Parameter identification in mathematical model of HIV infection with drug therapy

Master Project

Abstract The goal of this Master project is development of the method for the solution of a parameter identification problem for ODE system which describes dynamics of primary HIV infection with drug therapy. Algorithm for the solution of the problem should be formulated and numerically tested.

1 Statements of the forward model and parameter identification problem

Let us denote by $\Omega_T = [0, T]$ the time domain for T > 0, where T is the final observation time in some mathematical model. We will consider a first order system of ordinary differential equations (ODE) in the general form

$$\frac{du}{dt} = f(u(t), \boldsymbol{\eta}(t)), \ t \in [0, T]$$
(1)

$$u(0) = u^0. (2)$$

Here, $u(t) \in C^2(\Omega_T), u(t) = (u_1(t), ..., u_n(t))^T$ are functions depending of time $t \in \Omega_T$. The right hand side of equation (1) depends also on the parameter $\eta(t) \in C(\Omega_T)$. Further we assume that $f \in C^1(\Omega_T)$ is Lipschitz continuous and such that

$$f(u(t), \eta(t)) = (f_1(u_1, ..., u_n, \eta(t)), ..., f_n(u_1, ..., u_n, \eta(t)))^T.$$

In our mathematical model the function $\eta(t) \in C(\Omega_T)$ represents the drug efficiency and belongs to the set of admissible functions M_η :

$$M_{\eta} = \{ \eta(t) : \eta(t) \in (0,1) \text{ in } \Omega_T, \ \eta(t) = 0 \text{ outside of } \Omega_T \}.$$
(3)

In this paper we consider the mathematical model for the effect of Reverse Transcriptase Inhibitor (RTI) on the dynamics of HIV infection proposed in [1]:

1

Master Project

$$\begin{split} \dot{u_1} &= s - k u_1 u_4 - \mu u_1 + (\eta \alpha + b) u_2, \\ \dot{u_2} &= k u_1 u_4 - (\mu_1 + \alpha + b) u_2, \\ \dot{u_3} &= (1 - \eta) \alpha u_2 - \delta u_3, \\ \dot{u_4} &= N \delta u_3 - c u_4, \end{split}$$

which also can be presented in the form (1) with $u = u(t) = (u_1(t), u_2(t), u_3(t), u_4(t))^T$, $\dot{u} = \frac{\partial u}{\partial t}$ and $f = (f_1, f_2, f_3, f_4)^T = (f_1(u_1, ..., u_4, \eta(t)), ..., f_4(u_1, ..., u_4, \eta(t)))^T$, where

$$f_{1} = s - ku_{1}u_{4} - \mu u_{1} + (\eta \alpha + b)u_{2},$$

$$f_{2} = ku_{1}u_{4} - (\mu_{1} + \alpha + b)u_{2},$$

$$f_{3} = (1 - \eta)\alpha u_{2} - \delta u_{3},$$

$$f_{4} = N\delta u_{3} - cu_{4}.$$
(5)

In system (4) function u_1 represents uninfected target cells population, u_2 – infected target cells before Reverse Transcription (pre-RT class), u_3 – infected target cells in which Reverse Transcription is completed and they are capable of producing virus (post-RT class), u_4 is virus population function. The initial data for system (4) are chosen as one of the having two steady states accordingly to [1]:

$$u_1(0) = u_1^0 = 300 \ mm^{-3}, \ u_2(0) = u_2^0 = 10 \ mm^{-3}, u_3(0) = u_3^0 = 10 \ mm^{-3}, \ u_4(0) = u_4^0 = 10 \ mm^{-3}.$$
(6)

We assume that all parameters in system (4) are known from the literature: see [1] and references therein, except the parameter η which describes efficiency of the drug and should be determined. The typical values of the vector of parameters $\{s, \mu, k, \mu_1, \alpha, b, \delta, c, N\}$ are given in Table 1.

Parameter	Value	Units	Description
		2 . 1	
S	10	$mm^{-3}day^{-1}$	inflow rate of T cells
μ	0.01	day^{-1}	natural death rate of T cells
k	2.4E-5	$mm^3 day^{-1}$	interaction-infection rate of T cells
μ_1	0.015	day^{-1}	death rate of infected cells
α	0.4	day^{-1}	transition rate from pre-RT infected T cells class to post-RT class
b	0.05	day^{-1}	reverting rate of infected cells return to uninfected class
δ	0.26	day^{-1}	death rate of actively infected cells
с	2.4	day^{-1}	clearance rate of virus
Ν	1000	vir/cell	total number of viral particles produced by an infected cell

	ы		1
ЬI		IC.	

We solve the above problem on the time interval [0, T], but assume that observations are known on the more narrow interval $[T_1, T_2] \subset [0, T]$.

Parameter Identification Problem (PIP). Let conditions (3) hold and set of parameters $\{s, \mu, k, \mu_1, \alpha, b, \delta, c, N\}$ in system (4) are known. Assume that the function $\eta(t)$ is unknown inside the domain Ω_T . Determine this function for $t \in \Omega_T$, assuming that the following function g(t) is known

$$u(t) = g(t), \ t \in [T_1, T_2], 0 < T_1 < T_2 < T.$$
(7)

The function g(t) represents observations of the function u(t) inside the observation interval $[T_1, T_2]$.

References

 P.K. Srivastava, M. Banerjee, and P. Chandra, Modeling the drug therapy for HIV infection, Journal of Biological Systems, 17(2), 213-223, 2009.