Questions for the course

Numerical Linear Algebra

TMA265/MMA600

Date: January 17 2013, Time: 8.30 - 12.30, Place: at CTH, Maskinhuset

Question 1

• 1. Find eigenvalues for a rotation matrix A such that

$$\mathbf{A} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix}$$

(1p)

- 2. Find inverse matrix A^{-1} to the matrix A via the matrix of cofactors. (1p)
- 3. Determine if the matrix A is orthogonal or not, explain why. (1p)

Question 2

- 1. Describe the main idea of Cholesky factorization of the matrix A for solution of a system of linear equation Ax = b. (2p)
- 2. Prove that if there exists a unique lower triangular nonsingular matrix L with positive diagonal entries such that $A = LL^T$ then A is symmetric positive definite matrix.

(2p)

Question 3

- 1. Let Ax = b, the matrix A is given with an error δA , the right hand side b is given with an error δb and the computed solution \tilde{x} is such that $\tilde{x} = \delta x + x$. Derive inequality for the relative change of $\frac{\|\delta x\|}{\|\tilde{x}\|}$ in terms of the condition number of the matrix A and relative change $\frac{\|\delta A\|}{\|A\|}$ in the data. (2p)
- 2. Let A be the diagonal matrix and B any nonsingular matrix. Prove that k(AB) = k(B), where k(AB) is the condition number of AB and k(B) is the condition number of B. (2p)

Question 4

- 1. Derive normal equations $A^T A x = A^T b$ in the method of normal equations. (2p)
- 2. Why $x = (A^T A)^{-1} A^T b$ is minimizer of $||Ax b||_2^2$ in the method of normal equations? (2p)
- 3. Get formula $x = R^{-1}Q^{T}b$ for x that solves Ax = b using the solution of the normal equations $x = (A^{T}A)^{-1}A^{T}b$ and QR decomposition of the matrix A = QR. (2p)

• 1. Transform the matrix A to the tridiagonal form using Householder reflection.

$$\mathbf{A} = \begin{bmatrix} 4 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$

(2p)

• 2. Transform the matrix A to the tridiagonal form using Given's rotation.

$$\mathbf{A} = \begin{bmatrix} 4 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$

(2p)

Question 6

- 1. Let $A = U\Sigma V^T$ be the SVD decomposition of the m-by-n matrix A, where $m \ge n$. Prove that $||A||_2 = \sigma_1$ and $||A^{-1}||_2^{-1} = \sigma_n$. Here $\sigma_1 \ge ... \ge \sigma_n \ge 0$ are singular values of Σ . (1p)
- 2. Let $A = U\Sigma V^T$ be the SVD decomposition of the m-by-n matrix A, where $m \ge n$. Prove that the eigenvalues of the symmetric matrix AA^T are σ_i^2 and m-n zeros. (1p)
- 3. Let $A = U\Sigma V^T$ be the SVD decomposition of the m-by-n matrix A, where $m \ge n$. Let m-by-n pixel image corresponds to the matrix A. Write formula for compressed image A_k which will be the best rank-k approximation of the matrix A.
 - (1p)

Question 7

- Let A = UΣV^T be the SVD decomposition of the m-by-n matrix A with m ≥ n. Define the Moore-Penrose pseudoinverse matrix A⁺ of the matrix A.
 (1p)
- 2. Let A = UΣV^T be the SVD decomposition of the m-by-n matrix A with m ≥ n. Using definitions of A and A⁺ prove that AA⁺A = A.
 (2p)

Numerical Linear Algebra

TMA265/MMA600 Solutions to the examination at 17 January 2013 Question 1

1. We should solve characteristic equation $det(A - \lambda I) = 0$:

$$\det \begin{bmatrix} \cos \Theta - \lambda & -\sin \Theta \\ \sin \Theta & \cos \Theta - \lambda \end{bmatrix} = 0.$$

Solving above equation for λ we get two eigenvalues $\lambda_1 = \cos \Theta + i \sin \Theta, \lambda_2 = \cos \Theta - i \sin \Theta$.

2. By definition of an inverse matrix we have:

$$A^{-1} = \frac{1}{\det A} (C^T)_{ij}$$

Thus,

$$C = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix},$$

$$C^{T} = \begin{bmatrix} \cos \Theta & \sin \Theta \\ -\sin \Theta & \cos \Theta \end{bmatrix},$$

$$A^{-1} = \frac{1}{\det A} (C^{T})_{ij} = \begin{bmatrix} \cos \Theta & \sin \Theta \\ -\sin \Theta & \cos \Theta \end{bmatrix}.$$

3. The rotation matrix A is the orhogonal matrix since $A \cdot A^{-1} = I$.

Question 2

1. See Lecture 5 and the course book.

2. Since $A = LL^T$ then $x^T A x = (x^T L)(L^x) = ||L^T x||_2^2 > 0$ for all $x \neq 0$ and thus A is s.p.d.

Question 3

- 1. See Lecture 3 and the course book Chapter 2.2.
- 2. We can write

$$k(AB) = \||(AB)^{-1}| \cdot |(AB)|\| = \||B^{-1}A^{-1}| \cdot |AB|\| = \||B^{-1}| \cdot |B|\| = k(B).$$

Question 4

- 1. See Lecture 5 and Chapter 3.2.1 of the course book.
- 1. See Lecture 5 and Chapter 3.2.1 of the course book.
- 2. Write

$$x = (A^{T}A)^{-1}A^{T}b = (R^{T}Q^{T}QR)^{-1}R^{T}Q^{T}b = (R^{T}R)^{-1}R^{T}Q^{T}b = R^{-1}R^{-T}R^{T}Q^{T}b = R^{-1}Q^{T}b$$

Question 5

1. To obtain tridiagonal matrix from the matrix $A = \begin{bmatrix} 4 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$ using Householder transformation we make following steps:

• Step1 . First compute α as

$$\alpha = -\operatorname{sgn}(a_{21}) \sqrt{\sum_{j=2}^{n} a_{j1}^2} = -\sqrt{(a_{21}^2 + a_{31}^2)} = -\sqrt{0^2 + 2^2} = -2.$$

• Step 2. Using α we find r as

$$r = \sqrt{\frac{1}{2}(\alpha^2 - a_{21}\alpha)} = \sqrt{\frac{1}{2}(4+0)} = \sqrt{2}.$$

• Step 3. Then we compute components of vector v:

$$v_1 = 0,$$

 $v_2 = \frac{a_{21} - \alpha}{2r} = \frac{1}{\sqrt{2}},$
 $v_3 = \frac{a_{31}}{2r} = \frac{1}{\sqrt{2}}$

and we have

$$v^{(1)} = \begin{bmatrix} 0\\\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{bmatrix},$$

• Step 4 . Then compute matrix P^1

$$P^1 = I - 2v^{(1)}(v^{(1)})^T$$

to get
$$\mathbf{P}^1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

• Step 5.

After that we can obtain tridiagonal matrix $A^{(1)}$ as

$$A^{(1)} = P^{1}AP^{1} = \begin{bmatrix} 4 & -2 & 0 \\ -2 & 3 & 1 \\ 0 & 1 & 2. \end{bmatrix}$$

2. To obtain tridiagonal matrix from the matrix

$$\mathbf{A} = \begin{bmatrix} 4 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$

using Given's rotation we have to zero out (3,1) and (1,3) elements of the matrix A. Thus we use the Given's rotation $R(2,3,\theta)$ such that

$$R(2,3,\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c \end{bmatrix}$$

We compute

$$R(2,3,\theta) \cdot A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c \end{bmatrix} \cdot \begin{bmatrix} 4 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 2 \\ -2s & 2c - s & c - 3s \\ 2c & 2s + c & s + 3c \end{bmatrix}$$

Element (3,1) of the matrix will be zero if 2c = 0. This is true when c = 0. To compute c, s we can use

$$\begin{bmatrix} c & -s \\ s & c \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} r \\ 0 \end{bmatrix}$$

to get formulas:

$$\begin{aligned} r &= \sqrt{a^2 + b^2} = \sqrt{0^2 + 2^2} = 2, \\ c &= \frac{a}{r} = 0, \\ s &= \frac{-b}{r} = -1. \end{aligned}$$

Next, to get tridiagonal matrix we have to do :

$$R(2,3,\theta) \cdot AR(2,3,\theta)^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 4 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 0 \\ 2 & 3 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Question 6

- 1. See Lecture 7 and Theorem 3.3 of the course book.
- 2. See Lecture 7 and Theorem 3.3 of the course book.
- 3. Since $A = U\Sigma V^T$ then by Theorem 3.3 of the course book $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$ will be the best rank-k approximation of the matrix A. A_k will represent the compressed image of A.

Question 7

• 1. Let A be the *m*-by-*n* matrix with $m \ge n$ and has a full rank such that $A = U\Sigma V^T$. Then Moore-Penrose pseudoinverse of A is $A^+ = (A^T A)^{-1} A^T$. If m < n then $A^+ = A^T (AA^T)^{-1}$.

$$AA^{+}A = U\Sigma V^{T} (V\Sigma U^{T} U\Sigma V^{T})^{-1} V\Sigma U^{T} U\Sigma V^{T}$$
$$= U\Sigma V^{T} (V^{-1} \Sigma^{-2} V^{-T}) \Sigma^{2} = U\Sigma V^{-1} = U\Sigma V^{T} = A.$$