NUMERICAL LINEAR ALGEBRA, 2009

HOMEWORK ASSIGNMENT 2

Well performed this homework assignment gives 1 credit point

To be handed in by September 21 at the latest

Exercise 2 a. Solve question Q2.3 in the text book. (0.5 point)
Exercise 2 b. Solve question Q2.18 in the text book. (0.5 point)

COMPUTER EXERCISE 2

To be handed in by September 21 at the latest

a) Consider Algorithm 2.3 in the text book for solving a system of linear equations by Gaussian elimination without pivoting. Add backward substitution to the algorithm.
Interchange the two last loops on j and k and check, by implementing in MATLAB, that you get the same solution.
Hand in the two versions as m-files.
Also hand in solutions to the system
A=delsq(numgrid('S', 7)), b=ones(25,1)
obtained by the two variants. This system arises when discretizing a certain partial differential equation problem.
b) Implement Algorithm 2.4 in MATLAB and add a similar implementation of the backsubstitution. Verify that the cpu-time for solving a linear system with this algorithm roughly is $O\left(n^{3}\right)$ for an $n \times n$ system. Use the MATLAB command cputime and for instance random matrices of size $n=200,400,800,1600$.
c) Compare your implementation in b) with MATLAB:s backslash (\backslash). Examine the difference in efficiency between the two algorithms for solving $n \times n$ systems. Take as large n as your computer masters.
d) So far we have not studied the effect of ill-conditioning and the need for pivoting. We will study two test-cases for these aspects.
The so called Hilbert matrix is a wellknown test matrix for ill-conditioning. You get it by the function hilb in MATLAB. Compute the condition number of the matrix by cond.
Test the Hilbert matrix of size $n=10$ and a random right-hand-side. Compare the solutions obtained by the algorithm backslash (\backslash) and your algorithm from b) (without pivoting). Draw conclusions regarding ill-conditioning and the reliability of the computed results.
Test the matrix in the file test-matrix.mat on the course web-page and a random righthand side. Compare the solutions obtained by the algorithm backslash (\backslash) and your algorithm from b) (without pivoting). Draw conclusions regarding the need for pivoting in order to get a stable algorithm.
Note about grading: This exercise is graded according to how well you have made your implementations and discussions about the results.

