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In this project we will consider the finite element method (FEM) for the solution of

Helmholtz equation

△E +ω2µrεrE = iωµrJ,

lim
|x|→∞

E (x,ω) = 0.
(1)

in two and three dimensions.

Solution should be implemented and tested on different real-life models in

C++/PETSc in the existing software package WavES (waves24.com). The main goal

of the project is efficient implementation of Helmholtz equation (1) using finite el-

ement method, and testing of the obtained solver in the already existed software

package WavES. Visualization of the obtaind results will be done in Paraview/GID.

It is expected that application of the obtained software will be for fast detection of

small-size tumors using microwave imaging, see Fig. 1 (collaboration with Depart-

ment of Electrical Engineering at CTH, Chalmers).

1 Introduction

In this project we are interested in the developing of reliable algorithms for fast

implementation of Helmholtz equation (1) using finite element method.

We assume that G ⊂R
n,n = 1,2,3 is a bounded domain with a piecewise smooth

boundary ∂G and Ω ⊂ G is another bounded domain with a boundary ∂Ω . Our

model problem is time-harmonic Maxwell equations in a non-magnetic, inhomo-

geneous and isotropic material in absence of magnetic charges, governed by the

equations
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Fig. 1 Biomedical Imaging at the Department of Electrical Engineering at CTH, Chalmers. Left:

setup of Stroke Finder and right: microwave hyperthermia in cancer treatment. Below: breast can-

cer detection using microwave tomography.

∇×E =−µriωH in Ω , (2)

∇×H = εriωE + J in Ω . (3)

Here, E = E(x,ω) and H = H(x,ω) are electric and magnetic fields in frequency

domain, respectively. To get (2)-(3) we applied the Fourier transform in time to the

full system of Maxwell’s equations such that the time-harmonic fields A(x,ω) are

initialized in the form

A(x,ω) =

∫ ∞

0
A(x, t)eiωtdt. (4)

To solve system (2)-(3) uniquely we need Sommerfeld radiation condition at infinity

lim
|x|→∞

|x|
n−1

2

(

∂

∂ |x|
+ ik

)

A = 0, n = 2,3. (5)

where k is the wave number, see, for example, [4].

In system (2)-(3) functions εr and µr are the relative electric permittivity and the

relative magnetic permeability, respectively, defined as

εr(x) =
ε (x)

ε
(0)
r

,

µr(x) =
µ (x)

µ
(0)
r

,

(6)

where ε0
r ,µ

0
r are the dielectric permittivity and magnetic permeability of vacuum,

and ε (x) ,µ(x) are the dielectric permittivity and magnetic permeability of the ma-
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terial, respectively. In (3) the function J = J(x,ω) is electric current density and is

a known function.

Equations (2)-(3) are supplemented with Gauss’s law

∇ · (εrE) = 0,

∇ · (µrH) = 0,
(7)

and perfectly conducting (PEC) boundary conditions

n×E = 0, ∂Ω

n ·H = 0 ∂Ω .
(8)

Here, n denotes the outer outward normal on the boundary ∂Ω . We will assume that

µr = const > 0.0. Applying curl operator to the two equations of system (2)-(3) we

get following vector wave equations

∇×∇×E − k2E =−iωµrJ, x ∈ Ω ,

∇×∇×H − k2H = ∇× J, x ∈ Ω ,
(9)

where k2 = ω2µrεr. Next, applying ∇×∇× f = ∇(∇ · f )−∇ · (∇ f ) to the system

(9) and using (8) we obtain inhomogeneous Helmholtz equations

△E + k2E = iωµrJ,

△H + k2H =−∇× J.
(10)

Further we will consider only the first equation of system (10) since the second

one can be treated similarly.

2 Solution of the time-harmonic Maxwell’s equation for electric

field

We will consider the FEM numerical solution of the Helmholtz equation for the

electric field in the form

△E +ω2µrεrE = iωµrJ,

lim
|x|→∞

E (x,ω) = 0. (11)

Solution should be implemented in C++/PETSc.
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