TMA 205/225 Differential Equations and Scientific
Computing, part A

Solutions to Problems Week 1

March 24, 2003



Week 1:

Problem 1. Use the expressions \,(z) = 2= and A\,(z) = Z=2 to show that

Aa(Z) + M(2) =1; ade(z) +bNp(2) = 2.

Give a geometrical interpretation by plotting A, (z), Ap(x), Aa(2) + Xp(2), a Ao(2), b Xp(2),
a A () + b Ap(z) in the same figure.

Solution: Direct calculation gives Ao(z) + Mp(2) = £ + 22 = 1 and a Xo(z) + b Mo(z) =
a 2:—2 + b 3= = x. The functions for the case a = 2 and b = 3 are plotted in Figure 1. [
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Figure 1: Problem 1 (Week 1). A plot of the functions.

Problem 2. Let 0 = zg < 1 < 22 < 23 = 1, where z; = 1/6 and x5 = 1/2, be a partition
of the interval [0, 1] into three subintervals.

(a) Determine analytical expressions for the “hat-functions” g, 1, 2, @3 in V}, (the space
of continuous piecewise linear functions on this partition). Draw a figure.

(b) Which is the dimension of V},?

(c) Plot the mesh function A(x).

Solution:

(a) The “hat-functions” are given by the formula (with obvious modifications for ¢, and

©3):



0, x ¢ [%’—1, $i+1]

i(x) = 7;__2:1, T € [Ti_1, Ti]
Ha oy, i)
This gives
0 x ¢ [zg, x]
0, T & |Tg, T ’ ’
po(r) = { 1—6z. = i LEO xl% , pi(x) =19 6z, €[z, 1]
’ 0 —3_26“, T € [x1, T3]
and ¢ ]
0 T & |z, T3
v ’ 0 x & |29, 3]
_ 6x—1 — ) )
(102(3:) - 2 (S [.T1,.’L'2] 5 @3(x) { o — 1’ re [$2,$3] 5

2 -2z, x €z, 1z3)

where xy = 0, 21 = 1/6, o = 1/2 and x3 = 1. See Figure 2.
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Figure 2: Problem 2(a) (Week 1). A plot of the “hat-functions”.

(b) The dimension of V}, is equal to the number of basis functions which in this case is 4.
(c) See Figure 3. O

Problem 3. Let f: [0, 1] = R be a Lipschitz continuous function. Determine the linear
interpolant 7f € P(0, 1) and plot f and 7f in the same figure, when

(a) f(z) = 2%,

(b) f(x) = sin(nrz).

Solution: In general, the linear (nodal) interpolant = f € P(xq, 1) can be written as

mf(x) = f(20) po(x) + f(21) p1(2),

where ¢;(z) form a basis of the space P (g, x1) of linear polynomials on I = [zg, z1]. The
x;’s are nodes where the interpolant’s value is the same as the function’s value. The basis
functions we use are the “hat functions” ¢;(x), i« = 0,1. Remember that ¢o(z) =1 — =z
and ¢(x) =z, on I = [0, 1].
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Figure 3: Problem 2(c) (Week 1). A plot of the mesh function.

(a) Therefore, the linear (nodal) interpolant of f(z) = 2% on I can be written as

nf(@) = Y flx)eilo)

(b) With f(x) = sin(nz), we analogously get

ni@) = 3 fa)ea

£(0) po(x) + f(1) p1(2)
= sin(0) (1 — z) + sin(7) =
= 0

Obviously, the interpolant we’ve computed here is a poor approximation of f(z) = sin(7x).
[

Problem 4. Let f : [0, 1] — R be a Lipschitz continuous function. Determine the
continuous piecewise linear interpolant 7, f € V},, with h(z) and V}, as in Problem 2 (Week
1), and plot f and 7, f in the same figure, when

(a) f(z) = 2%,

(b) f(x) = sin(mz).

Have we chosen a proper partition to approximate these functions? Can you think of a
better one in case (a) and (b) if we are restricted to three subintervals?

Solution: The interval is partitioned according to 0 = 2y < 1 < 29 < x3 = 1, with
x1 = 1/6 and zo = 1/2. On each subinterval we want the approximation, 7, f(z), of f(x)
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to be a straight line, ax + 3, and we want 7, f () to interpolate f(z) at the nodes {z;}>_,,
ie, mpf(z;) = f(z;), i = 0,...,3. (Note that this makes 7, f(z) continuous also at the
node-points.) This is accomplished by defining

Tnf(w) = f(x0) po(z) + f(21) p1(w) + f(22) p2(z) + f(3) p3(7)

where the “hat-functions” {(;}3_, have been computed in Problem 2 (Week 1).
(a) With f(z) = 2? we get

mhf(x) = f(w0) po(x) + f(x1) p1(x) + f(22) pa(z) + f(23) p3(x)

=0 ula) + 535+ @@+ 20) + 10 g(e)

( 0-(1—6z)+ 5 - 6z, z € [0, 1/6] \
(3-3x)+1-(3x—3), zell/6,1/2]
(2=22)+1-(2z-1), z€[1/2,1]

gl

x/6, T e [O: 1/6]
= —1/12+2z/3, z€[1/6,1/2]
\ —1/2+3z/2, =z€l[1/2,1] /

Remark. We are usually content with writing a function v € V} in the form v(z) =
co po()+c1 p1(2)+c2 po()+c3 p3(z) which tells us that the nodal values are (¢, ¢1, co, c3)
and that v is linear in between. Compare with plotting v in Matlab: >> plot([x0 x1 x2
x3], [cO cl c2 c3]) connects the four points (z;, ¢;) with straight lines. If we for some
reason need to know the analytical expressions on each subinterval, they may of course be
computed as above.

(b) For f(x) = sin(nz) we similarly get
mnf () = f(@0) o(x) + f(21) p1(z) + f(22) p2(2) + f(23) p3()

=0 @o(z) + 5 pi(z) +1- pa(z) +0- @3(7)

(1 — ) -6z, x €10, 1/6]
(3 —3z) + (315 3): T €[1/6,1/2]
(2-22)+0-(2z — 1) x € [1/2,1]

—
Il
b—kwl»—t O

3z, z €0, 1/6]
=4 3z/24+1/4, z€][1/6,1/2]
\ 2 — 2z, z€[1/2, 1] )

O

Problem 5. Let h(x) be the mesh function for the partition defined in Problem 2 (Week
1). Compute [|f — 7nf[|Lo(0,1) and §|[A*f"||Lo(0,1), when
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(a) f(z) = 2%,
(b) f(x) = sin(nrz).
Hint: To compute ||f — 7, f||Loo(0,1) you need to maximize the function g(z) = |f(z) —
7 f(x)| on each subinterval and choose the largest of these three maxima. You can control
your answers by also doing the computations with Piecewise Polynomial Lab.

If you think you have found better partitions in the end of Problem 4 (Week 1), repeat
the computations for these. Utilize Piecewise Polynomial Lab!
Solution: We have the mesh function

1/6, 0<z<1/6
h(z) =< 1/3, 1/6 <z <1/2,
1/2, 1/2<z<]1,

and want to compute ||f — 7 f|| Lo (0,1) = MaXgeo, 1) | f(2) — mpf(2)| and %||h2f”||Lw(071) =

§ maXae, 11 [h(2)* " (z).
(a) From Problem 4(a) (Week 1), we have

|22 — z /6], 0<z<1/6,
|f(x) —mpf(z)| = |22 — (22/3 —1/12)|, 1/6<z<1/2,
2% — (3z/2 —1/2) |, 1/2<z<1.

Find maxima for each subinterval: (Note: Since f"(z) =2 >0, f(z) is a convez function and
the interpolant 7, f () will therefore always be greater than f(z). Further, since f(z)—mpf(z) =0
at the nodes, the local maxima will occur in the interior of the subintervals.)

0<x<1/6:

gla) = |o* - T | = 5 %
——
<0, z€10,1/6]
' 1 1 " , 1 1
g(x)=6—2x=0 = T =15 g'(r) =-2 = Ma:mmum:g(ﬁ):m.
1/6 <x<1/2:
oo =la - (F - L) 1= - -
) <0, z€[1/6,1/2] !
' 2 1 " , 1, 1
g(x):§—2x=0 = T =35 g'(r)=-2 = Mammum.‘g(g):%.
1/2<z<1:
o) =1a - (F- )= -1
b <0, s€[1/2,1] ’
g'(x)z%—?xzo = xz%; Jd'(z) =-2 = Mazimum: g(%):%



By comparing the three local maxima we get:

1
I1f = 7hf || Looto,1) = 6
Since ) )
536 = a0’ 0<z<1/6,
]' 2 2 1
@Rt @ = =% 1/s<a<1/,
8%4 = %, 1/2<x<1,
we also get
1 1
- h2 " ——
8” F" Lo, 1) 16

Remark. The reason we have equality in this case is that f”(z) = 2 is constant.
(b) From Problem 4(b) (Week 1), we have

|sin(mz) — 3z, 0<z<1/6,
|f(x) —mpf(z)| =< |sin(mz) — (3z/2+1/4)], 1/6<z<1/2,
|sin(rz) — (2 — 22) |, 1/2<z<1.
Find maxima for each subinterval: (Note: Since f"(z) = —n?sin(nz) < 0, for = € (0, 1), f(z)

is concave on this interval and the interpolant 7y, f(z) will therefore be lesser than f(z).)
0<x<1/6:
g(x) = |sin(rz) — 3z | = sin(nzx) — 3ux;
—_———

>0, z€[0,1/6]

1 3
gd(x)=mcos(nz) —3=0 = z= - arccos(;) ~ 0.096 € [0, 1/6];

1 3
¢"(z) = —m’sin(nz) <0 = Mazimum: g(— arccos(—)) ~ 0.009.
™ ™
1/6 < <1/2:
3 3z 1
g(x) = |sin(rz) — (?x + —) | = sin(nzx) — (; + Z) .

-

N

-~

20, z€[1/6,1/2]

3 1 3
g'(z) = mcos(mzx) — 5= 0 = z= —arccos(2—) ~ 0.342 € [1/6, 1/2];
™ ™

1 3
¢"(z) = —n’sin(rz) <0 = Mazimum: g(= arccos(Q—)) ~ 0.116.
m m

1/2<x<1:
g(x) = |§in(7ra:) :(2 = 2xl| =sin(nz) — (2 — 22) ;

>0, z€[1/2,1]




g"(z) = —m?sin(mz) < 0

1 2
g(x) =mcos(mrz) +2=0 = x= —arccos(——) =~ 0.720 € [1/2, 1];
7r m

By comparing the three local maxima we get:

1

2
= Mazimum: g(— arccos(——)) ~ 0.211.
m

™

2 1 2
| f = Thf||zee(0,1) = sin(arccos(——)) — 2(1 — — arccos(——)) =~ 0.211.

Since
{

< |h(@)* f"(@)] = <

\

we get

T T T
72 in(ﬂ- ) w? sin(ﬁ) _ 2
58-36$ < %3 = 37 0<z<1/6,
2 sin Wzsin(ﬂ) 2
meinmn) TG 2 16<a<1/2
72 sin(wz 2 in(%) 72
Sinlre) ¢ TR = 1)2<a <1,
1 2
—||h2f" = — =~ (.308.
8|| w0, 1) )



