MISPRINTS AND OTHER MISTAKES

Chapter 1

- p 4, line 13 delete short
- **p 5, line 9** says: short position in the European put; replace put by call
- **p 5, line 7 from below** says: -K = 0 change to: $-Ke^{-r\tau} = 0$
- **p 6, line 6** says: K/B(T) units. change to: K/B(T) units and let \mathcal{B} be a portfolio with one stock.
- **p** 7, line 2 says: , k = 1, 2. change to: .
- **p 7, line 3 from below** says: $=\Pi_{g(S(T))}$. change to: $=\Pi_{g(S(T))}(t)$.
- **p 9, line 1** says: future; change to: futures
- **p 9, Problem 7** is repeed by the following problem:

(Marking to margin) Let t < T and $N \in \mathbb{N}_+$. Set $\tau = T - t$, $h = \tau/N$, and $t_n = t + nh$, n = 0, ..., N. A financial contract has the following description: at each point of time t_{n-1} the holder of the contract gets a forward contract on S with delivery date t_n and, furthermore at time t_n the holder's saving account adds the amount $S(t_n) - S_{for}^{t_n}(t_{n-1})$ for n = 1, ..., N. Prove that the sum of the depositions will grow to the amount $S(T) - S_{for}^{T}(t)$ at time T.

p 10, line 5 from below replace 'convex' by 'increasing'

Chapter 2

- p 2, line 15, p 2, line 1 from below, and page 3, line 4 says: strict equality; change to: strict inequality
- p 5, line 7 from below replace 'och' by 'and'
- **p 11, line 3** replace 'at time t' by 'at time t + 1'
- **p 14, line 16** replace $(Y_t)_{t=0}^T$ by $Y = (Y_t)_{t=0}^T$
- **p 14, line 5 from below** says: = Y. change to: $= Y_T$.
- **p 14, line 1 from below** delete $V^u(T)$

Chapter 3

p 10, line 13 says: a simple random walk i.i.d. if; change to: a simple random walk if

Chapter 4

p 10, line 7 from below says: of all real-valued functions; change to: of all real-valued continuous functions

p 13, line 5 from below says: $\sigma G + \tau H$ change to: $\sigma G + \sqrt{\tau} H$

p 16, line 7 from below says: max(0, s) change to: s

Chapter 5

p 8, line 7 from below says: $\Pi_{Y(t_*)}$ change to: $\Pi_Y(t_*)$ **p 8-9, Proof of Theorem 5.1.1** change to: PROOF For short set $q = r - \frac{\sigma^2}{2}$. We have

$$\Pi_Y(t_*) = e^{-r(T-t_*)} \int_{-\infty}^{\infty} g((S(t_*)e^{q(T-t_*)+\sigma\sqrt{T-t_*}y})\varphi(y)dy$$

 $\Pi_Z(t) = e^{-r(t_* - t)}$

and

$$\times \int_{-\infty}^{\infty} \left\{ e^{-r(T-t_*)} \int_{-\infty}^{\infty} g((S(t)e^{q(t_*-t)+\sigma\sqrt{t_*-t}x}e^{q(T-t_*)+\sigma\sqrt{T-t_*}y})\varphi(y)dy \right\} \varphi(x)dx$$

$$= e^{-r(T-t)} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(S(t))e^{q(t_*-t)+\sigma\sqrt{t_*-t}x}e^{q(T-t_*)+\sigma\sqrt{T-t_*}y})\varphi(x)\varphi(y)dxdy$$

$$= e^{-r(T-t)} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(S(t)e^{q(T-t)+\sigma(\sqrt{t_*-t}x+\sqrt{T-t_*}y)}) \exp(-\frac{1}{2}(x^2+y^2)\frac{dxdy}{2\pi}$$

$$= e^{-r(T-t)} E\left[g(se^{q(T-t)+\sigma(\sqrt{t_*-t}X+\sqrt{T-t_*}Y)})\right]_{|s=S(t)}$$

where $X, Y \in N(0,1)$ are independent. Hence

$$\Pi_Z(t) = e^{-r(T-t)} E\left[g(se^{q(T-t)+\sigma(\sqrt{T-t}G)})\right]_{|s=S(t)} = \Pi_Y(t).$$

- p 10, line 9 from below says: Theorems 5.1.1 and 1.1.2 change to: Theorems 5.1.2 and 1.1.1
- p 10, line 5 from below says: Theorem 5.1.1 change to: Theorem 5.1.2
- **p 11, line 4** says: $\sigma\sqrt{\sigma}G$ change to: $\sigma\sqrt{\tau}G$
- **p 11, line 10** says: $\sqrt{\sigma}G$ change to $\sigma\sqrt{\tau}G$
- p 16, line 6 from below says: future change to: futures
- **p 17, line 3** says: $S_{fut}^{T_1}(t)$ change to: $S_{for}^{T_1}(t)$ **p 21, line 2** says: v(t,s) change to: v(t,S(t))
- **p 23, line 15** says: $\Pi_{Y(t_{n-1})}$ change to: $\Pi_{Y}(t_{n-1})$
- p 24, line 1 says: Theorem 5.4.1 change to: Theorem 5.1.2
- **p 25, line 2** says $e^{-t\tau}$ change to: $e^{-r\tau}$

Chapter 6

- **p 5, line 1 from below** says: σ change to σ_{-} (two places)
- **p 6, line 1** says: σ change to σ_{-} (two places)
- **p 6, line 5 from below** says: $(U(T)\xi(T) K)$ change to: $(U(T)\xi(T)-K)^+$
- **p 6, line 2 from below** says: σ change to: ρ