Department of
Mathematics
Göteborg

Numerical Linear Algebra, TMA265/MMA600

Solutions to the examination 2 December 2009

1a) Small errors in data (the input) result in small errors in the answer to the problem (the output).
1b) The algorithm gives the exact solution to a slightly pertubed problem.
1c) $A x=b, \quad A(x+\delta x)=b+\delta b \Rightarrow \frac{\|\delta x\|}{\|x\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\|\delta b\|}{\| \| \|}=\kappa(A) \frac{\|\delta b\|}{\|b\|}$
2) See text book or lecture notes.

3a) $A=L D L^{T}, \quad L$ lower triangular, D block diagonal with 1 x 1 or 2 x 2 diagonal blocks.
3b) Let $B=L L^{T}$ be the Cholesky factorization with L nonsingular. Then $A x=\lambda B x \Leftrightarrow$ $A L^{-T} L^{T} x=\lambda L L^{T} x \Leftrightarrow L^{-1} A L^{-T}\left(L^{T} x\right)=\lambda\left(L^{T} x\right) \Leftrightarrow \tilde{A} y=\lambda y$, where $\tilde{A}=L^{-1} A L^{-T}$ is symmetric and $L^{T} x=y$.
4) For $H=I-2 u u^{T}$ first calculate $\hat{u}=\left[\begin{array}{l}0 \\ 5 \\ 0\end{array}\right]-\left[\begin{array}{l}0 \\ 4 \\ 3\end{array}\right]=\left[\begin{array}{c}0 \\ 1 \\ -3\end{array}\right]$ and normalize to $u=$ $\frac{1}{\sqrt{10}}\left[\begin{array}{c}0 \\ 1 \\ -3\end{array}\right]$. The Householder reflection becomes $H=I-2 u u^{T}$ and $H A=A-2 u u^{T} A=$ "column by column" $=\left[\begin{array}{ccc}0 & -1 & 1 \\ 5 & 4 & 0 \\ 0 & -2 & 0\end{array}\right]$. Then $(H A) H=H A-2(H A) u u^{T}=$ "row by row" $=\left[\begin{array}{ccc}0 & -1 / 5 & -7 / 5 \\ 5 & 16 / 5 & 12 / 5 \\ 0 & -8 / 5 & -6 / 5\end{array}\right]$

5a) $[A B]$ nonsingular $\Rightarrow A$ and B have full rank $\Rightarrow A^{+}=\left(A^{T} A\right)^{-1} A^{T}, B^{+}=\left(B^{T} B\right)^{-1} B^{T}$. Further $A^{T} B=O \Rightarrow A^{+} B=\left(A^{T} A\right)^{-1} A^{T} B=0$ and $A^{T} B=0 \Rightarrow B^{T} A=O \Rightarrow B^{+} A=$ $\left(B^{T} B\right)^{-1} B^{T} A=O$. Finally, $\left[\begin{array}{c}A^{+} \\ B^{+}\end{array}\right]\left[\begin{array}{ll}A & B\end{array}\right]=\left[\begin{array}{cc}A^{+} A & A^{+} B \\ B^{+} A & B^{+} B\end{array}\right]=\left[\begin{array}{cc}I & O \\ O & I\end{array}\right]=I$.
5b) SVD and definition of Moore Penrose pseudoinverse give $A=U \Sigma V^{T}$, $A^{+}=V \Sigma^{+} U^{T}$ and $A^{+} A=V \Sigma^{+} \Sigma V^{T}$. Here, $\Sigma^{+} \Sigma$ is quasidiagonal with ones and zeros in the diagonal. It follows that the singular values of $A^{+} A$ are ones and zeros. Finally $\left\|A^{+} A\right\|_{2}$ is the maximum singular value of $A^{+} A$ and its value is 1 .

6a) $Q^{*} A Q=T$, where Q is unitary and T is upper triangular.
6b) $(A+E) \bar{x}=A \bar{x}+E \bar{x}=\bar{\lambda} \bar{x}+r+E \bar{x}$, which equals $\bar{\lambda} \bar{x}$ if $E \bar{x}=-r$ and then $(\bar{\lambda}, \bar{x})$ is an eigenpair of $A+E$. This equation holds for $E=-\frac{r \bar{x}^{T}}{\bar{x}^{T} \bar{x}}$ and then $\|E\|_{2}=\frac{\|r\|_{2}}{\|\bar{x}\|_{2}}$ since $\left\|r \bar{x}^{T}\right\|_{2}=\max _{y \neq 0} \frac{\left\|r \bar{x}^{T} y\right\|_{2}}{\|y\|_{2}}=\max _{y \neq 0} \frac{\mid \bar{x}^{T} y\|r\|_{2}}{\|y\|_{2}}=\|\bar{x}\|_{2}\|r\|_{2}$, where the maximum is attained for $y=\bar{x}$.
7) See text book or lecture notes.
8) Use $R(1,3, \theta)$ to zero-out the (3,1) and (1,3) elements:
$R^{T} A R=\left[\begin{array}{ccc}c & 0 & s \\ 0 & 1 & 0 \\ -s & 0 & c\end{array}\right]\left[\begin{array}{ccc}2 & 0 & 2 \\ 0 & 1 & 1 \\ 2 & 1 & 2\end{array}\right]\left[\begin{array}{ccc}c & 0 & -s \\ 0 & 1 & 0 \\ s & 0 & c\end{array}\right]=\left[\begin{array}{ccc}2(c+s)^{2} & s & 2\left(c^{2}-s^{2}\right) \\ s & 1 & c \\ 2\left(c^{2}-s^{2}\right) & c & 2(s-c)^{2}\end{array}\right]$.
Now, take $s=c=\frac{1}{\sqrt{2}}$ to get $R^{T} A R=\left[\begin{array}{ccc}4 & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 1 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & 0\end{array}\right]$.

