Department of Mathematics Göteborg

Numerical Linear Algebra, TMA265/MMA600 Solutions to the examination 17 November 2008

1a) $A = LL^T$ by Cholesky, Ly = x by forward substitution and then the scalar product $y^T y$, since $y^T y = x^T L^{-T} L^{-1} x = x^T A^{-1} x$. **1b)** Let $\begin{bmatrix} A \\ \sqrt{\alpha}I \end{bmatrix} = QR$ be a QR-factorization. Then $A^T A + \alpha I = \begin{bmatrix} A \\ \sqrt{\alpha}I \end{bmatrix}^T \begin{bmatrix} A \\ \sqrt{\alpha}I \end{bmatrix} = (QR)^T (QR) = R^T Q^T QR = R^T R.$

2) See text book or lecture notes.

3) Let $B^T = \begin{bmatrix} Q & \tilde{Q} \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix}$ be the full QR-factorization of B^T . Then $Bx = d \Leftrightarrow \begin{bmatrix} R^T & 0 \end{bmatrix} \begin{bmatrix} Q^T \\ \tilde{Q}^T \end{bmatrix} x = d$. By the orthogonal variabel transformation $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} Q^T x \\ \tilde{Q}^T x \end{bmatrix}$, we then get $x = Qy_1 + \tilde{Q}y_2$, where y_2 is free and $y_1 = R^{-T}d$ (formally). Now, the over-determined system $Ax = b \Leftrightarrow AQR^{-T}d + A\tilde{Q}y_2 - b = 0$. In least squares sense, this problem is solved for y_2 by the compact OB-factorization of $A\tilde{Q} = Q \cdot R_1$. The

Now, the over-determined system $Ax = b \Leftrightarrow AQR - a + AQy_2 - b = 0$. In least squares sense, this problem is solved for y_2 by the compact QR-factorization of $A\tilde{Q} = Q_1R_1$. The solution is then formally: $y_2 = R_1^{-1}Q_1^T(b - AQR^{-T}d)$.

 $\begin{aligned} \mathbf{4a} \ R(1,2,\theta) &= \begin{bmatrix} c & -s \\ s & c \\ & 1 \\ & & \ddots \\ & & 1 \end{bmatrix} \text{. The eigenvalues are } n-2 \text{ ones and the two eigenvalues} \\ \text{ues of } \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \text{. The latter are } \lambda &= c \pm is \text{ with corresponding right and left eigenvectors} \\ x &= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ \mp i \end{bmatrix} \text{ and } y^* = \frac{1}{\sqrt{2}} [1 \ \mp i] \text{. The condition number becomes } \kappa(\lambda) &= \frac{1}{|y^*x|} = 1/1 = 1. \end{aligned}$ $\begin{aligned} \mathbf{4b} \ |\delta\lambda| &\leq \frac{1}{|y^*x|} \|\delta A\|_2 + \mathcal{O}(\|\delta A\|_2^2). \end{aligned}$

1

5 The Householder matrix is computed by $\tilde{u} = \begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ -4 \end{bmatrix} \Rightarrow$

$$u = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \Rightarrow H = I - 2uu^{T} = \begin{bmatrix} 1 & 0 & 0\\0 & 0 & 1\\0 & 1 & 0 \end{bmatrix}.$$

The similar transformation then reads $HA = \begin{bmatrix} 3 & 1 & -1\\4 & -1 & 1\\0 & 2 & 1 \end{bmatrix}$ and $HAH = \begin{bmatrix} 3 & -1 & 1\\4 & 1 & -1\\0 & 1 & 2 \end{bmatrix}.$

6a)

The algebraic multiplicity of the eigenvalue λ_i is the multiplicity of the root λ_i of the characteristic equation $det(A - \lambda_i I) = 0$.

The geometric multiplicity of λ_i is the dimension of the eigenspace $L(\lambda_i)$, that is $n - rank(A - \lambda_i I)$ for an $n \times n$ matrix.

An eigenvalue is defect if the geometric multiplicity is smaller than the algebraic. A typical $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$

example is $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$, i.e. A is a so called Jordan-block.

6b) $A = V^T A V$ where V is orthogonal and T is block upper triangular with diagonal blocks of size 1×1 or 2×2 .

7) Use
$$R(1,3,\theta)$$
 to zero-out the (3,1) and (1,3) elements:

$$R^{T}AR = \begin{bmatrix} c & 0 & s \\ 0 & 1 & 0 \\ -s & 0 & c \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} c & 0 & -s \\ 0 & 1 & 0 \\ s & 0 & c \end{bmatrix} = \begin{bmatrix} 2(c+s)^{2} & c+s & 2(c^{2}-s^{2}) \\ c+s & 2 & -s+c \\ 2(c^{2}-s^{2}) & -s+c & 2(s-c)^{2} \end{bmatrix}.$$

Now, take $s = c = \frac{1}{\sqrt{2}}$ to get $R^{T}AR = \begin{bmatrix} 4 & \frac{2}{\sqrt{2}} & 0 \\ \frac{2}{\sqrt{2}} & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$

8) See text book or lecture notes.