Department of
Mathematics
Göteborg

Numerical Linear Algebra, TMA265/MMA600

Solutions to the examination 23 October 2009

1) $\left.\begin{array}{r}A^{T} A(x+\delta x)=A^{T}(b+\delta b) \\ A^{T} A x=A^{T} b\end{array}\right\} \Rightarrow A^{T} A \delta x=A^{T} \delta b \Rightarrow \delta x=\left(A^{T} A\right)^{-1} A^{T} \delta b=A^{+} \delta b$
$\Rightarrow\|\delta x\|_{2} \leq\left\|A^{+}\right\|_{2}\|\delta b\|_{2} \Rightarrow \frac{\|\delta x\|_{2}}{\|x\|_{2}} \leq\left\|A^{+}\right\|_{2} \frac{\|\delta b\|_{2}}{\|x\|_{2}}=\left\|A^{+}\right\|_{2}\|A\|_{2} \frac{\|b\|_{2}\|\delta b\|_{2}}{\|A\|_{2}\|b b\|_{2}\|x\|_{2}}=\kappa(A) \frac{\|b\|_{2}\|\delta b\|_{2}}{\|A\|_{2}\|b\|_{2}\|x\|_{2}}$.
By the inequality $\|A x\|_{2} \leq\|A\|_{2}\|x\|_{2}$ and the fact that $\cos \theta=\frac{\|A x\|_{2}}{\|b\|_{2}}$ we now get
$\frac{\|\delta x\|_{2}}{\|x\|_{2}} \leq \kappa(A) \frac{\|b\|_{2}\|\delta b\|_{2}}{\|A x\|_{2}\|b\|_{2}}=\kappa(A) \frac{1}{\cos \theta} \frac{\|\delta b\|_{2}}{\|b\|_{2}}$.
2) See text book or lecture notes.

3a) If x_{0} is a solution to $A x=b$, then all $x=x_{0}+x_{h}$, where $x_{h} \in N(A)$, are solutions, since $A x=A x_{0}+A x_{h}=A x_{0}=b$.
$\|x\|_{2}$ is minimized if $x \in N(A)^{\perp}=R\left(A^{T}\right)$ i.e. for $x=A^{T} y$ for some $y \in R^{m}$ and then $b=A x=A A^{T} y$ i.e. the problem is solved by

1) $\left.A A^{T} y=b, 2\right) x=A^{T} y$.

3b) $\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=A A^{T}$ so $A A^{T}$ is symmetric.
$x^{T} A A^{T} x=\left(A^{T} x\right)^{T}\left(A^{T} x\right) \geq 0$ and $\left(A^{T} x\right)^{T}\left(A^{T} x\right)=0 \Leftrightarrow A^{T} x=0 \Leftrightarrow x=0$, since A^{T} has full rank, so $A A^{T}$ is positive definite.
4) Use a Givens rotation $R(2,3, \theta)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c\end{array}\right]$ to zero-out the $(3,1)$ element:
$R(2,3, \theta) A=\left[\begin{array}{ccc}0 & -1 & 1 \\ 4 c-3 s & 2 c-4 s & 0 \\ 4 s+3 c & 2 s+4 c & 0\end{array}\right] . \quad$ By $s=-3 / 5, \quad c=4 / 5$ we get the desired $R(2,3, \theta) A=\left[\begin{array}{ccc}0 & -1 & 1 \\ 5 & 4 & 0 \\ 0 & 2 & 0\end{array}\right]$ and then
$R(2,3, \theta) A R(2,3, \theta)^{T}=\left[\begin{array}{ccc}0 & -1 & 1 \\ 5 & 4 & 0 \\ 0 & 2 & 0\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 4 / 5 & -3 / 5 \\ 0 & 3 / 5 & 4 / 5\end{array}\right]=\left[\begin{array}{ccc}0 & -1 / 5 & -7 / 5 \\ 5 & 16 / 5 & -12 / 5 \\ 0 & 8 / 5 & -6 / 5\end{array}\right]$.

5a) $G=U \Sigma V^{T}$ where $U \in R^{m \times m}$ and $V \in R^{n \times n}$ are orthogonal and $\Sigma \in R^{m \times n}$ is quasidiagonal with the singular values of G in decreasing order $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$, $\sigma_{r+1}=\sigma_{r+2}=\sigma_{n}=0$.
5b) $G=U \Sigma V^{T} \Rightarrow H=\left[\begin{array}{cc}O & V \Sigma U^{T} \\ U \Sigma V^{T} & O\end{array}\right]$. Now, $W=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}V & V \\ U & -U\end{array}\right]$ is orthogonal since $W^{T} W=\frac{1}{2}\left[\begin{array}{cc}V V^{T}+V V^{T} & O \\ O & U U^{T}+U U^{T}\end{array}\right]=\left[\begin{array}{cc}I & O \\ O & I\end{array}\right]=I$.
Further $W\left[\begin{array}{cc}\Sigma & O \\ O & \Sigma\end{array}\right] W^{T}=\left[\begin{array}{cc}O & V \Sigma U^{T} \\ U \Sigma V^{T} & O\end{array}\right]=H$, so $D=\left[\begin{array}{cc}\Sigma & O \\ O & \Sigma\end{array}\right]$ contains the eigenvalues and W contains the eigenvectors as columns, by the spectral theorem.

6a For H first calculate $\hat{u}=\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 0\end{array}\right]-\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}1 \\ -1 \\ -1 \\ -1\end{array}\right]$ and normalize to $u=\frac{1}{2}\left[\begin{array}{c}1 \\ -1 \\ -1 \\ -1\end{array}\right]$.
The Householder reflection becomes $H=I-2 u u^{T}$ and $H A=\left[\begin{array}{cccc}2 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 0\end{array}\right]$.
For Z we calculate $\hat{u}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]-\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ and normalize to $u=\frac{1}{\sqrt{2}}\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1\end{array}\right]$.
The Householder reflection becomes $Z=I-2 u u^{T}$ and $H A Z=\left[\begin{array}{cccc}2 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
7) See text book or lecture notes.

8a) Congruent transformation: $A \rightarrow X^{T} A X$ with X nonsingular. The inertia is preserved, $\operatorname{inertia}(A)=(\nu, \zeta, \pi)$ where ν, ζ and π is the number of negative, zero and positive eigenvalues, respectively.
$\mathbf{8 b}$) The eigenvalues of $A-\sigma I$ are $\lambda_{i}-\sigma$ for eigenvalues λ_{i} of A and $\lambda_{i}, i=1,2,3,4$ are integers (by the hint). By a) $A-\sigma I$ and D have the same inertia in particular the same π. From the table we see that A has 4 eigenvalues larger than 0,3 eigenvalues larger than 1,2 eigenvalues larger that 2 etc. We conclude that the eigenvalues are $1,2,4$ and 5 .
8c) By Gerschgorin: $\lambda \in\{|z-2| \leq 2\} \cup\{|z-3| \leq 2\} \cup\{|z-4| \leq 2\} \cup\{|z-3| \leq 2\} \Rightarrow$ $\lambda \in[0,6]$. The eigenvalues are real since A is symmetric.

