Matematik Chalmers

TMA026/MMA430 Partial differential equations II Partiella differentialekvationer II, 2017-05-30 f SB

Telefon: Tony Stillfjord 031-7725304
Inga hjälpmedel. Kalkylator ej tillåten. No aids or electronic calculators are permitted.
You may get up to 10 points for each problem plus points for the hand-in problems.
Grades: 3: 20p-29p, 4: 30p-39p, 5: 40p-, G: 20p-34p, VG: 35p-

1. The trace theorem. Let Ω be the unit square with boundary Γ and let $\gamma: C^{1}(\bar{\Omega}) \rightarrow C(\Gamma)$ be the trace operator. Show that γ may be extended to $\gamma: H^{1}(\Omega) \rightarrow L^{2}(\Gamma)$, which defines the trace $\gamma v \in L^{2}(\Gamma)$ for any $v \in H^{1}(\Omega)$, and show that $\|\gamma v\|_{L^{2}(\Gamma)} \leq C\|v\|_{H^{1}(\Omega)}$.
2. Consider the Robin problem on a bounded domain Ω with boundary Γ : find u such that

$$
\left\{\begin{array}{rlrl}
-\Delta u & =f, & & \text { in } \Omega, \\
-\partial_{n} u=\kappa u, & & \text { on } \Gamma,
\end{array}\right.
$$

where $f \in L^{2}(\Omega), 0<\kappa$ is a constant, and ∂_{n} denotes the normal derivative.
(a) Write the equation on weak form with test and trial space $H^{1}(\Omega)$.
(b) Show that the bilinear form is coercive and bounded on $H^{1}(\Omega)$. Hint: You are allowed to use that $\|v\|_{L^{2}(\Omega)} \leq C\left(\|\nabla v\|_{L^{2}(\Omega)}+\|v\|_{L^{2}(\Gamma)}\right)$ without proof.
(c) Show $\|u\|_{H^{1}(\Omega)} \leq C_{\kappa, f}$, where $C_{\kappa, f}$ depends on κ and $\|f\|_{L^{2}(\Omega)}$.
3. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain with boundary Γ. Consider the eigenvalue problem:

$$
\left\{\begin{aligned}
-\Delta u+V u & =\lambda u, & & \text { in } \Omega, \\
u & =0, & & \text { on } \Gamma,
\end{aligned}\right.
$$

where $0 \leq V(x) \leq C_{V}$ is a bounded function.
(a) Show that eigenfunctions corresponding to different eigenvalues are orthogonal and that the eigenvalues are real and positive.
(b) Let $\lambda_{1}=\min _{0 \neq u \in H_{0}^{1}(\Omega)} \frac{(\nabla u, \nabla u)+(V u, u)}{(u, u)}$. Show that there is a constant C such that $0<C \leq \lambda_{1}$.
4. Let $\Omega \subset \mathbb{R}^{2}$ be a polygonal domain, with boundary Γ. Consider the homogeneous heat equation with homogeneous Dirichlet boundary conditions and initial condition $u(\cdot, 0)=v \in L^{2}(\Omega)$:

$$
\dot{u}-\Delta u=0, \quad \text { in } \Omega \times(0, T)
$$

(a) Show that $\|u\|_{L^{2}(\Omega)} \leq\|v\|_{L^{2}(\Omega)}$.
(b) Formulate the backward Euler-Galerkin method for this problem with time step k.
(c) Show that the L^{2} norm of the discrete solution $\left\|U^{n}\right\|_{L^{2}(\Omega)}$ decays with increasing n.
5. Let $\Omega \subset \mathbb{R}^{2}$ be a domain, with boundary Γ. Let $f(0)=0,\left|f^{\prime}(z)\right| \leq B$ for $z \in \mathbb{R}$, and let u solve,

$$
\left\{\begin{align*}
\dot{u}-\Delta u & =f(u), & & \text { in } \Omega \times(0, T), \tag{1}\\
u & =0, & & \text { on } \Gamma \times(0, T), \\
u(\cdot, 0) & =v, & & \text { in } \Omega,
\end{align*}\right.
$$

Further, let V_{h} be a finite element space and $k=T / N$ the timestep. An alternative to the Backward Euler Galerkin method is the IMEX method: find $\left\{U_{h}^{n}\right\}_{n=1}^{N} \subset V_{h}$ such that,

$$
\left(U_{h}^{n}, w\right)+k\left(\nabla U_{h}^{n}, \nabla w\right)=\left(U_{h}^{n-1}, w\right)+k\left(f\left(U_{h}^{n-1}\right), w\right), \quad \forall w \in V_{h}, \quad 1 \leq n \leq N
$$

where $U_{h}^{0}=v_{h} \in V_{h}$ is an approximation of v.
(a) How does IMEX differ from Backward Euler? Why is it computationally cheaper?
(b) Given $v_{h} \in V_{h}$, show existence and uniqueness of the iterates $\left\{U_{h}^{n}\right\}_{n=1}^{N}$.
(c) Show that $\left\|U_{h}^{n}\right\|_{L^{2}(\Omega)} \leq C(T, B)$ for all $1 \leq n \leq N$.

