Matematik Chalmers

TMA026/MMA430 Partial differential equations II Partiella differentialekvationer II, 2016–08–26 f M

Telefon: Adam Malik 031–7725325

Inga hjälpmedel. Kalkylator ej tillåten. No aids or electronic calculators are permitted.

You may get up to 10 points for each problem plus points for the hand-in problems. Grades: 3: 20p-29p, 4: 30p-39p, 5: 40p-, G: 20p-34p, VG: 35p-

- **1.** Consider the Poisson equation $-\Delta u = f$ in \mathbb{R}^3 .
- (a) Show that the fundamental solution $U(x) = \frac{1}{4\pi |x|}$. Sol. We remember that Laplace operator in spherical coordinates $-\Delta U = -r^{-2}(r^2 U'_r)'_r$. We note for $r \neq 0$ that,

$$-\Delta U = -r^{-2}(r^2 U'_r)'_r = -r^{-2}(-(4\pi)^{-1})'_r = 0.$$

For any $\phi \in C_0^{\infty}(\mathbb{R}^d)$ we have,

$$\int_{|x|>\epsilon} U(-\Delta\phi) \, dx = \int_{|x|>\epsilon} (-\Delta U)\phi \, dx + \int_{|x|=\epsilon} (\phi\partial_n U - U\partial_n\phi) \, ds$$
$$= + \int_{|x|=\epsilon} (\phi\partial_n U - U\partial_n\phi) \, ds.$$

Note that $\partial_n U = -U'_r$. We get for the first term $\partial_n U|_{|x|=\epsilon} = -U'_r|_{r=\epsilon} = 4\pi\epsilon^{-2}$ and therefore,

$$\int_{|x|=\epsilon} \phi \partial_n U \, ds = \frac{1}{4\pi\epsilon^2} \int_{|x|=\epsilon} \phi \, ds \to \phi(0),$$

as $\epsilon \to 0$.

We also have

$$\left| \int_{|x|=\epsilon} \partial_n \phi U \, ds \right| = (4\pi\epsilon)^{-1} \left| \int_{|x|=\epsilon} \partial_n \phi \right| \le \epsilon \|\nabla \phi\|_{C(\mathbb{R}^d)} \to 0,$$

as $\epsilon \to 0$. We conclude,

$$\int_{|x|>\epsilon} U(-\Delta\phi)\,dx \to \phi(0),$$

as $\epsilon \to 0$.

(b) Show that $u(x) = (U * f)(x) = \int_{\mathbb{R}^3} U(x - y) f(y) \, dy$. Sol. We have

$$\begin{split} (f,\phi) &= \int_{\mathbb{R}^d} \phi(y) f(y) \, dy \\ &= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} U(x-y) \mathcal{A}\phi(x) \, dx f(y) \, dy \\ &= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} U(x-y) f(y) \, dy \mathcal{A}\phi(x) \, dx \\ &= (u, \mathcal{A}\phi) \\ &= (\mathcal{A}u, \phi), \end{split}$$

for all $\phi \in C_0^{\infty}(\mathbb{R}^d)$. Integration by parts is possible since $D_i D_j u = D_i D_j (U * f) = (D_i U * D_j f)(x) \in C^2(\mathbb{R}^d)$, see proof of Theorem 3.4 in Larsson-Thomeé. We conclude Au = f.

2. Consider the Neumann problem, find u such that

$$\begin{cases} -\Delta u = f, & \text{ in } \Omega, \\ \partial_n u = g, & \text{ on } \Gamma, \end{cases}$$

where $f \in L^2(\Omega)$ and $g \in L^2(\Gamma)$.

- (a) Under what additional assumption on f and g do we have existence of solution? **Sol.** We derive the weak form, find $u \in H^1(\Omega)$ such that, $(\nabla u, \nabla v) = (f, v) + (g, v)_{\Gamma}$ for all $v \in H^1(\Omega)$. We let $v = 1 \in H^1(\Omega)$ and conclude $\int_{\Omega} f \, dx + \int_{\Gamma} g \, ds = 0$.
- (b) Show that a solution u can not be unique.

Sol. Given a solution u + C is also a solution for any constant C.

(c) What is the smallest eigenvalue of the corresponding eigenvalue problem, where g = 0 and f is replaced by λu ?

Sol. We first note that the Rayleigh quotient $\frac{(\nabla v, \nabla v)}{(v, v)}$ is non-negative since the bilinear form is symmetric. It is minimized by letting $v = C \in \mathbb{R}$ and the minimum is 0 i.e. the smallest eigenvalue is zero.

3. Consider the following abstract elliptic problem in weak form: find $u \in H_0^1(\Omega)$ such that,

$$a(u,v) = l(v)$$

where a is a bilinear form, l is a linear functional, and Ω is a bounded domain in \mathbb{R}^3 .

(a) Show that $H_0^1(\Omega)$ is a closed subspace of $H^1(\Omega)$. The trace theorem for functions in $H^1(\Omega)$ can be used without proof. Sol. Let $\{v_i\}_{i=1}^{\infty} \in H_0^1(\Omega)$ be a sequence with limit $v \notin H_0^1(\Omega)$ i.e. $\|\gamma v\|_{L^2(\Gamma)} = \delta > 0$. For

Sol. Let $\{v_i\}_{i=1}^{\infty} \in H_0^1(\Omega)$ be a sequence with limit $v \notin H_0^1(\Omega)$ i.e. $\|\gamma v\|_{L^2(\Gamma)} = \delta > 0$. For any $\epsilon > 0$ there exists an n such that,

$$C\|v_i - v\|_{H^1(\Omega)} \le \epsilon$$

Using the trace theorem we get,

$$\delta = \|\gamma v\|_{L^{2}(\Gamma)} = \|\gamma (v - v_{i})\|_{L^{2}(\Gamma)} \le C \|v_{i} - v\|_{H^{1}(\Omega)} \le \epsilon,$$

for all i > n. By choosing $\epsilon < \delta$ we get a contradiction i.e. $H_0^1(\Omega)$ is a closed subspace of $H^1(\Omega)$ and therefore a Hilbert space.

- (b) Give sufficient assumptions on a and l so that the problem has a unique solution in $H_0^1(\Omega)$. Sol. a should be coercive and bounded and l should be bounded.
- (c) Give an example of a linear functional l that violates the conditions in (b). **Sol.** Let $l = \delta$. Then $||l||_{H^{-1}(\Omega)} = \sup_{v \in H_0^1(\Omega)} \frac{|v(x)|}{||v||_{H^1(\Omega)}} = \infty$ since $H^1(\Omega)$ are not in general pointwise defined in \mathbb{R}^3 .
- 4. Let $\Omega \subset \mathbb{R}^d$ be a convex domain, with boundary Γ . Consider the heat equation,

$$\begin{cases} \dot{u} - \Delta u = 0, & \text{ in } \Omega \times (0, T) \\ u = 0, & \text{ on } \Gamma \times (0, T) \\ u(\cdot, 0) = v, & \text{ in } \Omega. \end{cases}$$

(a) Let $v \in L^2(\Omega)$. Show that $\|\nabla u(t)\|_{L^2(\Omega)} \leq Ct^{-1/2} \|v\|_{L^2(\Omega)}$, for t > 0. Sol. Let $\{\phi_i\}$ be the set of eigenfunctions (orthogonal w.r.t. (∇, ∇)) spanning $L^2(\Omega)$ with corresponding eigenvalues λ_i . Let $u(t) = \sum_{i=1}^{\infty} \alpha_i(t)\phi_i$. Inserting it into the equation yields $\alpha_i(t) = e^{-\lambda_i t}(v, \phi_i)$. Therefore,

$$|u(\cdot,t)|^{2}_{H^{1}(\Omega)} = \sum_{i=1}^{\infty} \lambda_{i} e^{-2\lambda_{i}t} (v,\phi_{i})^{2} \le Ct^{-1} ||v||^{2}_{L^{2}(\Omega)}$$

(b) Let $v \in H_0^1(\Omega)$. Show that $\|\nabla u(t)\|_{L^2(\Omega)} \le \|\nabla v\|_{L^2(\Omega)}$, for t > 0. Sol. $|u(\cdot,t)|_{H^1(\Omega)}^2 = \sum_{i=1}^{\infty} \lambda_i e^{-2\lambda_i t} (v,\phi_i)^2 \le \|\nabla v\|_{L^2(\Omega)}^2$. (c) Formulate the Crank-Nicolson Galerkin finite element method for this problem. Sol. The Crank-Nicolson Galerkin approximation at time $t_n = kn$, $U^n \in V_h$, with time step size k fulfills,

$$(U^n, w) + \frac{1}{2}k(\nabla U^n, \nabla w) = (U^{n-1}, w) - \frac{1}{2}k(\nabla U^{n-1}, \nabla w), \quad \forall w \in V_h,$$

with $(U^0, w) = (v, w)$ for all $w \in V_h$.

5. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain, with smooth boundary Γ . Consider the wave equation,

$$\begin{cases} \ddot{u} - \Delta u = f, & \text{in } \Omega \times I, \\ u = 0, & \text{on } \Gamma \times I, \\ u(\cdot, 0) = v, & \dot{u}(\cdot, 0) = w, & \text{in } \Omega. \end{cases}$$

Let u_h be the semi-discrete (in space) Galerkin approximation of u using v_h and w_h as approximations for the initial conditions. Prove for $t \ge 0$ that,

$$\|u(t) - u_h(t)\|_{L^2(\Omega)} \le C \left(|v_h - R_h v|_{H^1(\Omega)} + \|w_h - R_h w\| \right) + Ch^2 \left(\|u(t)\|_{H^2(\Omega)} + \int_0^t \|u_{tt}\|_{H^2(\Omega)} \, ds \right),$$

where R_h is the Ritz projection. Sol. See Theorem 13.1.

/axel