
Optimization approach in the design of approximate

cloaking structures

Master Project

Abstract

In this project we will consider the problem of the construction of the approximate
cloaking structure of arbitrary geometry. We reformulate this problem as an optimiza-
tion problem for the Tikhonov functional which is minimized on adaptively locally refined
meshes. These meshes are refined only in places where the nanophotonic structure should
be designed. Our special symmetric mesh refinement procedure allows the construction of
different nanophotonic structures.

The existing C++/PETSc [22] software package WavES (waves24.com) will be used for
computations. This will be continuation of previous work which is done in [14] and with
collaboration with Chalmers Area of Advance Nanoscience and Nanotechnology.

1 Introduction

The goal of this work is to develop a new optimization algorithm that can construct arbitrary
nanophotonic structures from desired scattering parameters. Nanophotonics is the study of the
interaction of electromagnetic waves with structures that have feature sizes equal or smaller
than the wavelength of the waves. Examples are photonic crystals (structured on the wavelength
scale), metamaterials (subwavelength structured media with new optical properties that are
not available from natural materials) and plasmonic devices (exploiting collective excitations in
metals that result in strong field enhancement) [19, 21, 23, 28].

We should develop a nonparametric optimization algorithm that can find inner structure of
the domain with arbitrary geometry. To do that we apply an adaptive finite element method of
[2, 7] with iterative choice of the regularization parameter [1].

2 Statement of the forward and inverse problems

Let x = (x1, x2) denotes a point in R2 in an unbounded domain D. In this work we consider
the propagation of electromagnetic waves in two dimensions with a field polarization. Thus, we
model the wave propagation by the following Cauchy problem for the scalar wave equation:

(1)

{
ε(x)∂

2E
∂t2

−△E = δ(x2 − x0)p(t) in R2 × (0,∞),

E(x, 0) = f0(x), Et(x, 0) = 0 in D.

Here, E is the electric field generated by the plane wave p(t) which is incident at x2 = x0 and
propagates along x2 axis, ε(x) is the spatially distributed dielectric permittivity. We note that
in this work we use the single equation (1) instead of the full Maxwell’s equations, since in [4]
was demonstrated numerically that in the similar numerical setting, as we will use in this note,
other components of the electric field are negligible compared to the initialized one. We also
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Figure 1: Designing new nano-materials with prescribed properties. Goal: construct a such physically
reliable material (can be constructed in reality) which will give a small reflections as possible. Left:
reflections from initial known material, middle: constructed new optimized material, right: reflections
from optimized new material.

note that a scalar model of the wave equation was used successfully to validate reconstruction
of the dielectric permittivity function with transmitted [10, 11] and backscattered experimental
data [12, 13, 20, 24, 25].

Let now D ⊂ R2 be a convex bounded domain with the boundary ∂D ∈ C2. We denote by
DT := D × (0, T ), ∂DT := ∂D × (0, T ), T > 0 and assume that

(2) f0 ∈ H1(D), ε(x) ∈ C2(D).

For computational solution of (1) we use the domain decomposition finite element/finite difference
(FE/FD) method of [3, 5] which was applied for the solution of different coefficient inverse
problems for the acoustic wave equation in [2, 3, 7]. To apply method of [3, 5] we decompose
D into two regions DFEM and DFDM such that the whole domain D = DFEM ∪ DFDM , and
DFEM ∩DFDM = ∅. In DFEM we use the finite element method (FEM), and in DFDM we will
use the Finite Difference Method (FDM). We avoid instabilities at interfaces between FE and
FD domains since FE and FD discretization schemes coincide on two common structured layers
with ε(x) = 1 in them.

Let the boundary ∂D be such that ∂D = ∂1D ∪ ∂2D ∪ ∂3D where ∂1D and ∂2D are, respec-
tively, front and back sides of the domain D, and ∂3D is the union of left, right, top and bottom
sides of this domain. At ST1

:= ∂1D × (0, T ) and ST2
:= ∂2D × (0, T ) we have time-dependent

backscattering and transmission observations, correspondingly. We define S1,1 := ∂1D × (0, t1],
S1,2 := ∂1D × (t1, T ), and S3 := ∂3D × (0, T ). We also introduce the following spaces of real
valued functions

H1
E(DT ) := {w ∈ H1(DT ) : w(·, 0) = 0},

H1
λ(DT ) := {w ∈ H1(DT ) : w(·, T ) = 0},

U1 = H1
E(DT )×H1

λ(DT )× C
(
D
)
,

(3)

and define standard L2 inner product and space-time norms, correspondingly, as

((u, v))DT
=

∫

D

∫ T

0

uv dxdt, ‖u‖2L2(DT ) = ((u, u))DT
,

(u, v)D =

∫

D

uv dx, ‖u‖2L2(D) = (u, u)D.
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In our computations we have used the following model problem

(4)





ε∂2E
∂t2

−△E = 0 in DT ,

E(x, 0) = f0(x), Et(x, 0) = 0 in D,

∂nE = p (t) on S1,1,

∂nE = −∂tE on S1,2,

∂nE = −∂tE on ST2
,

∂nE = 0 on S3.

In (1) we use the first order absorbing boundary conditions [17]. These conditions are exact since
we initialize the plane wave orthogonal to the domain of propagation.

We choose the coefficient ε(x) in (1) such that

(5)

{
ε (x) ∈ (0,M ] ,M = const. > 0, for x ∈ DFEM ,

ε(x) = 1 for x ∈ DFDM .

We consider the following inverse problem
Inverse Problem (IP)
Let the coefficient ε (x) in the problem (4) satisfy conditions (5) and assume that ε (x) is

unknown in the domain D�DFDM . Determine the function ε (x) in (4) for x ∈ D�DFDM ,

assuming that the following function Ẽ (x, t) is known

(6) E (x, t) = Ẽ (x, t) , ∀ (x, t) ∈ ST1
∪ ST2

.
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[24] N. T. Thành, L. Beilina, M. V. Klibanov and M. A. Fiddy, Reconstruction of the refractive
index from experimental backscattering data using a globally convergent inverse method,
SIAM J. Scientific Computing, 36 (3), pp.273-293, 2014.

4
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