Department of
Mathematics
Göteborg

Numerical Linear Algebra, TMA265/MMA600

Solutions to the examination 17 November 2008

1a) $A=L L^{T}$ by Cholesky, $L y=x$ by forward substitution and then the scalar product $y^{T} y$, since $y^{T} y=x^{T} L^{-T} L^{-1} x=x^{T} A^{-1} x$.
1b) Let $\left[\begin{array}{c}A \\ \sqrt{\alpha} I\end{array}\right]=Q R$ be a QR-factorization. Then
$A^{T} A+\alpha I=\left[\begin{array}{c}A \\ \sqrt{\alpha} I\end{array}\right]^{T}\left[\begin{array}{c}A \\ \sqrt{\alpha} I\end{array}\right]=(Q R)^{T}(Q R)=R^{T} Q^{T} Q R=R^{T} R$.
2) See text book or lecture notes.
3) Let $B^{T}=\left[\begin{array}{ll}Q & \tilde{Q}\end{array}\right]\left[\begin{array}{c}R \\ 0\end{array}\right]$ be the full QR -factorization of B^{T}. Then $B x=d \Leftrightarrow$ $\left[\begin{array}{ll}R^{T} & 0\end{array}\right]\left[\begin{array}{c}Q^{T} \\ \tilde{Q}^{T}\end{array}\right] x=d$. By the orthogonal variabel transformation $y=\left[\begin{array}{c}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{c}Q^{T} x \\ \tilde{Q}^{T} x\end{array}\right]$, we then get $x=Q y_{1}+\tilde{Q} y_{2}$, where y_{2} is free and $y_{1}=R^{-T} d$ (formally).
Now, the over-determined system $A x=b \Leftrightarrow A Q R^{-T} d+A Q y_{2}-b=0$. In least squares sense, this problem is solved for y_{2} by the compact QR-factorization of $A \tilde{Q}=Q_{1} R_{1}$. The solution is then formally: $y_{2}=R_{1}^{-1} Q_{1}^{T}\left(b-A Q R^{-T} d\right)$.

4a) $R(1,2, \theta)=\left[\begin{array}{ccccc}c & -s & & & \\ s & c & & & \\ & & 1 & & \\ & & & \ldots & \\ & & & & 1\end{array}\right]$. The eigenvalues are $n-2$ ones and the two eigenvalues of $\left[\begin{array}{cc}c & -s \\ s & c\end{array}\right]$. The latter are $\lambda=c \pm i s$ with corresponding right and left eigenvectors $x=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ \mp i\end{array}\right]$ and $y^{*}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ \mp\end{array}\right]$. The condition number becomes $\kappa(\lambda)=\frac{1}{\left|y^{*} x\right|}=1 / 1=1$. 4b) $|\delta \lambda| \leq \frac{1}{\left|y^{*} x\right|}\|\delta A\|_{2}+\mathcal{O}\left(\|\delta A\|_{2}^{2}\right)$.

5 The Householder matrix is computed by $\tilde{u}=\left[\begin{array}{l}0 \\ 4 \\ 0\end{array}\right]-\left[\begin{array}{l}0 \\ 0 \\ 4\end{array}\right]=\left[\begin{array}{c}0 \\ 4 \\ -4\end{array}\right] \Rightarrow$ $u=\frac{1}{\sqrt{2}}\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right] \Rightarrow H=I-2 u u^{T}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$.
The similar transformation then reads $H A=\left[\begin{array}{ccc}3 & 1 & -1 \\ 4 & -1 & 1 \\ 0 & 2 & 1\end{array}\right]$ and $H A H=\left[\begin{array}{ccc}3 & -1 & 1 \\ 4 & 1 & -1 \\ 0 & 1 & 2\end{array}\right]$.
6a)
The algebraic multiplicity of the eigenvalue λ_{i} is the multiplicity of the root λ_{i} of the characteristic equation $\operatorname{det}\left(A-\lambda_{i} I\right)=0$.
The geometric multiplicity of λ_{i} is the dimension of the eigenspace $L\left(\lambda_{i}\right)$, that is $n-\operatorname{rank}\left(A-\lambda_{i} I\right)$ for an $n \times n$ matrix.
An eigenvalue is defect if the geometric multiplicity is smaller than the algebraic. A typical example is $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$, i.e. A is a so called Jordan-block.
6b) $A=V^{T} A V$ where V is orthogonal and T is block upper triangular with diagonal blocks of size 1×1 or 2×2.
7) Use $R(1,3, \theta)$ to zero-out the (3,1) and (1,3) elements:
$R^{T} A R=\left[\begin{array}{ccc}c & 0 & s \\ 0 & 1 & 0 \\ -s & 0 & c\end{array}\right]\left[\begin{array}{lll}2 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 2\end{array}\right]\left[\begin{array}{ccc}c & 0 & -s \\ 0 & 1 & 0 \\ s & 0 & c\end{array}\right]=\left[\begin{array}{ccc}2(c+s)^{2} & c+s & 2\left(c^{2}-s^{2}\right) \\ c+s & 2 & -s+c \\ 2\left(c^{2}-s^{2}\right) & -s+c & 2(s-c)^{2}\end{array}\right]$.
Now, take $s=c=\frac{1}{\sqrt{2}}$ to get $R^{T} A R=\left[\begin{array}{ccc}4 & \frac{2}{\sqrt{2}} & 0 \\ \frac{2}{\sqrt{2}} & 2 & 0 \\ 0 & 0 & 0\end{array}\right]$.
8) See text book or lecture notes.

