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Abstract
Not much is yet known about the molecular details of the growth

control mechanism for the start of DNA replication in eukaryotic cells.
Here we simulate three models which describe di�erent hypothesis for
the size control in primitive eukaryotes. All the models are character-
ized by an antagonistic relationship between cyclin-dependent kinase
(CDK) and anaphase promoting complex (APC), which degrades the
cyclin partner of CDK.

We solve all the models deterministically using an ODE solver.
Moreover, we derive a stochastic version of the �rst model, the prim-
itive APC-CDK controller, and solve it by Monte Carlo methods. To
our knowledge a stochastic version of this model has not been presented
before.

Our results clearly illustrate the di�erence between the three di�er-
ent hypothesis on growth controlled cell-division in primitive eukary-
otes. The results for the deterministic model are in full agreement with
previous simulations in published articles. Also, our stochastic model
gives results that are very close to the deterministic version.
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TMV090 1 INTRODUCTION

1 Introduction
The cell division cycle is the process of a cell growing to a certain size, repli-
cating its DNA and parting into two nearly identical daughter cells, which
then repeat the process. In present day eukaryotes, the division-cycle is
controlled by a complex network of chemical reactions, which coordinate cell
growth and DNA replication, ensure that each daughter cell receives precisely
her share of DNA and prevent overlapping rounds of DNA replication. Here,
we explore three models of the cell-division cycle in primitive eukaryotes, put
forward in a paper by Novak et al [1]. Although knowledge about the cell di-
vision cycle for primitive eukaryotes is somewhat lacking, it is reasonable to
assume it to have been considerably simpler than for present day eukaryotes.

A common way to present the cell cycle is to divide it into the following
distinct phases [2]:

G1-phase This is the start and �nish of the cell division cycle, where the cell
is resting and growing. During this phase, the cell has not committed
to the replication-division process. The cell has to grow to a certain
size before replication can be initiated.

S-phase In this phase, DNA is replicated. Each chromosome consists of a
pair of sister chromatids held together by tethering proteins.

G2 A gap phase during which the division cycle is in rest.

M-phase
M-meta The chromosomes are aligned on the metaphase spindle with sister

chromatids attached to di�erent poles on the membrane sites.
The chromatids will be attached until the preparation for the M-
anaphase is completed.

M-ana The tether proteins are removed so the sister chromatids can be
segregated to opposite sides. The cell-division is completed when
the cell divides into two daughter cells, which both enter into the
G1 phase.

In the paper by Novak et al [1], the division cycle is modelled as antagonistic
interactions between cyclin-dependent kinase (CDK) and anaphase promot-
ing complex (APC), which labels cyclin for proteolysis. In the �rst model
(equations (1a)- (1e)), a simpler version of the cell cycle is considered, where
the S, G2 and M phases are combined into one phase and the mathemati-
cal model alternates between two steady states, the G1 phase and the S/M
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TMV090 2 COMPONENTS OF THE CELL-DIVISION CYCLE

phase. In the G1 state, APC is high, CDK activity is low and DNA is un-
replicated. In the S/M state APC is low, CDK activity is high and DNA is
replicated. The transition from G1 to S/M is driven by cell growth and the
reverse transition from S/M to G1 is driven by completion of DNA synthesis
and division of the cell.

The second model (equation (1b)-(1e) and (3a)-(3c)) introduces a cyclin
dependent kinase inhibitor (CKI), which blocks the activity of CDK in the
G1 phase. Here, the size control over the start of DNA replication can either
be attributed to the inhibition of the APC by CDK or the degradation of
CKI by CDK.

In the third model (equations (1b)-(1e) and (4a)-(4d)), the S and M
phases are separated by a G2 phase. The size control over the start of DNA
replication is due to the transition from G1 to S/G2 or to the transition to
S/G2 to M.

In the paper by Novak et al [1], the models are implemented in a deter-
ministic way. As well as implementing the three models deterministically,
we have used a stochastic approach for the �rst model. The remainder of
this report is organized as follows. In the next section, we explain the vari-
ous components of the cell-division cycle and how they interact in di�erent
phases of the cycle. After that, we present the deterministic models, together
with the results. In section 4 we explain the stochastic modelling process and
the result we obtain. Finally, the conclusions are summarized and discussed.

2 Components of the cell-division cycle
In all the models considered in this report, cell growth initiates the transition
from the G1 phase to the S-phase, where DNA replication is initiated. It
is known that such a size surveillance mechanism is present in modern day
eukaryotes (the molecular details of which are yet unknown) and a similar
mechanism must have been in place in primitive eukaryotes. When the cell
size is modelled, we assume that nuclear volume remains constant while the
cell size increases. [1]

Cell cycle events are controlled by a network of molecular signals whose
central components are CDK. CDK need cyclin partners to be active and to
recognize targets. When active, CDK phosphorylate many target proteins
involved in cell cycle events.

CDK plays a central role in initiating and regulating the DNA replication
process. In order for the replication to be initiated, the replication origins
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must be equipped with a full complement of protein subunits and then CDK
is needed to activate the replication. CDK has another important task to
ful�ll at the start of the cycle as it disables a necessary component of the
protein subunits, preventing the replication from starting more than once. [2]

When the chromosomes are aligned on the spindle in M-metaphase, a sig-
nal activates the APC which in turn initiates degradation of the glue binding
the chromatids together along with the cyclin component of CDK. Then the
sister chromatids separate, the cell divides and the daughter cells are ready
to begin a new cycle. This �nal part of the cycle is also coordinated by a
surveillance mechanism. This makes sure that the DNA is fully replicated
and aligned on the metaphase plate before the separation in the anaphase
and before the signal to activate the APC is generated. [2]

Here, we suppose that APC activation is accomplished by an activator,
ACT, which opposes the inhibitory e�ect of CDK on APC. ACT is contin-
uously synthesized and degraded by APC. Newly synthesized ACT is called
ACTP (or less active ACT) and must take part in some chemical reactions
before turning into fully active ACT. [1]

Chemical reactions in biology often has some reactants which serve as
catalysts or inhibitors. They are usually proteins and such proteins are
called enzymes. APC activation is described by Michaelis-Menten (MM)
rate laws. MM kinetics describe the rate of enzyme mediated reactions for
many enzymes. These kinetics are only valid when the concentration of
substrates is higher than the concentration of enzymes. To determine the
maximum rate of an enzyme mediated reaction, the substrate concentration
is increased until a constant rate of product formation is achieved. This is
the maximal velocity of an enzyme. When the substrate concentration is
increased, the enzyme is approaching its maximum speed without reaching
it. This means that no concentration for a this maximal velocity can be
given, instead the value of the enzyme is de�ned by the concentration at the
halved max velocity (Vmax

2 ). This is called the MM constant. If the substrate
is low, reactions very rarely take place. [3]

3 Three Deterministic Models
In the following subsections we present three di�erent deterministic models
of the cell-division cycle in primitive eukaryotes (see [1]). The two latter
models are both based on the �rst one, the primitive APC-CDK controller.
The main di�erence between the models is that di�erent mechanisms are
assumed to initiate DNA replication.
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3.1 The primitive APC-CDK controller
In the �rst deterministic model, the primitive APC-CDK controller, the
mechanism for the control of the cell-division cycle in primitive eukaryotes is
modelled as an antagonistic relationship between APC and CDK. CDK inac-
tivates APC, while APC degrades the cyclin subunit of cyclin-CDK dimers.
CDK activity is lost by cyclin degradation at a rate dependent on the dis-
tribution of APC, which comes in two forms, more active (APC) and less
active (APCP ). At the beginning of the G1 phase, APC activity is high
and CDK low. As the cell grows the concentration of CDK increases and
APC is inactivated. When CDK activity has reached a certain level, DNA
replication is initiated. When the DNA is fully replicated and aligned on the
metaphase plate the signal to activate APC is given. When the cell division
is complete, APC activity is still high while CDK activity is minimal. The
model is given by equations (1a) - (1e). [1]

d[CDK]
dt

= k1 · size−
[
k′2(1− [APC]) + k′′2 · [APC]

] · [CDK] (1a)

d[APC]
dt

=
(k′3 + k′′3 · [ACT ])(1− [APC])

J3 + 1− [APC]
− (1b)

− (k′4 + k′′4 · [CDK]) · [APC]
J4 + [APC]

dsize
dt

= µ · size (1c)

d[ACT ]T
dt

= kas −
[
k′ad(1− [APC]) + k′′ad · [APC]

] · [ACT ]T (1d)

d[ACT ]
dt

= kaa([ACT ]T − [ACT ])− kai · [ACT ]− (1e)

− [k′ad(1− [APC]) + k′′ad · [APC]] · [ACT ].

In the equations above, [CDK] is the concentration of cyclin-CDK dimers
in the cell nucleus and [APC] is the fraction of total APC that is active,
where APCT is the total number of APC molecules. ACT is a hypothetical
activator of the APC. [ACT]T is the total concentration of ACT.

Despite extensive research, not much is yet known about size control in
either primitive or present day eukaryotes. The mechanism proposed in this
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model is that cyclin molecules are synthesized in the cell cytoplasm at a rate
proportional to the total protein synthetic capacity of the cell (k1·size), bind
rapidly to free CDK subunits and are sequestered into the nucleus. Based
on the assumption that nuclear volume remains constant as the cell grows,
the concentration of active CDK in the nucleus increases. When the activity
of CDK reaches a critical value, DNA replication is initiated. [1]

In equation (1c), [size] refers to some appropriate measure of cell size
(e.g. ribosome number). Interdivision time or mass doubling time is = (ln2)

µ ,
where µ is the cell growth rate. Throughout the report, µ =0.0058 min−1,
which means that one cell-division cycle will take 120 minutes.

The parameters k′2 and k′′2 are the enzymatic turnover numbers charac-
terizing the less- and more-active forms of APC. As we have already stated,
the activation and inactivation of APC is described by Michaelis-Menten
law. We have that k′′3 and k′′4 are turnover numbers for activation catalyzed
by ACT and for inactivation catalyzed by CDK and where k′3 and k′4 are
Vmax values for the background rates of activation and inactivation. The
Michaelis-Menten constants, J3 and J4, are assumed to be small relative to
APCT .

The parameter kai has two contributors, one describing the inactivation
of ACT by DNA replication forks and one expressing the inactivated e�ect
of misaligned chromosomes. It is important for the model that kai is su�-
ciently large just after the start of DNA replication and then drops back to
a low value when the cell cycle reaches its end. [1]

The results of our simulation of the model (equation (1a)-(1e)), using
Matlab and ODE45, are given in Figure 1. For parameter values that were
used in the simulation, see Table 1 in Appendix A. The Figure displays the
growth controlled division cycle in the primitive APC-CDK mechanism over
two cell-division cycles. Here we can see how the size of the cell changes with
time and observe the interaction of CDK and APC, which is controlled by
cell growth. Also, the relationship between ACT and APC can be viewed in
the Figure. ACT is the activator of APC and before the ratio of active APC
starts to grow at the end of the cell cycle, the concentration of ACT must
increase greatly.

The Figure also illustrates that the inter-division time for the cell cycle
always is exactly the same as mass doubling time, as stated above. This has
to be true for balanced growth and division, since the mother cell divides
precisely in half at the end of the division cycle. Hence the time of one
cell-division cycle must be equal to the mass doubling time.
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Figure 1: The growth controlled division cycle in the primitive APC-CDK
mechanism, simulations of ODE-system (1a)- (1e). For parameter values see
Table 1. [1]

Much can be learned about the model by studying its phase-plane por-
trait. Where the rate of cyclin synthesis is exactly balanced by the rate
of cyclin degradation, d[CDK]

dt is zero. The locus of such points in the phase
plane is called the CDK nullcline and is described by equation (2a). Equation
(2b) represents the APC nullcline.

[CDK] =
k1 · size

k′2(1− [APC]) + k′′2 · [APC]
(2a)

[CDK] =
(k′3 + k′′3 · [ACT ])(1− [APC])

k′′4 · [APC]
· J4 + [APC]
J3 + 1− [APC]

− k′4
k′′4

. (2b)

In Figure 2a, the APC and CDK nullclines are plotted for di�erent cell
sizes and concentrations of ACT. The two nullclines intersect at three steady
states. The �rst state corresponds to the G1 phase of the cell-division cycle
with APC active and CDK inactive (stable node). The second state corre-
sponds to the S/M phase of the cycle with APC inactive and CDK active
(stable node). In the third state, both APC and CDK are active (unstable
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saddle point). A steady state is called stable if the system returns to the
steady state in response to any small perturbation of CDK and APC, other-
wise it is unstable. In this scenario the model needs a strong signal to move
between the G1 and S/M steady states.
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Figure 2: APC and CDK nullclines plotted for di�erent cell sizes and values
of ACT. • corresponds to a stable node and ◦ to an unstable node. a) size=1
and ACT=0.05 b) size=1.6 and ACT=0.05 c) size=1.65 and ACT=1.75 d)
size=1.75 and ACT=1.

At the beginning of the cell-division cycle, the system stays in the stable
point representing the G1 phase, see Figure 2a. As size increases the CDK
nullcline moves up, making the G1 node and the saddle point coincide and
disappear, see Figure 2b. When the cell has grown such that size > sizecritical

only one stable steady state, S/M, remains to which the system must tend.
When the cell grows large enough, the G1 state disappears and S/M is the

7



TMV090 3 THREE DETERMINISTIC MODELS

only stable state available.
When the concentration of ACT increases and activates APC, the APC

nullcline shifts right and the three steady states are created again, see Figure
2c. A further increase in ACT and cell growth shifts the APC nullcline even
further right, the S/M steady state is lost and the cell is pushed back to the
G1 state, see Figure 2d. This marks the �nish of the cell-division cycle.

3.2 Model with CDK inhibitor
As we have already stated, the mechanism for size control proposed in the
�rst model is completely hypothetical. An alternative approach is to use ev-
idence from �ssion yeast, which indicates that cell size at the start of DNA
replication is related to the activity of a cyclin-dependent kinase inhibitor,
CKI. CKI binds to cyclin-CDK dimers in the G1 phase and blocks their
activities. Here, the cell is held in G1 with low CDK activity by synthesiz-
ing CKI. When CKI is degraded, pre-formed CDK is unmasked to initiate
DNA synthesis. In this model, just like the �rst one, the division-cycle is
growth controlled. In this case, however, size control over the start of DNA
replication can either be attributed to the inhibition of the APC by CDK or
the degradation of CKI by CDK. This model is given by equation (1b)-(1e),
together with equation (3a)-(3c).

d[CDK]
dt

= k1 · size−
[
k′2(1− [APC]) + k′′2 · [APC]

] · [CDK]+ (3a)

+ (k′6 + k′′6 · [CDK]) · [TRI]− l1 · [CDK] · [CKI]+

+ l2 · [TRI]

d[CKI]
dt

= k5 + [v2(1− [APC]) + v′′2 · [APC]] · [TRI]− (3b)

− (k′6 + k′′6 · [CDK]) · [CKI]− l1 · [CDK] · [CKI]+

+ l2 · [TRI]

d[TRI]
dt

= −[v′2(1− [APC]) + v′′2 · [APC]] · [TRI]− (3c)

− (k′6 + k′′6 · [CDK]) · [TRI]+

+ l1 · [CDK] · [CKI]− l2 · [TRI]

Here, [CDK], [CKI] and [TRI] denote the concentrations of cyclin-CDK
dimers, CKI monomers and cyclin-CDK-CKI trimmers, respectively. ν ′′2 is
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the rate constant for degradation of cyclin from trimers, which should be
less than k′′2 . For parameter values used in the simulation of the model, see
Table 1.

Figure 3 illustrates the primitive APC-CDK-CKI mechanism. One can
see that this cycle also is growth controlled by the mass doubling time. The
choice of parameter values is very important here, it will determine which
critical size is operative and which is cryptic. For example, if the cell �rst
reaches the critical size necessary to destabilize the CKI-CDK interaction,
size control will be operative and APC-CDK size control will be cryptic.
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Figure 3: The growth controlled division cycles in the primitive APC-CDK-
CKI mechanism, simulation of the system in equation (1b)-(1e) and (3a)-
(3c). The size control over the start of DNA replication can be attributed
either by the inhibition of APC by CDK or the degradation-inducing inac-
tivation of CKI by CDK. For parameter values see Table 1. [1]

3.3 G2-phase added to the model
In the �rst two models, no distinction is made between the initiation of the
S and M phases. To separate S and M phases we introduce a G2 phase, it is
necessary to delay the onset of mitosis until some time after DNA replication
is complete. In [1], a model is proposed where these phases are separated.

The full model is given by equation (1b) - (1e), together with equations
(4a) - (4d) with the following two changes. In equation (1b), [CDK] is
replaced by MPF.1 Also, CDK is now an activator of ACT as well as an

1Here, MPF is the weighted activity of the unphosphorylated and phosphorylated
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inhibitor of the APC.

d[CDK]T
dt

= k1 · size−
[
k′2(1− [APC]) + k′′2 · [APC]

] · [CDK]T (4a)

d[CDK]A
dt

= k1 · size−
[
k′2(1− [APC]) + k′′2 · [APC]

] · [CDK]A− (4b)

−kwee · [CDK]A + kc25([CDK]T − [CDK]A)

d[Wee1]
dt

=
kwr(1− [Wee1])
Jwr + 1− [Wee1]

− kw ·MPF · [Wee1]
Jw + [Wee1]

(4c)

d[Cdc25]
dt

=
k25 ·MPF · (1− [Cdc25])

J25 + 1− [Cdc25]
− k25r · [Cdc25]

J25r + [Cdc25]
, (4d)

where

[CDK]T = [CDK]A + [CDK]P
kwee = v′wee(1− [Wee1]) + v′′wee · [Wee1]
kc25 = v′c25(1− [Cdc25]) + v′′c25 · [Cdc25].

[Wee1] and [Cdc25] represent the active fractions of the Wee1 and Cdc25 en-
zymes. Activation and inactivation of Wee1 and Cdc25 is accounted for by
equations (4c) and (4d). Here, Jw and Jwr represent the Michaelis constants
relative to the total concentrations of [Wee1] and [Cdc25], which remain con-
stant throughout the cycle.

In Figure 4, the growth-controlled division cycle in the primitive APC-
CDKT -CDKA mechanism is illustrated. The size control can operate either
at the transition from G1 to S/G2 or at the transition from S/G2 to M. The
parameters are set so that G1 size control is cryptic, for parameter values
see Table 1.

4 The Stochastic Model
In section 3.1 we described a deterministic model for the primitive APC-CDK
controller. Instead of writing the model as ordinary di�erential equations it
forms of cyclin-CDK, with MPF = [CDK]A + α · ([CDK]T − [CDK]A) and [CDK]T =

[CDK]A +[CDK]P . In our simulations we let α = 0.06. CDKT is the total concentration
of CDK.

10



TMV090 4 THE STOCHASTIC MODEL

0 50 100 150 200 250
0

1

2

3

time t

si
ze

:s
ol

id
; C

D
K

T
:d

as
he

d;
 A

P
C

:d
as

hd
ot

;M
P

F
:d

ot
te

d 
:

0 50 100 150 200 250
0

0.5

1

time t

W
ee

l:s
ol

id
; C

dc
25

:d
as

he
d

0 50 100 150 200 250
0

0.5

1

1.5

time t

C
D

K
P

:d
as

he
d;

 C
D

K
A

:s
ol

id

Figure 4: The S- and M-phases are separated by introduction of the G2
phase. The size control can operate either at the transition from G1 to
S/G2 or at the transition from S/G2 to M. The parameters are set so that
G1 size control is cryptic. [1]
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can be converted to a system of chemical reactions and be simulated in a
stochastic manner. Below, we introduce a stochastic version of the primitive
APC-CDK controller that we derive from equations (1a) to (1e) and imple-
ment. To our knowledge, a stochastic version of the model has not been
presented before.

The �rst step of the stochastic modelling procedure was to convert the
ordinary di�erential equations (1a) - (1e) into chemical reactions. Note,
that we have assumed that the cell grows deterministically, as described
by equation (1c). From the four ODEs we derived 14 chemical reactions,
equations (5) - (18), with 5 reactants; CDK, APC, APCP , ACTP and ACTP .
The reaction constants are displayed above the reaction arrows.

k1·size·vol−→ CDK (5)

CDK + APCP

k′2
APCT−→ APCP (6)

CDK + APC

k′′2
APCT−→ APC (7)

APCP

k′3
J3+1− APC

APCT−→ APC (8)

APCP + ACT

k′′3�
J3+1− APC

APCT

�
vol

−→ APC + ACT (9)

APC

k′4
J4+ APC

APCT−→ APCP (10)

APC + CDK

k′′4�
J4+ APC

APCT

�
vol

−→ APCP + CDK (11)

kas·vol−→ ACTP (12)

ACTP + APCP

k′ad
APCT−→ APCP (13)

12



TMV090 4 THE STOCHASTIC MODEL

ACTP + APC

k′′ad
APCT−→ APC (14)

ACTP
kaa−→ ACT (15)

ACT
kai−→ ACTP (16)

ACT + APCP

k′ad
APCT−→ APCP (17)

ACT + APC

k′′ad
APCT−→ APC. (18)

For the numerical simulation of the stochastic model we follow a pro-
cedure described in a paper by D.T. Gillespie [4]. In order to apply the
methodology presented in that paper, the chemical species cannot be rep-
resented in terms of concentrations, but must be written as the number of
molecules of the species in question. This conversion was made for the reac-
tions above. In the deterministic model [APC] stands for the percentage of
total APC (APCT ) which is active. Thus, APC is replaced by APC

APCT
when

the chemical reactions are derived. As can be seen, APCT becomes a part
of the reaction constants. The same procedure is followed with [APC]P .2
APCT is assumed to be a constant number of molecules. The parameter
vol in the reaction constants stands for the volume of the cell nucleus and
is assumed to remain constant throughout the cell division cycle. Other pa-
rameters which occur as a part of the reaction constants are as described in
section 3.1 and their values can be found in Table 1.

The basic idea for the computational procedure described in [4] is to use
Monte Carlo techniques to simulate the stochastic process described by the
reaction probability function;

P (τ, µ) = probability at time t that the next reaction
will occur in the time interval (t+τ ,t+τ+dτ)
and will be a reaction of type µ,

with

P (τ, µ) = hµcµ · exp(−
14∑

ν=1

hνcντ). (19)

2[APC]P = 1−[APC]
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Here, cµ is the reaction constant for reaction µ and hµ stands for the number
of combinations of molecules that can take part in reaction µ. Our system
consists of chemical reactions of the type

∗ −→ reaction products (20a)
Sj −→ reaction products (20b)

Sj + Sk −→ reaction products (20c)

where (20a) is a spontaneous reaction. In general, hµ is a function of the
number of molecules of the reactant species taking part in reaction µ. For
our system, we have;

hµ = 1 for type (20a) reactions (21a)
hµ = Xj for type (20b) reactions (21b)
hµ = XjXk for type (20c) reactions. (21c)

The Monte Carlo step consists of generating a pair (τ ,µ) according to
the joint probability function (19). We employed a technique called the
�rst-reaction method. In this method a so-called tentative reaction time is
calculated for all the 14 chemical reactions;

τν =
1

hνcν
· ln 1

rν
, (22)

where rν is a uniformly distributed random number on the unit interval.
From these tentative reactions we choose the reaction which will happen
�rst. Thus, in each step the time t is advanced by τµ and reaction µ is per-
formed. This procedure is repeated until either the stopping time is reached
or no reactants remain.

Figure 5 displays the results of one simulation of the stochastic model
described by the chemical reactions (5)-(18). Other simulations yields similar
results. The Figure illustrates the growth controlled division cycle in the
primitive APC-CDKmechanism. The behavior of the model is clearly similar
to the deterministic model and the antagonistic relationship between APC
and CDK is apparent. The �uctuations in the �gure are caused by the
stochastic simulation process.

Figure 6 illustrates how often the di�erent reactions occur over a simula-
tion of slightly more than two cell-division cycles, or 280 minutes. It is clear
from the �gure that the number of times that the reactions happen di�ers
greatly. For example, reaction (10) never takes place since its reaction con-
stant is zero, see Table 1, and hence the probability of that reaction ever
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Figure 5: The results of one simulation of the stochastic model (5)-(18) over
slightly more than two division cycles, or 280 minutes. The concentration of
CDK and ratio of APC relative to APCT are illustrated in the top plot and
the concentration of ACT and ACTT in the bottom plot.
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occurring is also zero. Reactions (13) and (17) do not happen very often,
which is due to the fact that their reaction constant is very small which
a�ects the probability of them to occur. However, as we have mentioned
before, the probability for a reaction also depends on the number of pos-
sible combinations of molecules for the chemical species taking part in the
reaction.

5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.5

1

1.5

2

2.5
x 10

4

Number of occurrances of reactions 5 to 18

Figure 6: The �gure illustrates how many times the di�erent reactions (equa-
tion (5)-(18)) take place in 280 minutes, which represents slightly more than
two cell-division cycles.

5 Discussion and conclusions
We have presented and solved three di�erent models for the cell-division cycle
in primitive eukaryotic cells, proposed in [1]. All the models are character-
ized by an antagonistic relationship between cyclin-CDK and APC, which
labels the cyclin for proteolysis. The di�erence between the models is that
each of them represents a di�erent hypothesis for the growth control mecha-
nism over start of DNA replication. In the �rst and most simple model, the
primitive APC-CDK controller, DNA replication starts when the concentra-
tion of CDK in the cell nucleus has reached a critical level. In the second

16
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model, size control can either be attributed to the inhibition of APC by CDK
or to the degradation-inducing phosphorylation of CKI by CDK. The third
model introduces a G2 phase separating the S and M phases. In this model
size control can operate either at the transition from G1 to S/G2 or at the
transition from S/G2 to M. Not much is known about size control in either
present day or primitive eukaryotes. However, the hypothesis represented by
these models can be used as a basis for further research into that area.

We used two di�erent methods to solve the models, a deterministic and
a stochastic approach. We applied the deterministic procedure to all the
three models where we used ODE45, a Matlab ordinary di�erential equation
solver, to solve the equations. We wrote our own Matlab program to solve
the stochastic model and followed a Monte Carlo computational procedure
described in [4]. We only used the stochastic solution process for the �rst
model, the primitive APC-CDK controller.

The main advantage of the stochastic version of the model is that it does
not require an ODE solver and is therefore much easier to implement and
work with. Also, it is advantageous to have two di�erent ways in which the
model can be simulated.

The results that we obtained from the models were according to expecta-
tions and matched those presented in [1]. The results of the stochastic model
are, in essence, the same as for the deterministic model, although they are
characterized by a certain variability which is normal for all stochastic mod-
els.

Our most di�cult and challenging problem was to construct the stochas-
tic model. Especially to convert the ODE's into chemical reactions and
�nding the reaction constants. To our knowledge, a stochastic version of
this model has not been constructed before. Since the results of our stochas-
tic model are in agreement with the deterministic model, we are con�dent
that we have built the stochastic model correctly.

In sum, we are pleased with the work that we have done on the simu-
lation of the three models and the construction of the stochastic version of
the primitive APC-CDK controller. There are many possible ways to extend
this research, two of which we are particularly interested in. The �rst one
is to examine the behavior of the models for parameter values that are dif-
ferent from those that we have tried. The second is to create a stochastic
version of the second and third model as well. However, in order to provide
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a contribution to the biological theory represented by the models, a much
more extensive knowledge of cellular biology is needed.

18
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A Parameters

Table 1: The parameter values in the di�erent models.

Parameter Figure 1 & 5 Figure 3 Figure 4
k1 0.05 0.05 0.05
k2' 0.05 0.05 0.05
k2� 1 0.05 0.05
k3' 0.1 0.001 0.02
k3� 3 0.05 2
k4' 0 0.05 0.05
k4� 2 0.05 0.05
kas 0.05 0.05 0.05
kad' 0.005 0.05 0.05
kad� 1 0.05 0.05
kaa 1 0.05 0.05
µ 0.0058 0.0058 0.0058
J3 0.05 0.05 0.01
J4 0.05 0.05 0.01
v2' - 0.05 -
v2� - 0.15 -
k5 - 0.15 -
k6' - 0.15 -
k6� - 9 -
l1 - 200 -
l2 - 1 -
kaa' - - 0.001
kaa� - - 1
kw = k25 - - 0.5
kwr = k25 - - 0.2
kwee' - - 0.01
kwee� - - 0.8
kr25' - - 0.02
kr25� - - 0.5
Jw - - 0.1
Jwr - - 0.1
J25 - - 0.1
J25r - - 0.1
α - - 0.06
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