Matematik Chalmers

TMA026/MMA430 Partial differential equations II Partiella differentialekvationer II, 2017-05-30 f SB

Telefon: Tony Stillfjord 031-7725304
Inga hjälpmedel. Kalkylator ej tillåten. No aids or electronic calculators are permitted.
You may get up to 10 points for each problem plus points for the hand-in problems.
Grades: 3: 20p-29p, 4: 30p-39p, 5: 40p-, G: 20p-34p, VG: 35p-

1. Sol. See Theorem A. 4 in Thomée-Larsson.
2.

(a) Find $u \in H^{1}(\Omega)$ such that

$$
a(u, v):=(\nabla u, \nabla v)+\kappa(u, v)_{\Gamma}=(f, v), \quad \forall v \in H^{1}(\Omega)
$$

(b) We have

$$
\|v\|_{H^{1}(\Omega)}^{2} \leq\left(1+C^{2}\right)\|\nabla v\|_{L^{2}(\Omega)}^{2}+C^{2} \kappa^{-1} \kappa\|v\|_{L^{2}(\Gamma)}^{2} \leq \max \left(1+C^{2}, C^{2} \kappa^{-1}\right) a(v, v),
$$

and $a(v, w) \leq\left(1+C^{2} \kappa\right)\|v\|_{H^{1}(\Omega)}\|w\|_{H^{1}(\Omega)}$, using the trace inequality.
(c) Lets call the coercivity constant $\alpha=\left(\max \left(1+C^{2}, C^{2} \kappa^{-1}\right)\right)^{-1}$. We then get,

$$
\alpha\|u\|_{H^{1}(\Omega)}^{2} \leq a(u, u)=(f, u) \leq\|f\|_{L^{2}(\Omega)}\|u\|_{L^{2}(\Omega)} \leq\|f\|_{L^{2}(\Omega)}\|u\|_{H^{1}(\Omega)},
$$

i.e. $\|u\|_{H^{1}(\Omega)} \leq \alpha^{-1}\|f\|_{L^{2}(\Omega)}$.

3. Sol.

(a) Let $\lambda_{i} \neq \lambda_{j}$. We get

$$
\left(\lambda_{i}-\lambda_{j}\right)\left(\phi_{i}, \phi_{j}\right)=a\left(\phi_{i}, \phi_{j}\right)-a\left(\phi_{j}, \phi_{i}\right)=0
$$

with $a\left(\phi_{i}, \phi_{j}\right)=\left(\nabla \phi_{i}, \nabla \phi_{j}\right)+\left(V \phi_{i}, \phi_{j}\right)$ which is symmetric. Since $\lambda_{i} \neq \lambda_{j}$ by assumption ϕ_{i} and ϕ_{j} are orthogonal in the L^{2} scalar product. We also have $\lambda_{i}\left\|\phi_{i}\right\|_{L^{2}(\Omega)}^{2}=\left\|\nabla \phi_{i}\right\|_{L^{2}(\Omega)}^{2}+$ $\left\|V^{1 / 2} \phi_{i}\right\|_{L^{2}(\Omega)}^{2} \in \mathbb{R}^{+}$and $\left\|\phi_{i}\right\|_{L^{2}(\Omega)}^{2} \in \mathbb{R}^{+}$i.e. λ_{i} is real and positive for all i.
(b) Let the mimimum be realized at $u=u_{1} \in H_{0}^{1}(\Omega)$. We get,

$$
\lambda_{1}=\frac{\left\|\nabla u_{1}\right\|_{L^{2}(\Omega)}^{2}+\left(V u_{1}, u_{1}\right)}{\left\|u_{1}\right\|_{L^{2}(\Omega)}^{2}} \geq \frac{\left\|\nabla u_{1}\right\|_{L^{2}(\Omega)}^{2}}{\left\|u_{1}\right\|_{L^{2}(\Omega)}^{2}} \geq C^{-1}>0
$$

where we have used that $V \geq 0$ and the Poincaré inequality $\left\|u_{1}\right\|_{L^{2}(\Omega)} \leq C\left\|\nabla u_{1}\right\|_{L^{2}(\Omega)}$, since $u_{1} \in H_{0}^{1}(\Omega)$.

4. Sol.

(a) We represent u using the orthonormal eigenfunctions of the negative Laplacian. We get $u=$ $\sum_{i=1}^{\infty} e^{-\lambda_{i} t}\left(v, \phi_{i}\right) \phi_{i}$. Since $\left\{\phi_{i}\right\}_{i=1}^{\infty}$ is an orthonormal basis and $\lambda_{i}>0$ we get $\|u\|_{L^{2}(\Omega)}^{2}=$ $\sum_{i=1}^{\infty} e^{-2 \lambda_{i} t}\left(v, \phi_{i}\right)^{2} \leq \sum_{i=1}^{\infty}\left(v, \phi_{i}\right)^{2}=\|v\|_{L^{2}(\Omega)}^{2}$.
(b) Find $U^{n} \in V_{h}, 1 \leq n \leq N$, such that,

$$
\left(U^{n}, w\right)+k\left(\nabla U^{n}, \nabla w\right)=\left(U^{n-1}, w\right), \quad \forall w \in V_{h} .
$$

(c) Let $w=U^{n}$. We get,

$$
\left\|U^{n}\right\|_{L^{2}(\Omega)}^{2}+k\left\|\nabla U^{n}\right\|_{L^{2}(\Omega)}^{2} \leq\left\|U^{n-1}\right\|_{L^{2}(\Omega)}\left\|U^{n}\right\|_{L^{2}(\Omega)} \leq \frac{1}{2}\left\|U^{n-1}\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\left\|U^{n}\right\|_{L^{2}(\Omega)}^{2}
$$

Therefore $\left(1+2 k C^{-2}\right)\left\|U^{n}\right\|_{L^{2}(\Omega)}^{2} \leq\left\|U^{n}\right\|_{L^{2}(\Omega)}^{2}+2 k\left\|\nabla U^{n}\right\|_{L^{2}(\Omega)}^{2} \leq\left\|U^{n-1}\right\|_{L^{2}(\Omega)}^{2}$, where $C>0$ is the Poincaré constant. We get $\left\|U^{n}\right\|_{L^{2}(\Omega)}^{2} \leq\left(1+2 k C^{-2}\right)^{-1}\left\|U^{n-1}\right\|_{L^{2}(\Omega)}^{2}<\left\|U^{n-1}\right\|_{L^{2}(\Omega)}^{2}$ i.e. decreasing (assuming non trivial solution).

5. Sol.

(a) The nonlinear data f is evaluated at U^{n-1} instead of U^{n}. IMEX avoids solving a nonlinear system in each iteration.
(b) The next iterate $U^{n} \in V_{h}$ fulfills the elliptic equation $a\left(U^{n}, w\right)=l(w)$ with $a(v, w)=(v, w)+$ $k(\nabla v, \nabla w)$ and $l(w)=\left(U^{n-1}, w\right)+k\left(f\left(U^{n-1}\right), w\right)$. We first show that a is coercive and bounded in H^{1}. We have $a(v, v) \geq \min (1, k)\|v\|_{H^{1}(\Omega)}^{2}$ and $a(v, w) \leq \max (1, k)\|v\|_{H^{1}(\Omega)}\|w\|_{H^{1}(\Omega)}$. We turn to the linear functional. We have $|l(w)| \leq\left\|U^{n-1}\right\|_{H^{1}(\Omega)}\|w\|_{H^{1}(\Omega)}+k B\left\|U^{n-1}\right\|_{H^{1}(\Omega)}\|w\|_{H^{1}(\Omega)}$. Given $U^{0} \in V_{h}$ we get existence and uniqueness of U^{1} by Lax-Milgram. Then we can continue to get existence for any iterate n.
(c) We have

$$
\begin{aligned}
&\left\|U^{n}\right\|_{L^{2}(\Omega)}^{2} \leq\left\|U^{n}\right\|_{L^{2}(\Omega)}^{2}+k\left\|\nabla U^{n}\right\|_{L^{2}(\Omega)}^{2} \\
&=\left(U^{n-1}, U^{n}\right)+k\left(f\left(U^{n-1}\right), U^{n}\right) \\
& \leq(1+k B)\left\|U^{n-1}\right\|_{L^{2}(\Omega)}\left\|U^{n}\right\|_{L^{2}(\Omega)} \\
& \text { or }\left\|U^{n}\right\|_{L^{2}(\Omega)} \leq\left(1+\frac{T B}{N}\right)^{n}\left\|v_{h}\right\|_{L^{2}(\Omega)} \leq e^{B T}\left\|v_{h}\right\|_{L^{2}(\Omega)} \text { for all } 1 \leq n \leq N
\end{aligned}
$$

/axel

