Matematik Chalmers

TMA026/MMA430 Partial differential equations II Partiella differentialekvationer II, 2016-05-31 f M

Telefon: Axel Målqvist 031-7723599
Inga hjälpmedel. Kalkylator ej tillåten. No aids or electronic calculators are permitted.
You may get up to 10 points for each problem plus points for the hand-in problems.
Grades: 3: 20p-29p, 4: 30p-39p, 5: 40p-, G: $20 \mathrm{p}-34 \mathrm{p}$, VG: $35 \mathrm{p}-$

1. Sol.

(a) We have $\phi_{1}(x)=\frac{x}{h}$ on $0 \leq x \leq h, \phi_{1}(x)=2-\frac{x}{h}$ on $h \leq x \leq 2 h$, and zero otherwise. The weak derivative is therefore $D_{w} \phi_{1}=\frac{1}{h}$ for $0 \leq x \leq h, D_{w} \phi_{1}=-\frac{1}{h}$ for $h \leq x \leq 2 h$, and zero otherwise since,

$$
-\int_{\Omega} \phi_{1} \frac{\partial \psi}{\partial x} d x=\int_{\Omega} D_{w} \phi_{1} \psi d x, \quad \forall \psi \in C_{0}^{1}
$$

(b) Since the mesh is quasi uniform (with constant C) and shape regular (with constant C_{ρ}), the largest inscribed ball with in any element in \mathcal{T}_{h} has radius greater than $C_{\rho} C^{-1} h$ in any element. Therefore $\left|\nabla \phi_{i}\right| \leq C_{\rho}^{-1} C h^{-1}$ for all $x \in \Omega$, where C^{\prime} is independent of h. We get $\left\|\nabla \phi_{i}\right\|_{L^{p}(\Omega)} \leq C^{\prime} h^{-1}\left(\int_{\operatorname{supp}\left(\phi_{i}\right)} 1 d x\right)^{1 / p}=C^{\prime} h^{d / p-1}$. Therefore, $\left\|\nabla \phi_{i}\right\|_{L^{p}(\Omega)} \leq C^{\prime}$ independent of h, if $1 \leq p \leq d$.
2. Sol. See Theorem 3.8 in Thomée-Larsson.

3. Sol.

(a) The representation is valid if $\omega^{2} \neq \lambda_{i}$ for any $i=1, \ldots$. For those ω^{2} we have $u=\sum_{i=1}^{\infty} \frac{\left(f, \varphi_{i}\right)}{\lambda_{i}-\omega^{2}} \varphi_{i}$.
(b) Let $v=\sum_{i=1}^{\infty} \alpha_{i} \varphi_{i}$. Then,

$$
(\nabla v, \nabla v)-\omega^{2}(v, v)=\sum_{i=1}^{\infty}\left(\lambda_{i}-\omega^{2}\right) \alpha_{i}^{2} \geq \frac{1}{2} \sum_{i=1}^{\infty} \lambda_{i} \alpha_{i}^{2} \geq \frac{1}{2}|v|_{H^{1}(\Omega)}^{2}
$$

4. Sol.

(a) We let S_{h} be the space of continuous piecewise linear functions fulfilling the boundary condition. We pick a uniform time step k and let $\bar{\partial}_{t} U^{n}=\frac{U^{n}-U^{n-1}}{k}$. Find $U^{n} \in S_{h}$ such that,

$$
\left(\bar{\partial}_{t} U^{n}, \chi\right)+\left(\nabla U^{n}, \nabla \chi\right)=\left(f\left(t_{n}\right), \chi\right), \quad \forall \chi \in S_{h}, \quad n \geq 1
$$

with $U^{0}=v_{h}$.
(b) We let the test function be U^{n} and use that $\left(\nabla U^{n}, \nabla U^{n}\right) \geq 0$ to get $\left(\bar{\partial} U^{n}, U^{n}\right) \leq\left\|f\left(t_{n}\right)\right\|_{L^{2}(\Omega)}\left\|U^{n}\right\|_{L^{2}(\Omega)}$. We conclude,

$$
\left\|U^{n}\right\|_{L^{2}(\Omega)}^{2} \leq\left(\left\|U^{n-1}\right\|_{L^{2}(\Omega)}+\left\|f\left(t_{n}\right)\right\|_{L^{2}(\Omega)}\right)\left\|U^{n}\right\|_{L^{2}(\Omega)} .
$$

We divide with $\left\|U^{n}\right\|_{L^{2}(\Omega)}$ and repeat the argument to get,

$$
\left\|U^{n}\right\|_{L^{2}(\Omega)} \leq\left\|v_{h}\right\|_{L^{2}(\Omega)}+k \sum_{j=1}^{n}\left\|f\left(t_{j}\right)\right\|_{L^{2}(\Omega)}
$$

(c) We have $\left\|u\left(t_{n}\right)-U^{n}\right\|_{L^{2}(\Omega)} \leq C_{1} h^{2}+C_{2} k$. Therefore $k \sim h^{2}$ would balance the terms.
5. Sol.
(a) We have $\left(A_{j} \frac{\partial u}{\partial x_{j}}, u\right)=\frac{1}{2} \frac{\partial}{\partial x_{j}}\left(A_{j} u, u\right)-\left(\frac{\partial A_{j}}{\partial x_{j}} u, u\right)=0$ since u vanishes for large x and A_{j} is constant. We multiply the equation with u and integrate in space to get,

$$
\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)} \frac{\partial}{\partial t}\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\frac{1}{2} \frac{\partial}{\partial t}\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}=(\dot{u}, u)=(f, u) \leq\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)} .
$$

We divide by $\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}$ and integrate in time,

$$
\|u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq\|v\|_{L^{2}\left(\mathbb{R}^{d}\right)}+\int_{0}^{t}\|f(s)\|_{L^{2}\left(\mathbb{R}^{d}\right)} d s
$$

(b) We have the problem $u_{t}^{\prime}(x, t)+A_{1} u_{x}^{\prime}(x, t)=0$ and $u(x, 0)=v(x)$. We let t parameterize the problem and get $\frac{d}{d t} x(t)=A_{1}$ and therefore the characteristic curve $x(t)=A_{1} t+C$. The characteristic through (\bar{x}, \bar{t}) is given by $\bar{x}=A_{1} \bar{t}+C$ or $C=\bar{x}-A_{1} \bar{t}$. We have that the solution is constant along the characteristic line. Therefore $u(\bar{x}, \bar{t})=u(x(\bar{t}, \bar{t})=u(x(0), 0)=u(C, 0)=$ $v\left(\bar{x}-A_{1} \bar{t}\right)$.

/axel

