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1. Consider the Neumann problem on a bounded domain Ω: find u such that{−∆u+ u = f, in Ω,

∂nu = 0, on Γ,

where f ∈ L2(Ω). Show that the problem has a unique weak solution which fulfills ‖u‖H1(Ω) ≤
‖f‖L2(Ω). Sol. Let a(u, v) = (∇u,∇v) + (u, v) which is the scalar product in H1(Ω). We therefore

have a(v, v) = ‖v‖2H1(Ω) i.e. coercivity and |a(u, v)| ≤ ‖u‖H1(Ω)‖v‖H1(Ω) i.e. boundedness. Also

L(v) := (f, v) ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ ‖f‖L2(Ω)‖v‖H1(Ω) i.e. bounded. Lax-Milgram guarantees

existence and uniqueness. We directly have ‖u‖2H1(Ω) = a(u, u) = L(u) ≤ ‖f‖L2(Ω)‖u‖H1(Ω).

2. Let Ω ⊂ R3 be a convex bounded domain. Consider the Poisson equation on weak form: find
u ∈ H1

0 (Ω) such that, (∇u,∇v) = (f, v) for all v ∈ H1
0 (Ω) where f ∈ L2(Ω).

(a) Show that ‖u‖H2(Ω) ≤ C‖f‖L2(Ω).

(b) Show that ‖u‖H1(Ω) ≤ C‖f‖L6/5(Ω). Hint: ‖v‖L6(Ω) ≤ C ′‖v‖H1(Ω) for all v ∈ H1
0 (Ω).

(c) Show that F (v) = 1
2

∫
Ω
|∇v|2 dx−

∫
Ω
fv dx is minimized (over H1

0 (Ω)) by u.

Sol. Let v = u to get ‖∇u‖2L2(Ω) ≤ ‖f‖L2(Ω)‖u‖L2(Ω) ≤ C‖f‖L2(Ω)‖∇u‖L2(Ω) using PF i.e. ‖∇u‖L2(Ω) ≤
C‖f‖L2(Ω) and thereby ‖u‖H1(Ω) ≤ C ′‖f‖L2(Ω) again by PF. Convex gives us ‖D2u‖L2(Ω) ≤
C‖∆u‖L2(Ω) = C‖f‖L2(Ω) i.e. ‖u‖H2(Ω) ≤ C‖f‖L2(Ω). We also have C−1‖u‖2L2(Ω) ≤ ‖∇u‖

2
L2(Ω) =

(f, u) ≤ ‖fu‖L1(Ω) ≤ ‖f‖L6/5(Ω)‖u‖L6(Ω) ≤ C‖f‖L6/5(Ω)‖u‖H1(Ω) using PF, Hölder with p = 6/5

and q = 6, and Sobolev. Therefore ‖u‖H1(Ω) ≤ C‖f‖L6/5(Ω). Finally let v = u + w for any

w ∈ H1
0 (Ω). We get

F (v) = F (u) +
1

2

∫
Ω

|∇w|2 dx+

∫
Ω

∇u · ∇w dx−
∫

Ω

fw dx = F (u) +
1

2

∫
Ω

|∇w|2 dx ≥ F (u).

3. Let Ω ⊂ R3 be a convex bounded domain, with boundary Γ, and let I = (0, T ). Consider the
semi-linear parabolic problem,

(1)


u̇−∆u = f(u) := u− u3, in Ω× I,

u = 0, on Γ× I,
u(·, 0) = v, in Ω,

where v ∈ H1
0 (Ω).

(a) Show that f(u) fulfills ‖f(u) − f(v)‖L2(Ω) ≤ C(R)‖u − v‖H1(Ω), for all u, v ∈ BR = {w ∈
H1

0 (Ω) : ‖w‖H1(Ω) ≤ R}.
(b) Given a solution, which fulfills u(t) ∈ H1(Ω) and u̇(t) ∈ L2(Ω) for a fix time t, show that

u(t) ∈ H2(Ω) ∩H1
0 (Ω).

(c) Formulate the Backward Euler Galerkin method for equation (1) but with f(Un) replaced by
f(Un−1) (this is an implicit-explicit method). Show the existence of iterate Un given Un−1.
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Sol. We have ‖f(u) − f(w)‖L2(Ω) ≤ ‖u − w‖L2(Ω) + ‖u2 + uv + v2‖L3(Ω)‖u − w‖L6(Ω) ≤ (1 +

C2R2)‖u− w‖H1(Ω).

Note that g := f(u(t)) − ˙u(t) ∈ L2(Ω). Therefore u solves −∆u(t) = g(t) ∈ L2(Ω) on a convex
domain for the t in the problem. Elliptic regularity guarantees that u(t) ∈ H2(Ω).

The next iterate Un ∈ Vh fulfills the elliptic equation a(Un, w) = l(w) with a(v, w) = (v, w) +
k(∇v,∇w) and l(w) = (Un−1, w)+k(f(Un−1), w). We first show that a is coercive and bounded in
H1. We have a(v, v) ≥ min(1, k)‖v‖2H1(Ω) and a(v, w) ≤ max(1, k)‖v‖H1(Ω)‖w‖H1(Ω). We turn to

the linear functional. We have |l(w)| ≤ ‖Un−1‖H1(Ω)‖w‖H1(Ω) + kB‖Un−1‖H1(Ω)‖w‖H1(Ω). Given

U0 ∈ Vh we get existence and uniqueness of U1 by Lax-Milgram. Then we can continue to get
existence for any iterate n.

4. Let Ω ⊂ Rd be a bounded domain, with boundary Γ, and I = (0, T ). Consider the initial value
problem,

(2)


u̇−∆u = 0, in Ω× I,

u = 0, on Γ× I,
u(·, 0) = v, in Ω,

with v ∈ L2(Ω).

(a) Formulate the Crank-Nicolson-Galerkin method for the problem.
(b) Show that the L2(Ω) norm of the solution is bounded by the initial value for all t ≥ 0.
(c) Assume we have a problem with a smooth solution for all times discretized using the Crank-

Nicolson-Galerkin method with continuous piecewise linear basis functions. Further assume
we can evaluate the error in L2(Ω) norm for a fixed time t. How will the error depend on the
time-step k and the mesh parameter h respectively?

Sol. Let Vh ⊂ H1
0 (Ω) be the space of continuous piecewise linear functions defined on a triangu-

lation of Ω. The CN-FEM approximation fulfills: find unh ∈ Vh such that,

(unh − un−1
h , v) +

k

2
(∇(unh + un−1

h ),∇v) = 0, ∀v ∈ Vh,

with k being the time-step, u0
h = Phv and Ph : L2(Ω) → Vh is the L2-projection. We let v =

unh + un−1
h and get ‖unh‖L2(Ω) ≤ ‖un−1

h ‖L2(Ω) and therefore ‖unh‖L2(Ω) ≤ ‖v‖L2(Ω) (see page 159 in
Larsson-Thomée for details).

For smooth data it holds,
‖u(n · k)− unh‖L2(Ω) ≤ C1h

2 + C2k
2.

5. Prove the min-max principle for the n:th eigenvalue to the Laplace operator with homogeneous
Dirichlet boundary conditions, i.e.,

λn = min
Vn

max
v∈Vn

(∇v,∇v)

(v, v)
,

where Vn varies over all subspaces of H1
0 (Ω) of finite dimension n. Sol. See Theorem 6.5 in

Larsson- Thomée.
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