Matematik Chalmers

TMA026/MMA430 Partial differential equations II Partiella differentialekvationer II, 2016-08-26 f M

Telefon: Adam Malik 031-7725325
Inga hjälpmedel. Kalkylator ej tillåten. No aids or electronic calculators are permitted.
You may get up to 10 points for each problem plus points for the hand-in problems.
Grades: 3: 20p-29p, 4: 30p-39p, 5: 40p-, G: 20p-34p, VG: 35p-

1. Consider the Poisson equation $-\Delta u=f$ in \mathbb{R}^{3}.
(a) Show that the fundamental solution $U(x)=\frac{1}{4 \pi|x|}$.

Sol. We remember that Laplace operator in spherical coordinates $-\Delta U=-r^{-2}\left(r^{2} U_{r}^{\prime}\right)_{r}^{\prime}$. We note for $r \neq 0$ that,

$$
-\Delta U=-r^{-2}\left(r^{2} U_{r}^{\prime}\right)_{r}^{\prime}=-r^{-2}\left(-(4 \pi)^{-1}\right)_{r}^{\prime}=0
$$

For any $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ we have,

$$
\begin{aligned}
\int_{|x|>\epsilon} U(-\Delta \phi) d x & =\int_{|x|>\epsilon}(-\Delta U) \phi d x+\int_{|x|=\epsilon}\left(\phi \partial_{n} U-U \partial_{n} \phi\right) d s \\
& =+\int_{|x|=\epsilon}\left(\phi \partial_{n} U-U \partial_{n} \phi\right) d s .
\end{aligned}
$$

Note that $\partial_{n} U=-U_{r}^{\prime}$. We get for the first term $\left.\partial_{n} U\right|_{|x|=\epsilon}=-\left.U_{r}^{\prime}\right|_{r=\epsilon}=4 \pi \epsilon^{-2}$ and therefore,

$$
\int_{|x|=\epsilon} \phi \partial_{n} U d s=\frac{1}{4 \pi \epsilon^{2}} \int_{|x|=\epsilon} \phi d s \rightarrow \phi(0),
$$

as $\epsilon \rightarrow 0$.
We also have

$$
\left|\int_{|x|=\epsilon} \partial_{n} \phi U d s\right|=(4 \pi \epsilon)^{-1}\left|\int_{|x|=\epsilon} \partial_{n} \phi\right| \leq \epsilon\|\nabla \phi\|_{C\left(\mathbb{R}^{d}\right)} \rightarrow 0,
$$

as $\epsilon \rightarrow 0$. We conclude,

$$
\int_{|x|>\epsilon} U(-\Delta \phi) d x \rightarrow \phi(0),
$$

as $\epsilon \rightarrow 0$.
(b) Show that $u(x)=(U * f)(x)=\int_{\mathbb{R}^{3}} U(x-y) f(y) d y$.

Sol. We have

$$
\begin{aligned}
(f, \phi) & =\int_{\mathbb{R}^{d}} \phi(y) f(y) d y \\
& =\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} U(x-y) \mathcal{A} \phi(x) d x f(y) d y \\
& =\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} U(x-y) f(y) d y \mathcal{A} \phi(x) d x \\
& =(u, \mathcal{A} \phi) \\
& =(\mathcal{A} u, \phi)
\end{aligned}
$$

for all $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$. Integration by parts is possible since $D_{i} D_{j} u=D_{i} D_{j}(U * f)=\left(D_{i} U *\right.$ $\left.D_{j} f\right)(x) \in C^{2}\left(\mathbb{R}^{d}\right)$, see proof of Theorem 3.4 in Larsson-Thomeé. We conclude $\mathcal{A} u=f$
2. Consider the Neumann problem, find u such that

$$
\left\{\begin{aligned}
-\Delta u=f, & & \text { in } \Omega, \\
\partial_{n} u=g, & & \text { on } \Gamma,
\end{aligned}\right.
$$

where $f \in L^{2}(\Omega)$ and $g \in L^{2}(\Gamma)$.
(a) Under what additional assumption on f and g do we have existence of solution?

Sol. We derive the weak form, find $u \in H^{1}(\Omega)$ such that, $(\nabla u, \nabla v)=(f, v)+(g, v)_{\Gamma}$ for all $v \in H^{1}(\Omega)$. We let $v=1 \in H^{1}(\Omega)$ and conclude $\int_{\Omega} f d x+\int_{\Gamma} g d s=0$.
(b) Show that a solution u can not be unique.

Sol. Given a solution $u+C$ is also a solution for any constant C.
(c) What is the smallest eigenvalue of the corresponding eigenvalue problem, where $g=0$ and f is replaced by λu ?
Sol. We first note that the Rayleigh quotient $\frac{(\nabla v, \nabla v)}{(v, v)}$ is non-negative since the bilinear form is symmetric. It is minimized by letting $v=C \in \mathbb{R}$ and the minimum is 0 i.e. the smallest eigenvalue is zero.
3. Consider the following abstract elliptic problem in weak form: find $u \in H_{0}^{1}(\Omega)$ such that,

$$
a(u, v)=l(v)
$$

where a is a bilinear form, l is a linear functional, and Ω is a bounded domain in \mathbb{R}^{3}.
(a) Show that $H_{0}^{1}(\Omega)$ is a closed subspace of $H^{1}(\Omega)$. The trace theorem for functions in $H^{1}(\Omega)$ can be used without proof.
Sol. Let $\left\{v_{i}\right\}_{i=1}^{\infty} \in H_{0}^{1}(\Omega)$ be a sequence with limit $v \notin H_{0}^{1}(\Omega)$ i.e. $\|\gamma v\|_{L^{2}(\Gamma)}=\delta>0$. For any $\epsilon>0$ there exists an n such that,

$$
C\left\|v_{i}-v\right\|_{H^{1}(\Omega)} \leq \epsilon
$$

Using the trace theorem we get,

$$
\delta=\|\gamma v\|_{L^{2}(\Gamma)}=\left\|\gamma\left(v-v_{i}\right)\right\|_{L^{2}(\Gamma)} \leq C\left\|v_{i}-v\right\|_{H^{1}(\Omega)} \leq \epsilon,
$$

for all $i>n$. By choosing $\epsilon<\delta$ we get a contradiction i.e. $H_{0}^{1}(\Omega)$ is a closed subspace of $H^{1}(\Omega)$ and therefore a Hilbert space.
(b) Give sufficient assumptions on a and l so that the problem has a unique solution in $H_{0}^{1}(\Omega)$.

Sol. a should be coercive and bounded and l should be bounded.
(c) Give an example of a linear functional l that violates the conditions in (b).

Sol. Let $l=\delta$. Then $\|l\|_{H^{-1}(\Omega)}=\sup _{v \in H_{0}^{1}(\Omega)} \frac{|v(x)|}{\|v\|_{H^{1}(\Omega)}}=\infty$ since $H^{1}(\Omega)$ are not in general pointwise defined in \mathbb{R}^{3}.
4. Let $\Omega \subset \mathbb{R}^{d}$ be a convex domain, with boundary Γ. Consider the heat equation,

$$
\left\{\begin{aligned}
\dot{u}-\Delta u=0, & \text { in } \Omega \times(0, T), \\
u=0, & \text { on } \Gamma \times(0, T), \\
u(\cdot, 0)=v, & \text { in } \Omega .
\end{aligned}\right.
$$

(a) Let $v \in L^{2}(\Omega)$. Show that $\|\nabla u(t)\|_{L^{2}(\Omega)} \leq C t^{-1 / 2}\|v\|_{L^{2}(\Omega)}$, for $t>0$.

Sol. Let $\left\{\phi_{i}\right\}$ be the set of eigenfunctions (orthogonal w.r.t. $(\nabla \cdot, \nabla \cdot)$) spanning $L^{2}(\Omega)$ with corresponding eigenvalues λ_{i}. Let $u(t)=\sum_{i=1}^{\infty} \alpha_{i}(t) \phi_{i}$. Inserting it into the equation yields $\alpha_{i}(t)=e^{-\lambda_{i} t}\left(v, \phi_{i}\right)$. Therefore,

$$
|u(\cdot, t)|_{H^{1}(\Omega)}^{2}=\sum_{i=1}^{\infty} \lambda_{i} e^{-2 \lambda_{i} t}\left(v, \phi_{i}\right)^{2} \leq C t^{-1}\|v\|_{L^{2}(\Omega)}^{2}
$$

(b) Let $v \in H_{0}^{1}(\Omega)$. Show that $\|\nabla u(t)\|_{L^{2}(\Omega)} \leq\|\nabla v\|_{L^{2}(\Omega)}$, for $t>0$.

Sol. $|u(\cdot, t)|_{H^{1}(\Omega)}^{2}=\sum_{i=1}^{\infty} \lambda_{i} e^{-2 \lambda_{i} t}\left(v, \phi_{i}\right)^{2} \leq\|\nabla v\|_{L^{2}(\Omega)}^{2}$.
(c) Formulate the Crank-Nicolson Galerkin finite element method for this problem.

Sol. The Crank-Nicolson Galerkin approximation at time $t_{n}=k n, U^{n} \in V_{h}$, with time step size k fulfills,

$$
\left(U^{n}, w\right)+\frac{1}{2} k\left(\nabla U^{n}, \nabla w\right)=\left(U^{n-1}, w\right)-\frac{1}{2} k\left(\nabla U^{n-1}, \nabla w\right), \quad \forall w \in V_{h}
$$

with $\left(U^{0}, w\right)=(v, w)$ for all $w \in V_{h}$.
5. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain, with smooth boundary Γ. Consider the wave equation,

$$
\left\{\begin{aligned}
\ddot{u}-\Delta u & =f, & & \text { in } \Omega \times I, \\
u & =0, & & \text { on } \Gamma \times I, \\
u(\cdot, 0) & =v, \quad \dot{u}(\cdot, 0)=w, & & \text { in } \Omega .
\end{aligned}\right.
$$

Let u_{h} be the semi-discrete (in space) Galerkin approximation of u using v_{h} and w_{h} as approximations for the initial conditions. Prove for $t \geq 0$ that,
$\left\|u(t)-u_{h}(t)\right\|_{L^{2}(\Omega)} \leq C\left(\left|v_{h}-R_{h} v\right|_{H^{1}(\Omega)}+\left\|w_{h}-R_{h} w\right\|\right)+C h^{2}\left(\|u(t)\|_{H^{2}(\Omega)}+\int_{0}^{t}\left\|u_{t t}\right\|_{H^{2}(\Omega)} d s\right)$, where R_{h} is the Ritz projection.
Sol. See Theorem 13.1.
/axel

