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You may get up to 10 points for each problem plus points for the hand-in problems.
Grades: 3: 20p–29p, 4: 30p–39p, 5: 40p–, G: 20p–34p, VG: 35p–

1. Consider the Poisson equation −∆u = f in R3.

(a) Show that the fundamental solution U(x) = 1
4π|x| .

Sol. We remember that Laplace operator in spherical coordinates −∆U = −r−2(r2U ′
r)

′
r. We

note for r ̸= 0 that,

−∆U = −r−2(r2U ′
r)

′
r = −r−2(−(4π)−1)′r = 0.

For any ϕ ∈ C∞
0 (Rd) we have,∫

|x|>ϵ

U(−∆ϕ) dx =

∫
|x|>ϵ

(−∆U)ϕdx+

∫
|x|=ϵ

(ϕ∂nU − U∂nϕ) ds

= +

∫
|x|=ϵ

(ϕ∂nU − U∂nϕ) ds.

Note that ∂nU = −U ′
r. We get for the first term ∂nU ||x|=ϵ = −U ′

r|r=ϵ = 4πϵ−2 and therefore,∫
|x|=ϵ

ϕ∂nU ds =
1

4πϵ2

∫
|x|=ϵ

ϕds → ϕ(0),

as ϵ → 0.
We also have∣∣∣∣∣

∫
|x|=ϵ

∂nϕU ds

∣∣∣∣∣ = (4πϵ)−1

∣∣∣∣∣
∫
|x|=ϵ

∂nϕ

∣∣∣∣∣ ≤ ϵ∥∇ϕ∥C(Rd) → 0,

as ϵ → 0. We conclude, ∫
|x|>ϵ

U(−∆ϕ) dx → ϕ(0),

as ϵ → 0.
(b) Show that u(x) = (U ∗ f)(x) =

∫
R3 U(x− y)f(y) dy.

Sol. We have

(f, ϕ) =

∫
Rd

ϕ(y)f(y) dy

=

∫
Rd

∫
Rd

U(x− y)Aϕ(x) dxf(y) dy

=

∫
Rd

∫
Rd

U(x− y)f(y) dyAϕ(x) dx

= (u,Aϕ)

= (Au, ϕ),

for all ϕ ∈ C∞
0 (Rd). Integration by parts is possible since DiDju = DiDj(U ∗ f) = (DiU ∗

Djf)(x) ∈ C2(Rd), see proof of Theorem 3.4 in Larsson-Thomeé. We conclude Au = f .
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2. Consider the Neumann problem, find u such that{−∆u = f, in Ω,

∂nu = g, on Γ,

where f ∈ L2(Ω) and g ∈ L2(Γ).

(a) Under what additional assumption on f and g do we have existence of solution?
Sol. We derive the weak form, find u ∈ H1(Ω) such that, (∇u,∇v) = (f, v) + (g, v)Γ for all
v ∈ H1(Ω). We let v = 1 ∈ H1(Ω) and conclude

∫
Ω
f dx+

∫
Γ
g ds = 0.

(b) Show that a solution u can not be unique.
Sol. Given a solution u+ C is also a solution for any constant C.

(c) What is the smallest eigenvalue of the corresponding eigenvalue problem, where g = 0 and f
is replaced by λu?

Sol. We first note that the Rayleigh quotient (∇v,∇v)
(v,v) is non-negative since the bilinear form

is symmetric. It is minimized by letting v = C ∈ R and the minimum is 0 i.e. the smallest
eigenvalue is zero.

3. Consider the following abstract elliptic problem in weak form: find u ∈ H1
0 (Ω) such that,

a(u, v) = l(v),

where a is a bilinear form, l is a linear functional, and Ω is a bounded domain in R3.

(a) Show that H1
0 (Ω) is a closed subspace of H1(Ω). The trace theorem for functions in H1(Ω)

can be used without proof.
Sol. Let {vi}∞i=1 ∈ H1

0 (Ω) be a sequence with limit v ̸∈ H1
0 (Ω) i.e. ∥γv∥L2(Γ) = δ > 0. For

any ϵ > 0 there exists an n such that,

C∥vi − v∥H1(Ω) ≤ ϵ.

Using the trace theorem we get,

δ = ∥γv∥L2(Γ) = ∥γ(v − vi)∥L2(Γ) ≤ C∥vi − v∥H1(Ω) ≤ ϵ,

for all i > n. By choosing ϵ < δ we get a contradiction i.e. H1
0 (Ω) is a closed subspace of

H1(Ω) and therefore a Hilbert space.
(b) Give sufficient assumptions on a and l so that the problem has a unique solution in H1

0 (Ω).
Sol. a should be coercive and bounded and l should be bounded.

(c) Give an example of a linear functional l that violates the conditions in (b).

Sol. Let l = δ. Then ∥l∥H−1(Ω) = supv∈H1
0 (Ω)

|v(x)|
∥v∥H1(Ω)

= ∞ since H1(Ω) are not in general

pointwise defined in R3.

4. Let Ω ⊂ Rd be a convex domain, with boundary Γ. Consider the heat equation,
u̇−∆u = 0, in Ω× (0, T ),

u = 0, on Γ× (0, T ),

u(·, 0) = v, in Ω.

(a) Let v ∈ L2(Ω). Show that ∥∇u(t)∥L2(Ω) ≤ Ct−1/2∥v∥L2(Ω), for t > 0.

Sol. Let {ϕi} be the set of eigenfunctions (orthogonal w.r.t. (∇·,∇·)) spanning L2(Ω) with
corresponding eigenvalues λi. Let u(t) =

∑∞
i=1 αi(t)ϕi. Inserting it into the equation yields

αi(t) = e−λit(v, ϕi). Therefore,

|u(·, t)|2H1(Ω) =
∞∑
i=1

λie
−2λit(v, ϕi)

2 ≤ Ct−1∥v∥2L2(Ω)

.
(b) Let v ∈ H1

0 (Ω). Show that ∥∇u(t)∥L2(Ω) ≤ ∥∇v∥L2(Ω), for t > 0.

Sol. |u(·, t)|2H1(Ω) =
∑∞

i=1 λie
−2λit(v, ϕi)

2 ≤ ∥∇v∥2L2(Ω).
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(c) Formulate the Crank-Nicolson Galerkin finite element method for this problem.
Sol. The Crank-Nicolson Galerkin approximation at time tn = kn, Un ∈ Vh, with time step
size k fulfills,

(Un, w) +
1

2
k(∇Un,∇w) = (Un−1, w)− 1

2
k(∇Un−1,∇w), ∀w ∈ Vh,

with (U0, w) = (v, w) for all w ∈ Vh.

5. Let Ω ⊂ Rd be a bounded domain, with smooth boundary Γ. Consider the wave equation,
ü−∆u = f, in Ω× I,

u = 0, on Γ× I,

u(·, 0) = v, u̇(·, 0) = w, in Ω.

Let uh be the semi-discrete (in space) Galerkin approximation of u using vh and wh as approxi-
mations for the initial conditions. Prove for t ≥ 0 that,

∥u(t)−uh(t)∥L2(Ω) ≤ C
(
|vh −Rhv|H1(Ω) + ∥wh −Rhw∥

)
+Ch2

(
∥u(t)∥H2(Ω) +

∫ t

0

∥utt∥H2(Ω) ds

)
,

where Rh is the Ritz projection.
Sol. See Theorem 13.1.
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