Department of
Mathematics
Göteborg

Numerical Linear Algebra, TMA265

Solutions to the examination 23 October 2008

1a) Symmetric: $A^{T}=A$. Indefinite: $x^{T} A x>0$ for some x and $y^{T} A y<0$ for some y.
1b) See text book or lecture notes; pivots of size 1×1 or 2×2.

2a) See text book or lecture notes; $q \approx \sqrt{M / 3}$.
2b) "Matrix times matrix" and "solving triangular systems with many right hand sides".

3a) $A=U \Sigma V^{T}, U$ and V with orthonormal columns and Σ diagonal $r \times r$, where $r=\operatorname{rank}(A)$.
3b) $A^{T}=V \Sigma U^{T}$ with Σ and U "regular" matrices. Thus, $\operatorname{Col}\left(A^{T}\right)=\operatorname{Col}(V)$, so the columns of V make up an orthonormal basis for $\operatorname{Col}\left(A^{T}\right)=\operatorname{Row}(A)$ and the projection is then by the matrix $V V^{T}$.

4a) For the construction of H we have $\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]-\left[\begin{array}{c}1 \\ -1 \\ 0 \\ -1 \\ 1\end{array}\right]=\left[\begin{array}{c}1 \\ 1 \\ 0 \\ 1 \\ -1\end{array}\right] \Rightarrow u=\frac{1}{2}\left[\begin{array}{c}1 \\ 1 \\ 0 \\ 1 \\ -1\end{array}\right]$, $H=I-2 u u^{T}$. Here u is orthogonal to columns 2-4 of A. Thus, $H A=\left[\begin{array}{cccc}2 & 3 & 0 & 4 \\ 0 & 1 & 1 & -2 \\ 0 & 3 & 1 & 0 \\ 0 & -1 & 1 & -2 \\ 0 & 3 & 2 & 0\end{array}\right]$.
For Z we get $\tilde{u}=\left[\begin{array}{l}5 \\ 0 \\ 0\end{array}\right]-\left[\begin{array}{l}3 \\ 0 \\ 4\end{array}\right]=\left[\begin{array}{c}2 \\ 0 \\ -4\end{array}\right] \Rightarrow u=\frac{1}{\sqrt{20}}\left[\begin{array}{c}0 \\ 2 \\ 0 \\ -4\end{array}\right], \quad Z=I-2 u u^{T}$ and $H A \times Z$ can by computed row by row, $H A Z=\left[\begin{array}{cccc}2 & 5 & 0 & 0 \\ 0 & -1 & 1 & 2 \\ 0 & 1.8 & 1 & 2.4 \\ 0 & -2.2 & 1 & 0.4 \\ 0 & 1.8 & 2 & 2.4\end{array}\right]$.

5a) $A x=\lambda x, \quad x \neq 0$ right eigenvector.
$y^{*} A=\lambda y^{*}, \quad y \neq 0$ left eigenvector.
5b) $\kappa(\lambda)=\frac{1}{\left|y^{*} x\right|}$, where x and y are normed left and right eigenvectors corresponding to λ.
5c) Let $\left\{u_{i}\right\}_{i=1}^{n}$ be ON-basis in R^{n} with $u_{1}=u$. Then $H u_{1}=u_{1}-2 u_{1} u_{1}^{T} u_{1}=-u_{1}$, since $u_{1}^{T} u_{1}=1$, so u_{1} is right eigenvector and $\lambda_{1}=-1$. Further, $H u_{j}=u_{j}-2 u_{1} u_{1}^{T} u_{j}=u_{j}, \quad j \neq$ 1 , since $u_{1}^{T} u_{j}=0, \quad j \neq 1$, so $u_{j}, j=2, \ldots, n$ are right eigenvectors and $\lambda_{j}=1, j=2, \ldots, n$. H is symmetric, $H^{T}=H$, so left and right eigenvectors are the same. The condition numbers are then $\kappa\left(\lambda_{j}\right)=\frac{1}{u_{j}^{T} u_{j}}=1, j=1, \ldots, n$.
6) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c\end{array}\right]\left[\begin{array}{lll}2 & 4 & 3 \\ 4 & 1 & 0 \\ 3 & 0 & 2\end{array}\right]=\left[\begin{array}{ccc}2 & 4 & 3 \\ 4 c-3 s & c & -2 s \\ 4 s+3 c & s & 2 c\end{array}\right]$.

Choose $c=4 / 5, s=-3 / 5$ to zero-out the (3,1)-element.
$\left[\begin{array}{ccc}2 & 4 & 3 \\ 5 & 4 / 5 & 6 / 5 \\ 0 & -3 / 5 & 8 / 5\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 4 / 5 & -3 / 5 \\ 0 & 3 / 5 & 4 / 5\end{array}\right]=\left[\begin{array}{ccc}2 & 5 & 0 \\ 5 & 34 / 25 & 12 / 25 \\ 0 & 12 / 25 & 41 / 25\end{array}\right]$.
7) Assume μ is not an eigenvalue of A, otherwise the result is trivial.

The matrix $A+E-\mu I$ is then singular and so is the matrix
$X^{-1}(A+E-\mu I) X=D-\mu I+X^{-1} E X$.
Then there exists a $z \neq 0$ such that $(D-\mu I) z=-X^{-1} E X z$.
Solving for z in this equation gives
$z=-(D-\mu I)^{-1} X^{-1} E X z$ and taking norms gives
$\|z\|_{p}=\left\|(D-\mu I)^{-1} X^{-1} E X z\right\|_{p} \leq$
$\left.\left\|(D-\mu I)^{-1}\right\|_{p}\left\|X^{-1}\right\|_{p}\|E\|_{p}\|X\|_{p}\|z\|_{p}=\left\|(D-\mu I)^{-1}\right\|_{p} \kappa_{p}(X)\|E\|_{p}\|z\|_{p} .{ }^{*}\right)$
But $D-\mu I$ is diagonal so $\left\|(D-\mu I)^{-1}\right\|_{p}=\frac{1}{\min _{1 \leq i \leq n}\left|\lambda_{i}-\mu\right|}$ for any norm p. Recall that $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$
Divide the inequality $\left(^{*}\right)$ by $\|z\|_{p}$ to obtain the result.
8) See text book or lecture notes.

