Matematik Chalmers

TMA026/MMA430 Partial differential equations II Partiella differentialekvationer II, 2016-08-26 f M

Telefon: Adam Malik 031-7725325
Inga hjälpmedel. Kalkylator ej tillåten. No aids or electronic calculators are permitted.
You may get up to 10 points for each problem plus points for the hand-in problems.
Grades: 3: 20p-29p, 4: 30p-39p, 5: 40p-, G: 20p-34p, VG: 35p-

1. Consider the Poisson equation $-\Delta u=f$ in \mathbb{R}^{3}.
(a) Show that the fundamental solution $U(x)=\frac{1}{4 \pi \mid x}$.
(b) Show that $u(x)=(U * f)(x)=\int_{\mathbb{R}^{3}} U(x-y) f(y) d y$.
2. Consider the Neumann problem, find u such that

$$
\left\{\begin{aligned}
-\Delta u=f, & \text { in } \Omega \\
\partial_{n} u=g, & \text { on } \Gamma,
\end{aligned}\right.
$$

where $f \in L^{2}(\Omega)$ and $g \in L^{2}(\Gamma)$.
(a) Under what additional assumption on f and g do we have existence of solution?
(b) Show that a solution u can not be unique.
(c) What is the smallest eigenvalue of the corresponding eigenvalue problem, where $g=0$ and f is replaced by λu ?
3. Consider the following abstract elliptic problem in weak form: find $u \in H_{0}^{1}(\Omega)$ such that,

$$
a(u, v)=l(v)
$$

where a is a bilinear form, l is a linear functional, and Ω is a bounded domain in \mathbb{R}^{3}.
(a) Show that $H_{0}^{1}(\Omega)$ is a closed subspace of $H^{1}(\Omega)$. The trace theorem for functions in $H^{1}(\Omega)$ can be used without proof.
(b) Give sufficient assumptions on a and l so that the problem has a unique solution in $H_{0}^{1}(\Omega)$.
(c) Give an example of a linear functional l that violates the conditions in (b).
4. Let $\Omega \subset \mathbb{R}^{d}$ be a convex domain, with boundary Γ. Consider the heat equation,

$$
\left\{\begin{array}{rll}
\dot{u}-\Delta u=0, & & \text { in } \Omega \times(0, T), \\
u=0, & & \text { on } \Gamma \times(0, T), \\
u(\cdot, 0)=v, & & \text { in } \Omega .
\end{array}\right.
$$

(a) Let $v \in L^{2}(\Omega)$. Show that $\|\nabla u(t)\|_{L^{2}(\Omega)} \leq C t^{-1 / 2}\|v\|_{L^{2}(\Omega)}$, for $t>0$.
(b) Let $v \in H_{0}^{1}(\Omega)$. Show that $\|\nabla u(t)\|_{L^{2}(\Omega)} \leq\|\nabla v\|_{L^{2}(\Omega)}$, for $t>0$.
(c) Formulate the Crank-Nicolson-Galerkin method for this problem.
5. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain, with smooth boundary Γ. Consider the wave equation,

$$
\left\{\begin{aligned}
\ddot{u}-\Delta u & =f, & & \text { in } \Omega \times I \\
u & =0, & & \text { on } \Gamma \times I \\
u(\cdot, 0) & =v, \quad \dot{u}(\cdot, 0)=w, & & \text { in } \Omega .
\end{aligned}\right.
$$

Let u_{h} be the semi-discrete (in space) Galerkin approximation of u using v_{h} and w_{h} as approximations for the initial conditions. Prove for $t \geq 0$ that,
$\left\|u(t)-u_{h}(t)\right\|_{L^{2}(\Omega)} \leq C\left(\left|v_{h}-R_{h} v\right|_{H^{1}(\Omega)}+\left\|w_{h}-R_{h} w\right\|\right)+C h^{2}\left(\|u(t)\|_{H^{2}(\Omega)}+\int_{0}^{t}\left\|u_{t t}\right\|_{H^{2}(\Omega)} d s\right)$,
where R_{h} is the Ritz projection.
/axel

