{H^{-1}(\Omega)} \leq\|v\|_{L^{2}(\Omega)}$, for all $v \in L^{2}(\Omega)$.

Sol. $\|v\|_{H^{-1}(\Omega)}=\sup _{w \in H_{0}^{1}(\Omega)} \frac{\int v w d x}{\|\nabla w\|_{L^{2}(\Omega)}} \leq \sup _{w \in H_{0}^{1}(\Omega)} \frac{\|v\|_{L^{2}(\Omega)}\|w\|_{L^{2}(\Omega)}}{\|\nabla w\|_{L^{2}(\Omega)}} \leq\|v\|_{L^{2}(\Omega)}$.
2. Let $\Omega \subset \mathbb{R}^{d}$ be convex, with boundary Γ. Let $b \in \mathbb{R}^{d}$ be a constant vector and consider,

$$
\left\{\begin{aligned}
-\Delta u+b \cdot \nabla u & =f, & & \text { in } \Omega \\
u & =0, & & \text { on } \Gamma .
\end{aligned}\right.
$$

(a) Show that the corresponding weak form is coercive.

Sol. We note that $(b \cdot \nabla v, v)=((\nabla \cdot b) v, v)-(v, b \cdot \nabla v)=-(v, b \cdot \nabla v)=0$. Therefore $\|\nabla v\|_{L^{2}(\Omega)}^{2} \leq(\nabla v, \nabla v)+(b \cdot \nabla v, v)$ for all $v \in H_{0}^{1}(\Omega)$.
(b) Let $V_{h} \subset H_{0}^{1}(\Omega)$ be the space of continuous piecewise linear functions. Derive the finite element method using the space V_{h}.
Sol. Find $U \in V_{h}$ such that $(\nabla U, \nabla v)+(b \cdot \nabla U, v)=(f, v)$ for all $v \in V_{h}$.
(c) Derive an a priori bound for the error in the finite element approximation. Express explicitly the dependency on b in the bound.
Sol. We have

$$
\begin{aligned}
\|\nabla(u-U)\|_{L^{2}(\Omega)}^{2} & =(\nabla(u-U), \nabla(u-U))+(b \cdot \nabla(u-U), u-U) \\
& =(\nabla(u-U), \nabla(u-\pi u))+(b \cdot \nabla(u-U), u-\pi u) \\
& \leq\|\nabla(u-U)\|_{L^{2}(\Omega)}\|\nabla(u-\pi u)\|_{L^{2}(\Omega)}+|b|\|\nabla(u-U)\|_{L^{2}(\Omega)}\|u-\pi u\|_{L^{2}(\Omega)} \\
& \leq \frac{1}{4}\|\nabla(u-U)\|_{L^{2}(\Omega)}^{2}+\|\nabla(u-\pi u)\|_{L^{2}(\Omega)}+\frac{1}{4}\|\nabla(u-U)\|_{L^{2}(\Omega)}^{2}+|b|^{2}\|u-\pi u\|_{L^{2}(\Omega)}^{2} .
\end{aligned}
$$

We get,

$$
\|\nabla(u-U)\|_{L^{2}(\Omega)}^{2} \leq 2\|\nabla(u-\pi u)\|_{L^{2}(\Omega)}^{2}+2|b|^{2}\|u-\pi u\|_{L^{2}(\Omega)}^{2}
$$

3. Consider the eigenvalue problem: find $u \in H_{0}^{1}(\Omega)$ and $\lambda \in \mathbb{R}$ such that

$$
\left\{\begin{aligned}
-\Delta u+c u & =\lambda u, & & \text { in } \Omega, \\
u & =0, & & \text { on } \Gamma,
\end{aligned}\right.
$$

where $c \in L^{\infty}(\Omega)$ is positive.
(a) Show that the eigenvalues λ are real and positive.

Sol. Let λ be an eigenvalue with corresponding eigenfunction u. The Rayleigh quotient gives $\lambda=\frac{(\nabla u, \nabla u)+(c u, u)}{(u, u)}=\frac{\|\nabla u\|_{L^{2}(\Omega)}^{2}+\|\sqrt{c} u\|_{L^{2}(\Omega)}^{2}}{\|u\|_{L^{2}(\Omega)}^{2}} \in \mathbb{R}_{+}$.
(b) Show that eigenfunctions corresponding to different eigenvalues are orthogonal both with respect to the $L^{2}(\Omega)$ scalar product and to the energy scalar product induced by the problem, $(\nabla v, \nabla w)+(c v, w)$.
Sol. Let (λ, u) and (μ, v) be eigenpairs with $\lambda \neq \mu$. We have $\lambda(u, v)=(\nabla u, \nabla v)+(c u, v)=$ $(\nabla v, \nabla u)+(c v, u)=\mu(v, u)$ i.e. $(u, v)=0$ and $(\nabla v, \nabla u)+(c v, u)=0$ they are orthogonal.
(c) Bound the smallest eigenvalue in terms of the smallest eigenvalue to the Laplacian $-\Delta$ on Ω and the bounded function c.
Sol. Let $-\Delta v=\mu v$ be the lowest eigenvalue of the Laplacian with corresponding normalized eigenfunction $\|v\|_{L^{2}(\Omega)}=1$. We have,

$$
\lambda=\inf _{w \in H_{0}^{1}(\Omega)} \frac{(\nabla w, \nabla w)+(c w, w)}{(w, w)} \leq(\nabla v, \nabla v)+(c v, v) \leq \mu+\|c\|_{L^{\infty}(\Omega)}
$$

4. Let $\Omega \subset \mathbb{R}^{d}$ be a convex domain, with boundary Γ. Consider the heat equation,

$$
\left\{\begin{aligned}
\dot{u}-\Delta u=0, & \text { in } \Omega \times(0, T), \\
u=0, & \text { on } \Gamma \times(0, T), \\
u(\cdot, 0)=v, & \text { in } \Omega
\end{aligned}\right.
$$

(a) Let $v \in L^{2}(\Omega)$. Show that $\|\nabla u(t)\|_{L^{2}(\Omega)} \leq C t^{-1 / 2}\|v\|_{L^{2}(\Omega)}$, for $t>0$.

Sol. Let $\left\{\phi_{i}\right\}$ be the set of eigenfunctions (orthogonal w.r.t. $(\nabla \cdot, \nabla \cdot)$) spanning $L^{2}(\Omega)$ with corresponding eigenvalues λ_{i}. Let $u(t)=\sum_{i=1}^{\infty} \alpha_{i}(t) \phi_{i}$. Inserting it into the equation yields $\alpha_{i}(t)=e^{-\lambda_{i} t}\left(v, \phi_{i}\right)$. Therefore,

$$
|u(\cdot, t)|_{H^{1}(\Omega)}^{2}=\sum_{i=1}^{\infty} \lambda_{i} e^{-2 \lambda_{i} t}\left(v, \phi_{i}\right)^{2} \leq C t^{-1}\|v\|_{L^{2}(\Omega)}^{2}
$$

(b) Let $v \in H_{0}^{1}(\Omega)$. Show that $\|\nabla u(t)\|_{L^{2}(\Omega)} \leq\|\nabla v\|_{L^{2}(\Omega)}$, for $t>0$.

Sol. $|u(\cdot, t)|_{H^{1}(\Omega)}^{2}=\sum_{i=1}^{\infty} \lambda_{i} e^{-2 \lambda_{i} t}\left(v, \phi_{i}\right)^{2} \leq\|\nabla v\|_{L^{2}(\Omega)}^{2}$.
(c) Formulate the Crank-Nicolson Galerkin finite element method for this problem.

Sol. The Crank-Nicolson Galerkin approximation at time $t_{n}=k n, U^{n} \in V_{h}$, with time step size k fulfills,

$$
\left(U^{n}, w\right)+\frac{1}{2} k\left(\nabla U^{n}, \nabla w\right)=\left(U^{n-1}, w\right)-\frac{1}{2} k\left(\nabla U^{n-1}, \nabla w\right), \quad \forall w \in V_{h}
$$

with $\left(U^{0}, w\right)=(v, w)$ for all $w \in V_{h}$.
5. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain, with smooth boundary Γ. Consider the wave equation,

$$
\left\{\begin{aligned}
\ddot{u}-\Delta u & =0, & & \text { in } \Omega \times I \\
u & =0, & & \text { on } \Gamma \times I \\
u(\cdot, 0) & =v, \quad \dot{u}(\cdot, 0)=w, & & \text { in } \Omega
\end{aligned}\right.
$$

where v and w are smooth. Show that the total energy of u is constant in time.
Sol. See Theorem 11.2.
/axel

