Matematik Chalmers

TMA026/MMA430 Partial differential equations II

 Partiella differentialekvationer II, 2018-05-29 f SBTelefon: Axel Målqvist 031-7723599
Inga hjälpmedel. Kalkylator ej tillåten. No aids or electronic calculators are permitted.
You may get up to 10 points for each problem plus points for the hand-in problems. Grades: 3: 20-29p, 4: 30-39p, 5: 40-.

1. Consider the Neumann problem on a bounded domain Ω : find u such that

$$
\left\{\begin{aligned}
-\Delta u+u=f, & \text { in } \Omega, \\
\partial_{n} u=0, & \text { on } \Gamma,
\end{aligned}\right.
$$

where $f \in L^{2}(\Omega)$. Show that the problem has a unique weak solution which fulfills $\|u\|_{H^{1}(\Omega)} \leq$ $\|f\|_{L^{2}(\Omega)}$. Sol. Let $a(u, v)=(\nabla u, \nabla v)+(u, v)$ which is the scalar product in $H^{1}(\Omega)$. We therefore have $a(v, v)=\|v\|_{H^{1}(\Omega)}^{2}$ i.e. coercivity and $|a(u, v)| \leq\|u\|_{H^{1}(\Omega)}\|v\|_{H^{1}(\Omega)}$ i.e. boundedness. Also $L(v):=(f, v) \leq\|f\|_{L^{2}(\Omega)}\|v\|_{L^{2}(\Omega)} \leq\|f\|_{L^{2}(\Omega)}\|v\|_{H^{1}(\Omega)}$ i.e. bounded. Lax-Milgram guarantees existence and uniqueness. We directly have $\|u\|_{H^{1}(\Omega)}^{2}=a(u, u)=L(u) \leq\|f\|_{L^{2}(\Omega)}\|u\|_{H^{1}(\Omega)}$.
2. Let $\Omega \subset \mathbb{R}^{3}$ be a convex bounded domain. Consider the Poisson equation on weak form: find $u \in H_{0}^{1}(\Omega)$ such that, $(\nabla u, \nabla v)=(f, v)$ for all $v \in H_{0}^{1}(\Omega)$ where $f \in L^{2}(\Omega)$.
(a) Show that $\|u\|_{H^{2}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}$.
(b) Show that $\|u\|_{H^{1}(\Omega)} \leq C\|f\|_{L^{6 / 5}(\Omega)}$. Hint: $\|v\|_{L^{6}(\Omega)} \leq C^{\prime}\|v\|_{H^{1}(\Omega)}$ for all $v \in H_{0}^{1}(\Omega)$.
(c) Show that $F(v)=\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\int_{\Omega} f v d x$ is minimized (over $\left.H_{0}^{1}(\Omega)\right)$ by u.

Sol. Let $v=u$ to get $\|\nabla u\|_{L^{2}(\Omega)}^{2} \leq\|f\|_{L^{2}(\Omega)}\|u\|_{L^{2}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}\|\nabla u\|_{L^{2}(\Omega)}$ using PF i.e. $\|\nabla u\|_{L^{2}(\Omega)} \leq$ $C\|f\|_{L^{2}(\Omega)}$ and thereby $\|u\|_{H^{1}(\Omega)} \leq C^{\prime}\|f\|_{L^{2}(\Omega)}$ again by PF. Convex gives us $\left\|D^{2} u\right\|_{L^{2}(\Omega)} \leq$ $C\|\Delta u\|_{L^{2}(\Omega)}=C\|f\|_{L^{2}(\Omega)}$ i.e. $\|u\|_{H^{2}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}$. We also have $C^{-1}\|u\|_{L^{2}(\Omega)}^{2} \leq\|\nabla u\|_{L^{2}(\Omega)}^{2}=$ $(f, u) \leq\|f u\|_{L^{1}(\Omega)} \leq\|f\|_{L^{6 / 5}(\Omega)}\|u\|_{L^{6}(\Omega)} \leq C\|f\|_{L^{6 / 5}(\Omega)}\|u\|_{H^{1}(\Omega)}$ using PF, Hölder with $p=6 / 5$ and $q=6$, and Sobolev. Therefore $\|u\|_{H^{1}(\Omega)} \leq C\|f\|_{L^{6 / 5}(\Omega)}$. Finally let $v=u+w$ for any $w \in H_{0}^{1}(\Omega)$. We get

$$
F(v)=F(u)+\frac{1}{2} \int_{\Omega}|\nabla w|^{2} d x+\int_{\Omega} \nabla u \cdot \nabla w d x-\int_{\Omega} f w d x=F(u)+\frac{1}{2} \int_{\Omega}|\nabla w|^{2} d x \geq F(u) .
$$

3. Let $\Omega \subset \mathbb{R}^{3}$ be a convex bounded domain, with boundary Γ, and let $I=(0, T)$. Consider the semi-linear parabolic problem,

$$
\left\{\begin{align*}
\dot{u}-\Delta u & =f(u):=u-u^{3}, & & \text { in } \Omega \times I, \tag{1}\\
u & =0, & & \text { on } \Gamma \times I, \\
u(\cdot, 0) & =v, & & \text { in } \Omega,
\end{align*}\right.
$$

where $v \in H_{0}^{1}(\Omega)$.
(a) Show that $f(u)$ fulfills $\|f(u)-f(v)\|_{L^{2}(\Omega)} \leq C(R)\|u-v\|_{H^{1}(\Omega)}$, for all $u, v \in B_{R}=\{w \in$ $\left.H_{0}^{1}(\Omega):\|w\|_{H^{1}(\Omega)} \leq R\right\}$.
(b) Given a solution, which fulfills $u(t) \in H^{1}(\Omega)$ and $\dot{u}(t) \in L^{2}(\Omega)$ for a fix time t, show that $u(t) \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.
(c) Formulate the Backward Euler Galerkin method for equation (1) but with $f\left(U^{n}\right)$ replaced by $f\left(U^{n-1}\right)$ (this is an implicit-explicit method). Show the existence of iterate U^{n} given U^{n-1}.

Sol. We have $\|f(u)-f(w)\|_{L^{2}(\Omega)} \leq\|u-w\|_{L^{2}(\Omega)}+\left\|u^{2}+u v+v^{2}\right\|_{L^{3}(\Omega)}\|u-w\|_{L^{6}(\Omega)} \leq(1+$ $\left.C 2 R^{2}\right)\|u-w\|_{H^{1}(\Omega)}$.
Note that $g:=f(u(t))-\dot{u(t)} \in L^{2}(\Omega)$. Therefore u solves $-\Delta u(t)=g(t) \in L^{2}(\Omega)$ on a convex domain for the t in the problem. Elliptic regularity guarantees that $u(t) \in H^{2}(\Omega)$.
The next iterate $U^{n} \in V_{h}$ fulfills the elliptic equation $a\left(U^{n}, w\right)=l(w)$ with $a(v, w)=(v, w)+$ $k(\nabla v, \nabla w)$ and $l(w)=\left(U^{n-1}, w\right)+k\left(f\left(U^{n-1}\right), w\right)$. We first show that a is coercive and bounded in H^{1}. We have $a(v, v) \geq \min (1, k)\|v\|_{H^{1}(\Omega)}^{2}$ and $a(v, w) \leq \max (1, k)\|v\|_{H^{1}(\Omega)}\|w\|_{H^{1}(\Omega)}$. We turn to the linear functional. We have $|l(w)| \leq\left\|U^{n-1}\right\|_{H^{1}(\Omega)}\|w\|_{H^{1}(\Omega)}+k B\left\|U^{n-1}\right\|_{H^{1}(\Omega)}\|w\|_{H^{1}(\Omega)}$. Given $U^{0} \in V_{h}$ we get existence and uniqueness of U^{1} by Lax-Milgram. Then we can continue to get existence for any iterate n.
4. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain, with boundary Γ, and $I=(0, T)$. Consider the initial value problem,

$$
\left\{\begin{align*}
\dot{u}-\Delta u=0, & \text { in } \Omega \times I, \tag{2}\\
u=0, & \text { on } \Gamma \times I, \\
u(\cdot, 0)=v, & \text { in } \Omega,
\end{align*}\right.
$$

with $v \in L^{2}(\Omega)$.
(a) Formulate the Crank-Nicolson-Galerkin method for the problem.
(b) Show that the $L^{2}(\Omega)$ norm of the solution is bounded by the initial value for all $t \geq 0$.
(c) Assume we have a problem with a smooth solution for all times discretized using the Crank-Nicolson-Galerkin method with continuous piecewise linear basis functions. Further assume we can evaluate the error in $L^{2}(\Omega)$ norm for a fixed time t. How will the error depend on the time-step k and the mesh parameter h respectively?
Sol. Let $V_{h} \subset H_{0}^{1}(\Omega)$ be the space of continuous piecewise linear functions defined on a triangulation of Ω. The CN-FEM approximation fulfills: find $u_{h}^{n} \in V_{h}$ such that,

$$
\left(u_{h}^{n}-u_{h}^{n-1}, v\right)+\frac{k}{2}\left(\nabla\left(u_{h}^{n}+u_{h}^{n-1}\right), \nabla v\right)=0, \quad \forall v \in V_{h}
$$

with k being the time-step, $u_{h}^{0}=P_{h} v$ and $P_{h}: L^{2}(\Omega) \rightarrow V_{h}$ is the L^{2}-projection. We let $v=$ $u_{h}^{n}+u_{h}^{n-1}$ and get $\left\|u_{h}^{n}\right\|_{L^{2}(\Omega)} \leq\left\|u_{h}^{n-1}\right\|_{L^{2}(\Omega)}$ and therefore $\left\|u_{h}^{n}\right\|_{L^{2}(\Omega)} \leq\|v\|_{L^{2}(\Omega)}$ (see page 159 in Larsson-Thomée for details).
For smooth data it holds,

$$
\left\|u(n \cdot k)-u_{h}^{n}\right\|_{L^{2}(\Omega)} \leq C_{1} h^{2}+C_{2} k^{2} .
$$

5. Prove the min-max principle for the n :th eigenvalue to the Laplace operator with homogeneous Dirichlet boundary conditions, i.e.,

$$
\lambda_{n}=\min _{V_{n}} \max _{v \in V_{n}} \frac{(\nabla v, \nabla v)}{(v, v)}
$$

where V_{n} varies over all subspaces of $H_{0}^{1}(\Omega)$ of finite dimension n. Sol. See Theorem 6.5 in Larsson- Thomée.
/axel

