Matematik Chalmers

TMA026/MMA430 Partial differential equations II Partiella differentialekvationer II, 2018-05-29 f SB

Telefon: Axel Målgvist 031–7723599

Inga hjälpmedel. Kalkylator ej tillåten. No aids or electronic calculators are permitted.

You may get up to 10 points for each problem plus points for the hand-in problems. Grades: 3: 20–29p, 4: 30–39p, 5: 40–.

1. Consider the Neumann problem on a bounded domain Ω : find u such that

$$\begin{cases}
-\Delta u + u = f, & \text{in } \Omega, \\
\partial_n u = 0, & \text{on } \Gamma,
\end{cases}$$

where $f \in L^2(\Omega)$. Show that the problem has a unique weak solution which fulfills $||u||_{H^1(\Omega)} \le$ $||f||_{L^2(\Omega)}$. Sol. Let $a(u,v)=(\nabla u,\nabla v)+(u,v)$ which is the scalar product in $H^1(\Omega)$. We therefore have $a(v,v)=\|v\|_{H^1(\Omega)}^2$ i.e. coercivity and $|a(u,v)|\leq \|u\|_{H^1(\Omega)}\|v\|_{H^1(\Omega)}$ i.e. boundedness. Also $L(v) := (f,v) \leq \|f\|_{L^2(\Omega)} \|v\|_{L^2(\Omega)} \leq \|f\|_{L^2(\Omega)} \|v\|_{H^1(\Omega)} \text{ i.e. bounded. Lax-Milgram guarantees}$ existence and uniqueness. We directly have $||u||_{H^1(\Omega)}^2 = a(u,u) = L(u) \le ||f||_{L^2(\Omega)} ||u||_{H^1(\Omega)}$.

- **2.** Let $\Omega \subset \mathbb{R}^3$ be a convex bounded domain. Consider the Poisson equation on weak form: find $u \in H_0^1(\Omega)$ such that, $(\nabla u, \nabla v) = (f, v)$ for all $v \in H_0^1(\Omega)$ where $f \in L^2(\Omega)$.
- (a) Show that $||u||_{H^2(\Omega)} \le C||f||_{L^2(\Omega)}$.
- (b) Show that $||u||_{H^1(\Omega)} \leq C||f||_{L^{6/5}(\Omega)}$. Hint: $||v||_{L^6(\Omega)} \leq C'||v||_{H^1(\Omega)}$ for all $v \in H^1_0(\Omega)$. (c) Show that $F(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx \int_{\Omega} fv \, dx$ is minimized (over $H^1_0(\Omega)$) by u.
- **Sol.** Let v = u to get $\|\nabla u\|_{L^2(\Omega)}^2 \le \|f\|_{L^2(\Omega)} \|u\|_{L^2(\Omega)} \le C\|f\|_{L^2(\Omega)} \|\nabla u\|_{L^2(\Omega)}$ using PF i.e. $\|\nabla u\|_{L^2(\Omega)} \le C\|f\|_{L^2(\Omega)} \|\nabla u\|_{L^2(\Omega)} \|\nabla u\|_{L^2(\Omega)} \le C\|f\|_{L^2(\Omega)} \|\nabla u\|_{L^2(\Omega)} \|\nabla u\|_{L^2(\Omega)} \le C\|f\|_{L^2(\Omega)} \|\nabla u\|$ $C\|f\|_{L^2(\Omega)}$ and thereby $\|u\|_{H^1(\Omega)} \leq C'\|f\|_{L^2(\Omega)}$ again by PF. Convex gives us $\|D^2u\|_{L^2(\Omega)} \leq C\|\Delta u\|_{L^2(\Omega)} = C\|f\|_{L^2(\Omega)}$ i.e. $\|u\|_{H^2(\Omega)} \leq C\|f\|_{L^2(\Omega)}$. We also have $C^{-1}\|u\|_{L^2(\Omega)}^2 \leq \|\nabla u\|_{L^2(\Omega)}^2 = C\|f\|_{L^2(\Omega)}$ $(f,u) \le ||fu||_{L^1(\Omega)} \le ||f||_{L^{6/5}(\Omega)} ||u||_{L^6(\Omega)} \le C||f||_{L^{6/5}(\Omega)} ||u||_{H^1(\Omega)}$ using PF, Hölder with p=6/5and q=6, and Sobolev. Therefore $||u||_{H^1(\Omega)} \leq C||f||_{L^{6/5}(\Omega)}$. Finally let v=u+w for any $w \in H_0^1(\Omega)$. We get

$$F(v) = F(u) + \frac{1}{2} \int_{\Omega} |\nabla w|^2 dx + \int_{\Omega} \nabla u \cdot \nabla w dx - \int_{\Omega} fw dx = F(u) + \frac{1}{2} \int_{\Omega} |\nabla w|^2 dx \ge F(u).$$

3. Let $\Omega \subset \mathbb{R}^3$ be a convex bounded domain, with boundary Γ , and let I = (0,T). Consider the semi-linear parabolic problem,

(1)
$$\begin{cases} \dot{u} - \Delta u = f(u) := u - u^3, & \text{in } \Omega \times I, \\ u = 0, & \text{on } \Gamma \times I, \\ u(\cdot, 0) = v, & \text{in } \Omega, \end{cases}$$

where $v \in H_0^1(\Omega)$.

- (a) Show that f(u) fulfills $||f(u) f(v)||_{L^2(\Omega)} \le C(R)||u v||_{H^1(\Omega)}$, for all $u, v \in B_R = \{w \in A_R : ||f(u) f(v)||_{L^2(\Omega)} \le C(R)||u v||_{H^1(\Omega)}$, for all $u, v \in B_R = \{w \in A_R : ||f(u) f(v)||_{L^2(\Omega)} \le C(R)||u v||_{H^1(\Omega)}$, for all $u, v \in B_R = \{w \in A_R : ||f(u) f(v)||_{L^2(\Omega)} \le C(R)||u v||_{H^1(\Omega)}$, for all $u, v \in B_R = \{w \in A_R : ||f(u) f(v)||_{L^2(\Omega)} \le C(R)||u v||_{H^1(\Omega)}$, for all $u, v \in B_R = \{w \in A_R : ||f(u) f(v)||_{L^2(\Omega)} \le C(R)||u v||_{H^1(\Omega)} \le C(R)||u v|$ $H_0^1(\Omega): ||w||_{H^1(\Omega)} \le R$.
- (b) Given a solution, which fulfills $u(t) \in H^1(\Omega)$ and $\dot{u}(t) \in L^2(\Omega)$ for a fix time t, show that $u(t) \in H^2(\Omega) \cap H^1_0(\Omega)$.
- (c) Formulate the Backward Euler Galerkin method for equation (1) but with $f(U^n)$ replaced by $f(U^{n-1})$ (this is an implicit-explicit method). Show the existence of iterate U^n given U^{n-1} .

Sol. We have $||f(u) - f(w)||_{L^2(\Omega)} \le ||u - w||_{L^2(\Omega)} + ||u^2 + uv + v^2||_{L^3(\Omega)} ||u - w||_{L^6(\Omega)} \le (1 + C2R^2)||u - w||_{H^1(\Omega)}.$

Note that $g := f(u(t)) - u(t) \in L^2(\Omega)$. Therefore u solves $-\Delta u(t) = g(t) \in L^2(\Omega)$ on a convex domain for the t in the problem. Elliptic regularity guarantees that $u(t) \in H^2(\Omega)$.

The next iterate $U^n \in V_h$ fulfills the elliptic equation $a(U^n,w) = l(w)$ with $a(v,w) = (v,w) + k(\nabla v, \nabla w)$ and $l(w) = (U^{n-1},w) + k(f(U^{n-1}),w)$. We first show that a is coercive and bounded in H^1 . We have $a(v,v) \geq \min(1,k)\|v\|_{H^1(\Omega)}^2$ and $a(v,w) \leq \max(1,k)\|v\|_{H^1(\Omega)}\|w\|_{H^1(\Omega)}$. We turn to the linear functional. We have $|l(w)| \leq \|U^{n-1}\|_{H^1(\Omega)}\|w\|_{H^1(\Omega)} + kB\|U^{n-1}\|_{H^1(\Omega)}\|w\|_{H^1(\Omega)}$. Given $U^0 \in V_h$ we get existence and uniqueness of U^1 by Lax-Milgram. Then we can continue to get existence for any iterate n.

4. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain, with boundary Γ , and I = (0, T). Consider the initial value problem,

(2)
$$\begin{cases} \dot{u} - \Delta u = 0, & \text{in } \Omega \times I, \\ u = 0, & \text{on } \Gamma \times I, \\ u(\cdot, 0) = v, & \text{in } \Omega, \end{cases}$$

with $v \in L^2(\Omega)$.

- (a) Formulate the Crank-Nicolson-Galerkin method for the problem.
- (b) Show that the $L^2(\Omega)$ norm of the solution is bounded by the initial value for all $t \geq 0$.
- (c) Assume we have a problem with a smooth solution for all times discretized using the Crank-Nicolson-Galerkin method with continuous piecewise linear basis functions. Further assume we can evaluate the error in $L^2(\Omega)$ norm for a fixed time t. How will the error depend on the time-step k and the mesh parameter h respectively?
- **Sol.** Let $V_h \subset H_0^1(\Omega)$ be the space of continuous piecewise linear functions defined on a triangulation of Ω . The CN-FEM approximation fulfills: find $u_h^n \in V_h$ such that,

$$(u_h^n - u_h^{n-1}, v) + \frac{k}{2} (\nabla (u_h^n + u_h^{n-1}), \nabla v) = 0, \quad \forall v \in V_h,$$

with k being the time-step, $u_h^0 = P_h v$ and $P_h : L^2(\Omega) \to V_h$ is the L^2 -projection. We let $v = u_h^n + u_h^{n-1}$ and get $\|u_h^n\|_{L^2(\Omega)} \le \|u_h^{n-1}\|_{L^2(\Omega)}$ and therefore $\|u_h^n\|_{L^2(\Omega)} \le \|v\|_{L^2(\Omega)}$ (see page 159 in Larsson-Thomée for details).

For smooth data it holds,

$$||u(n \cdot k) - u_h^n||_{L^2(\Omega)} \le C_1 h^2 + C_2 k^2.$$

5. Prove the min-max principle for the n:th eigenvalue to the Laplace operator with homogeneous Dirichlet boundary conditions, i.e.,

$$\lambda_n = \min_{V_n} \max_{v \in V_n} \frac{(\nabla v, \nabla v)}{(v, v)},$$

where V_n varies over all subspaces of $H_0^1(\Omega)$ of finite dimension n. Sol. See Theorem 6.5 in Larsson-Thomée.

/axel