Department of Mathematics Goteborg

Numerical Linear Algebra, TMA265/MMA600

Solutions to the examination January 16, 2012

 $\begin{array}{l} \mathbf{1} & A^{T}A(x+\delta x) = A^{T}(b+\delta b) \\ & A^{T}Ax = A^{T}b \end{array} \right\} \Rightarrow A^{T}A\delta x = A^{T}\delta b \Rightarrow \delta x = (A^{T}A)^{-1}A^{T}\delta b = A^{+}\delta b \\ \Rightarrow \|\delta x\|_{2} \leq \|A^{+}\|_{2}\|\delta b\|_{2} \Rightarrow \frac{\|\delta x\|_{2}}{\|x\|_{2}} \leq \|A^{+}\|_{2}\frac{\|\delta b\|_{2}}{\|x\|_{2}} = \|A^{+}\|_{2}\|A\|_{2}\frac{\|b\|_{2}\|\delta b\|_{2}}{\|A\|_{2}\|b\|_{2}\|x\|_{2}} = \kappa(A)\frac{\|b\|_{2}\|\delta b\|_{2}}{\|A\|_{2}\|b\|_{2}\|b\|_{2}\|x\|_{2}}. \\ \text{By the inequality } \|Ax\|_{2} \leq \|A\|_{2}\|x\|_{2} \text{ and the fact that } \cos\theta = \frac{\|Ax\|_{2}}{\|b\|_{2}} \text{ we now get} \\ \frac{\|\delta x\|_{2}}{\|x\|_{2}} \leq \kappa(A)\frac{\|b\|_{2}\|\delta b\|_{2}}{\|Ax\|_{2}\|b\|_{2}} = \kappa(A)\frac{1}{\cos\theta}\frac{\|\delta b\|_{2}}{\|b\|_{2}}. \end{array}$

2 a) See text book or lecture notes.

2 b) $A = LDL^T$, L lower triangular, D block diagonal with 1x1 or 2x2 diagonal blocks. **2** c) $A = LDL^T$ with D positive diagonal.

3) Normal equations of the second kind: $AA^Ty = b$, where $A \in \mathbb{R}^{m \times n}$, m < n and $b \in \mathbb{R}^m$. The problem: $\begin{cases} \min_x ||x||_2 \\ subject \ to \ Ax = b \end{cases}$

If x_0 is a solution to Ax = b, then all $x = x_0 + x_h$, where $x_h \in N(A)$, are solutions, since $Ax = Ax_0 + Ax_h = Ax_0 = b$.

 $||x||_2$ is minimized if $x \in N(A)^{\perp} = R(A^T)$ i.e. for $x = A^T y$ for some $y \in R^m$ and then $b = Ax = AA^T y$ i.e. the problem is solved by

1) $AA^Ty = b, 2$ $x = A^Ty$. The solution is unique if rank(A) = m.

$$\begin{aligned} \mathbf{4}) \text{ Use a Givens rotation } R(2,3,\theta) &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c & -s & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ to zero-out the } (3,1) \text{ element:} \\ R(2,3,\theta)A &= \begin{bmatrix} 0 & -1 & 1 & 0 \\ 4c - 3s & 2c - 4s & 0 & c - s \\ 4s + 3c & 2s + 4c & 0 & s + c \\ 0 & 3 & -4 & 1 \end{bmatrix} \text{. By } s = -3/5, \ c = 4/5 \text{ we get the desired} \\ R(2,3,\theta)A &= \begin{bmatrix} 0 & -1 & 1 & 0 \\ 5 & 4 & 0 & 7/5 \\ 0 & 2 & 0 & 1/5 \\ 0 & 3 & -4 & 1 \end{bmatrix} \text{ and then} \\ R(2,3,\theta)AR(2,3,\theta)^T &= \begin{bmatrix} 0 & -1 & 1 & 0 \\ 5 & 4 & 0 & 7/5 \\ 0 & 2 & 0 & 1/5 \\ 0 & 2 & 0 & 1/5 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 4/5 & -3/5 & 0 \\ 0 & 3/5 & 4/5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1/5 & 7/5 & 0 \\ 5 & 16/5 & -12/5 & 7/5 \\ 0 & 8/5 & -6/5 & 1/5 \\ 0 & 0 & -5 & 1 \end{bmatrix} \end{aligned}$$

5a) $A = U\Sigma V^T$, U and V with orthonormal columns and Σ diagonal $r \times r$, where r = rank(A). **5b)** $A^T = V\Sigma U^T$ with Σ and U "regular" matrices. Thus, $Col(A^T) = Col(V)$, so the columns of V make up an orthonormal basis for $Col(A^T) = Row(A)$ and the projection is then by the matrix VV^T .

6) Assume μ is not an eigenvalue of A, otherwise the result is trivial. The matrix $A + E - \mu I$ is then singular and so is the matrix $X^{-1}(A + E - \mu I)X = D - \mu I + X^{-1}EX$. Then there exists a $z \neq 0$ such that $(D - \mu I)z = -X^{-1}EXz$. Solving for z in this equation gives $z = -(D - \mu I)^{-1}X^{-1}EXz$ and taking norms gives $\|z\|_p = \|(D - \mu I)^{-1}X^{-1}EXz\|_p \leq \|(D - \mu I)^{-1}\|_p \|X^{-1}\|_p \|E\|_p \|X\|_p \|z\|_p = \|(D - \mu I)^{-1}\|_p \kappa_p(X)\|E\|_p \|z\|_p$. (*) But $D - \mu I$ is diagonal so $\|(D - \mu I)^{-1}\|_p = \frac{1}{\min_{1 \leq i \leq n} |\lambda_i - \mu|}$ for any norm p. Recall that $D = diag(\lambda_1, \lambda_2, ..., \lambda_n)$ Divide the inequality (*) by $\|z\|_p$ to obtain the result.

7) For the construction of
$$H$$
 we have $\begin{bmatrix} 2\\0\\0\\0\\0 \end{bmatrix} - \begin{bmatrix} 1\\1\\-1\\1\\0 \end{bmatrix} = \begin{bmatrix} 1\\-1\\1\\-1\\0 \end{bmatrix} \Rightarrow u = \frac{1}{2} \begin{bmatrix} 1\\-1\\1\\-1\\0 \end{bmatrix}$,
 $H = I - 2uu^{T}$. Here u is orthogonal to columns 2-4 of A . Thus, $HA = \begin{bmatrix} 2 & 4 & 0 & 3\\0 & 2 & -1 & 2\\0 & 0 & 1 & 0\\0 & 2 & 2 & 1\\0 & 1 & 1 & 2 \end{bmatrix}$.
For Z we get $\tilde{u} = \begin{bmatrix} 5\\0\\0\\0 \end{bmatrix} - \begin{bmatrix} 4\\0\\3\\0 \end{bmatrix} = \begin{bmatrix} 1\\0\\-3\\0 \end{bmatrix} \Rightarrow u = \frac{1}{\sqrt{10}} \begin{bmatrix} 0\\1\\0\\-3\\0 \end{bmatrix}$, $Z = I - 2uu^{T}$
and $HA \times Z$ can by computed row by row, $HAZ = \begin{bmatrix} 2 & 5 & 0 & 0\\0 & 2.8 & -1 & -0.4\\0 & 0 & 1 & 0\\0 & 2.2 & 2 & 0.4\\0 & 2 & 1 & -1 \end{bmatrix}$.

8) See text book or lecture notes.