NUMERICAL LINEAR ALGEBRA, 2009

HOMEWORK ASSIGNMENT 4

Well performed this homework assignment gives 1 credit point
To be handed in by October 12 at the latest
Exercise 4 a). Solve question Q4.6 in the text book. (0.5 point)
Exercise 4 b). Solve question Q4.8 in the text book. (0.5 point)

COMPUTER EXERCISE 4

To be handed in by October 12 at the latest
a) Solve the question Q4.15 in the text book. Find the program qrplot, written by Jim Demmel and revised by Ivar Gustafsson, on the course webpage.
Note on grades: For highest grade, carefully answer to all four questions.
b) In order to compute the eigenvalues of the pentadiagonal matrix $A=\left[\begin{array}{llllll}4 & 2 & 1 & 0 & 0 & 0 \\ 2 & 4 & 2 & 1 & 0 & 0 \\ 1 & 2 & 4 & 2 & 1 & 0 \\ 0 & 1 & 2 & 4 & 2 & 1 \\ 0 & 0 & 1 & 2 & 4 & 2 \\ 0 & 0 & 0 & 1 & 2 & 4\end{array}\right]$ we at first reduce it to tridiagonal form by the following technique:
(i) Determine a Givens rotation $R(2,3, \theta)$ which zeros out the element in position $(3,1)$ in the matrix $R(2,3, \theta) A$. Compute the transformed matrix $A^{(1)}=R(2,3, \theta) A R^{T}(2,3, \theta)$.
(ii) In the matrix $A^{(1)}$ a new nonzero element has been introduced (in the lower part of the matrix). Show how this element can be zeroed out by a new rotation without introducing any new nonzero elements.
(iii) A theoretical exercise for attaining the highest grade on this computer exercise. Device a zero chasing algorithm, based on the ideas in (i) and (ii), to reduce a general symmetric pentadiagonal matrix to a symmetric tridiagonal matrix. For a $n \times n$ matrix, n an even number, how many rotations are needed? How many floating points operations are required?
Hint: Run the program chasing, written by two former students in this course and available from the course webpage, to see how your method is supposed to work.

