
Questions for the course

Numerical Linear Algebra

TMA265/MMA600

Date: 2013 October 24, Time: 14.00 - 18.00, Place: at CTH,
Maskinhuset

Question 1

• 1. Find eigenvalues for a matrix A such that

A =

4 1 0
2 0 0
0 0 5


(1p)

• 2. Compute ||A||∞, ||A||1. Find conjugate transpose matrix A∗ to the matrix A.
(1p)
• 3. Find inverse matrix A−1 to the matrix A via the matrix of cofactors. (2p)

Question 2

• 1. Write algorithm of LU factorization of the matrix A with pivoting using con-
ventional programming language notation. (1p)
• 2. Prove that following two statements are equivalent:

1. There exists a unique unit lower triangular matrix L and nonsingular upper
triangular U such that A = LU .
2. All leading principal submatrices of A are nonsingular.
(3p)

Question 3

• 1. Derive the condition number k(A) of the matrix A. (2p)
• 2. Derive practical error bounds

error =
||x̃− x||∞
||x̃||∞

of Ax = b in the terms of residual r and the approximate solution x̃ of Ax = b.
(2p)

Question 4

• 1. Derive normal equations ATAx = AT b in the method of normal equations. (2p)
• 2. Derive formula for x that minimizes the functional F (x) = ||Ax− b||22 using the
QR decomposition of the matrix A = QR. You can present any one of the three
derivations of this formula. (3p)
• 3. Let A will be m × n matrix with m ≥ n. De�ne the SVD decomposition of a
matrix A. (1p)
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Question 5

• Compute QR decomposition of the matrix A using Householder re�ections:

A =

4 4 3
0 3 1
3 4 7


(2p)

• Compute QR decomposition of the matrix A using Given's rotations

A =

4 4 3
3 3 1
0 4 7


(1p)

Question 6

• 1. Give de�nitions of the Schur canonical form and the Real Schur canonical form.
(1p)

• 2. Let the matrixA is diagonalizible such that S−1AS = Λ, where Λ = diag(λ1, . . . , λn)
are eigenvalues. Prove that the S = [x1, . . . , xn] be the nonsingular matrix of right
eigenvectors, and rows of S−1 are conjugate transposes of the left eigenvectors yi.
(1p)

• 3. Let λ be a simple eigenvalue of A with right eigenvector x and left eigenvector y,
normalized so that ||x||2 = ||y||2 = 1. De�ne condition number for the eigenvalue
λ.
(1p)

Question 7

• 1. Let A = UΣV T be the SVD decomposition of the m-by-n matrix A with m ≥ n.
De�ne the Moore-Penrose pseudoinverse matrix A+ of the matrix A.
(1p)

• 2. Let A = UΣV T be the SVD decomposition of the m-by-n matrix A with m ≥ n.
Using de�nitions of A and A+ prove that AA+A = A.
(2p)
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Numerical Linear Algebra

TMA265/MMA600
Solutions to the examination at 24 October 2013

Question 1

1. We should solve characteristic equation det(A− λI) = 0 :

det

4− λ 1 0
2 −λ 0
0 0 5− λ

 = 0.

Solving above equation for λ we get three eigenvalues λ1 = 5, λ2 = 4+
√

24
2
≈ 4.4495, λ3 =

4−
√

24
2
≈ −0.4495 which are solutions to the equation (5− λ)(λ2 − 4λ− 2) = 0.

3. We use de�nition of A∗:

A∗ = AT .

AT =

4 2 0
1 0 0
0 0 5

 .
||A||∞ = 5, ||A||1 = 6.
4. By de�nition of an inverse matrix we have:

A−1 =
1

detA
(CT )ij

Thus,

C =

 0 −10 0
−5 20 0
0 0 −2

 ,
CT =

 0 −5 0
−10 20 0

0 0 −2

 ,
and thus A−1 = 1

−10
·

 0 −5 0
−10 20 0

0 0 −2

 =

0 0.5 0
1 −2 0
0 0 0.2.


Question 2

1. See Lecture 3 and the course book.
1. See Theorem 2.4 of the course book.
Proof.
We �rst show that (1) implies (2). A = LU may also be written[

A11 A12

A21 A22

]
=

[
L11 0
L21 L22

]
×
[
U11 U12

0 U22

]
=

[
L11U11 L11U12

L21U11 L21U12 + L22U22

]
where A11 is a j-by-j leading principal submatrix, as well as L11 and U11. Therefore
detA11 = det(L11U11) = detL11detU11 = 1 ·

∏j
k=1(U11)kk 6= 0, since L is unit triangular

and U is triangular.
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(2) implies (1) is proved by induction on n. It is easy for 1-by-1 matrices: a = 1 · a. To
prove it for n-by-n matrices Ã, we need to �nd unique (n-1)-by-(n-1) triangular matrices
L and U , unique (n-1)-by-1 vectors l and u, and unique nonzero scalar η such that

Ã =

[
A b
cT δ

]
=

[
L 0
lT 1

]
×
[
U u
0 η

]
=

[
LU Lu
lTU lTu+ η

]

By induction unique L and U exist such that A = LU . Now let u = L−1b, lT = cTU−1, and
η = δ − lTu, all of which are unique. The diagonal entries of U are nonzero by induction,
and η 6= 0 since 0 6= detÃ = det(U) · η.

Question 3

See Lectures 2,3 and the course book.
1.

• Consider linear system Ax = b ,
• x̂ such that x̂ = δx+ x is its computed solution.
• Suppose (A+ δA)x̂ = b+ δb.
• Goal: to bound the norm of δx ≡ x̂− x .
• Subtract the equalities and solve them for δx
• Rearranging terms we get:

δx = A−1(−δAx̂+ δb)

Taking norms and triangle inequality leads us to

‖δx‖ ≤ ‖A−1‖(‖δA‖ · ‖x̂‖+ ‖δb‖)

Rearranging inequality gives us

‖δx‖
‖x̂‖

≤ ‖A−1‖ · ‖A‖ · (‖δA‖
‖A‖

+
‖δb‖

‖A‖ · ‖x̂‖
)

where k(A) = ‖A−1‖ · ‖A‖ is the condition number of the matrix A
2.

error =
||x̃− x||∞
||x̃||∞

≤ ||A−1||∞ ·
||r||∞
||x̃||∞

, (2.13)

where r = Ax̃ − b is the residual. We estimate ||A−1||∞ by applying Algorithm 2.5 to
B = A−T , estimating ||B||1 = ||A−T ||1 = ||A−1||∞ (see parts 5 and 6 of Lemma 1.7).

Question 4

1. See Lecture 6 and the course book.
2. We will derive the formula for the x that minimizes ||Ax − b||2 using the decompo-

sition A = QR in three slightly di�erent ways. First, we can always choose m − n more
orthonormal vectors Q̃ so that [Q, Q̃] is a square orthogonal matrix (for example, we can
choose any m − n more independent vectors X̃ that we want and then apply Algorithm
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3.1 to the n-by-n nonsingular matrix [Q, X̃]). Then

||Ax− b||22 = ||[Q, Q̃]T (Ax− b)||22

=

∥∥∥∥[ QT

Q̃T

]
(QRx− b)

∥∥∥∥2

2

=

∥∥∥∥[ In×n

O(m−n)×n

]
Rx−

[
QT b

Q̃T b

]∥∥∥∥2

2

=

∥∥∥∥[ Rx−QT b

−Q̃T b

]∥∥∥∥2

2

=
∥∥Rx−QT b

∥∥2

2
+ ‖Q̃T b‖22

≥ ‖Q̃T b‖22.

We can solve Rx − QT b = 0 for x, since A and R have the same rank, n, and so R is
nonsinsular. Then x = R−1QT b, and the minimum value of ||Ax− b||2 is ||Q̃T b||2.
Here is a second, slightly di�erent derivation that does not use the matrix Q̃. Rewrite

Ax− b as
Ax− b = QRx− b = QRx− (QQT + I −QQT )b

= Q(Rx−QT b)− (I −QQT )b.

Note that the vectors Q(Rx − QT b) and (I − QQT )b are orthogonal, because (Q(Rx −
QT b))T ((I − QQT )b) = (Rx − QT b)T [QT (I − QQT )]b = (Rx − QT b)T [0]b = 0. Therefore,
by the Pythagorean theorem,

‖Ax− b‖22 = ‖Q(Rx−QT b)‖22 + ‖(I −QQT )b‖22
= ‖Rx−QT b‖22 + ‖(I −QQT )b‖22.

where we have used part 4 of Lemma 1.7 in the form This sum of squares is minimized
when the �rst term is zero, i.e., x = R−1QT b.
Finally, here is a third derivation that starts from the normal equations solution:

x = (ATA)−1AT b
= (RTQTQR)−1RTQT b = (RTR)−1RTQT b
= R−1R−TRTQT b = R−1QT b.

3. See Lecture 7 and the course book.

Question 5

• 1. First, we need to �nd a re�ection that transforms the �rst column of matrix A

A =

4 4 3
0 3 1
3 4 7


We have:

u = x + αe1,

where x = (4, 0, 3)T , α = −sign(4) · ||x||

v =
u

‖u‖
.

Here,
α = −5.

Therefore
u = (−1, 0, 3)T , ||u|| =

√
10.
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and v = 1√
10

(−1, 0, 3)T , and then

P1 = I − 2√
10
√

10

−1
0
3

(−1 0 3
)

= I − 1

5

 1 0 −3
0 0 0
−3 0 9


=

4/5 0 3/5
0 1 0

3/5 0 −4/5

 .

Now observe:

P1A =

5 5.6 6.6
0 3 1
0 −0.8 −3.8

 ,

so we already have almost a triangular matrix. We only need to zero the (3, 2)
entry.
Take the (1, 1) minor, and then apply the process again to

A′ = M11 =

(
3 1
−0.8 −3.8

)
.

We have:

u = x + αe1,

where x = (3,−0.8)T , α = −sign(3) · ||x||

v =
u

‖u‖
.

Here,

α = −3.1048.

Therefore

u = (−0.1048,−0.8)T , ||u|| = 0.8068.

and v = 1
0.8068

(−0.1048,−0.8)T , and then

P ′2 = I − 2

0.651

(
−0.1048
−0.8

)(
−0.1048 −0.8

)
= I − 2

0.651

(
0.011 0.0838
0.0838 0.64

)
=

(
0.9662 −0.2575
0.2575 −0.9662

)
.

Then the second matrix of the Householder transformation is

P2 =

1 0 0
0 0.9662 −0.2575
0 −0.2575 −0.9662


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Now, we �nd

R = P2P1A =

5 5.6 6.6
0 3.1046 1.9447
0 0.0005 3.4141

 .

The matrix P is orthogonal and R is upper triangular, so A = QR is the required
QR-decomposition with P = P T

1 P
T
2 .

• 2. To obtain QR decomposition of the matrix A

A =

4 4 3
3 3 1
0 4 7


using Given's rotation we have to zero out (2, 1) and (3, 2) elements of the matrix
A.
1. First, we zero out element (2, 1) of the matrix A.
To do that we compute c, s from the known a = 4 and b = 3 as[

c −s
s c

]
·
[
a
b

]
=

[
r
0

]
to get formulas:

r =
√
a2 + b2 =

√
42 + 32 = 5,

c =
a

r
= 0.8,

s =
−b
r

= −0.6.

The �rst Given's matrix will be

G1 =

c −s 0
s c 0
0 0 1


or

G1 =

 0.8 0.6 0
−0.6 0.8 0

0 0 1


Then

G1 ·A =

5 5 3
0 0 −1
0 4 7


2. Next step is to construct second Given's matrix G2 in order to zero out (3, 2)

element of the matrix G1 · A.
To do that we compute c, s from the known a = 0 and b = 4 as[

c −s
s c

]
·
[
a
b

]
=

[
r
0

]
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to get formulas:

r =
√
a2 + b2 =

√
02 + 42 = 4,

c =
a

r
= 0,

s =
−b
r

= −1.

The second Given's matrix will be

G2 =

1 0 0
0 c −s
0 s c


or

G2 =

1 0 0
0 0 1
0 −1 0


Then upper triangular matrix R in the QR decomposition will be

R = G2 ·G1 ·A =

5 5 3
0 4 7
0 0 1


Then A = GT

1 · GT
2 · R = QR will be QR decomposition of the matrix A with

Q = GT
1 ·GT

2 given by

Q =

0.8 0 0.6
0.6 0 −0.8
0 1 0


Question 6

• 1. Schur canonical form. Given A, there exists a unitary matrix Q and an upper
triangular matrix T such that Q∗AQ = T . The eigenvalues of A are the diagonal
entries of T .

Real Schur canonical form. If A is real, there exists a real orthogonal matrix V
such that V TAV = T is quasi-upper triangular. This means that T is block upper
triangular with 1-by-1 and 2-by-2 blocks on the diagonal. Its eigenvalues are the
eigenvalues of its diagonal blocks. The 1-by-1 blocks correspond to real eigenvalues,
and the 2-by-2 blocks to complex conjugate pairs of eigenvalues.
• 2. Let S = [x1, . . . , xn] the nonsingular matrix of right eigenvectors. and we know
that A is diagonalizible and thus AS = SΛ, where Λ = diag(λ1, . . . , λn), since the
columns xi of S are eigenvectors. This is equivalent to AS−1 = S−1Λ, so the rows
of S−1 are conjugate transposes of the left eigenvectors yi.
• 3. The expression secΘ(y, x) = 1/|y∗x| is the condition number of the eigenvalue
λ.

Question 7

• 1. LetA be them-by-nmatrix withm ≥ n and has a full rank such thatA = UΣV T .
Then Moore-Penrose pseudoinverse of A is A+ = (ATA)−1AT . If m < n then
A+ = AT (AAT )−1.
• 2.

AA+A = UΣV T (V ΣUTUΣV T )−1V ΣUTUΣV T

= UΣV T (V −1Σ−2V −T )Σ2 = UΣV −1 = UΣV T = A.


