
Questions for the course

Numerical Linear Algebra

TMA265/MMA600

Date: October 25, 2016, Time: 14.00 - 18.00

• Examiner: Larisa Beilina, tel. 070-4177036 or at work 031- 772 3567.
• Results: results of examination can be received at the latest at 10 November at the

student’s office at the Department of Mathematics, daily 12.30-13.00;
• Grades: to pass (get G) requires 15 points together with points from homework

assignments and computer exercises.
• Solutions will be announced at the end of exam (placed on the homepage of course).
• Aids: you can use written by hand notes on the one side of A4 sheet. Easy (not

advanced) calculators are also allowed to use.

Instructions

• Answer to the question carefully and clearly.
• Write on the one side of the sheet. Do not use a red pen. Do not answer more than

to the one question for one page.
• Sort your answers by the order of appearance of questions. Mark on the cover

answered questions. Count the number of sheets you have and fill the number of
every page on the cover.

Question 1

• 1. Find eigenvalues of a matrix A which is defined as

A =

[

5 7
7 2

]

Using information about eigenvalues of the matrix A check if the matrix A is
symmetric positive definite (s.p.d.) matrix or not.

(1p)

• 2. Check if the matrix A =





2 −1 0
−1 2 −1
0 −1 2





is positive definite or not.
(2p)

3. Compute ||A||∞, ||A||1 for matrix A defined as

A =





−1 3 −5
−3 2 −7
−1 5 10





Find conjugate transpose matrix A∗ to this matrix A. (1p)

Question 2
1



2

• 1. Describe procedure of partial and total pivoting in PLU factorization of the
matrix A = PLU . Explain need of pivoting procedure.

(2p)
• 2. Suppose that A is an invertible square matrix and u, v are vectors. Suppose

furthermore that 1+vTA−1u 6= 0. Then the Sherman-Morrison formula states that

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Here, uvT is the outer product of two vectors u and v.
Verify that the matrix Y = A−1− A−1uvTA−1

1+vTA−1u
(the right-hand side of the Sherman

- Morrison formula) is the inverse of a matrix X = A+ uvT (the inverse of the left
hand-side of the Sherman - Morrison formula) if and only if XY = Y X = I.

(2p)

Question 3

• 1. Let us consider the problem of solution of linear system of equations Ax = b.
Let x̃ be approximate solution of this equation such that δx = x̃ − x. Derive the

upper estimate for the relative change ||δx||
||x̃|| in terms of the condition number k(A)

of the matrix A and relative change of the data ||δA||
||A|| of this matrix.

(2p)
• 2. Present main steps in equilibration technique to improve accuracy of a solution

of linear system Ax = b.
(1p)

Question 4

• 1. Let A = QR be the QR decomposition of the m-by-n matrix A, where m ≥ n.
Prove that if A has a full column rank, the solution of minx ‖Ax−b‖2 is x = R−1QT b.

(2p)
• 2. Let A = UΣV T be the SVD of the m-by-n matrix A, where m ≥ n. Prove that

if A has a full column rank, the solution of minx ‖Ax− b‖2 is x = V Σ−1UT b.
(2p)

Question 5

• Transform the given matrix A to the upper Hessenberg matrix using Householder
transformation.

A =





0 −1 1
4 2 0
3 4 0





(2p)
• Transform the given matrix A to the upper Hessenberg matrix using Given’s rota-

tion

A =





0 −1 1
4 2 0
3 4 0





(1p)
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Question 6

• 1. Let A− λB be regular matrix pencil. Prove that if B is nonsingular, all eigen-
values of A− λB are finite and the same as the eigenvalues of AB−1 or B−1A.

(1p)
• 2. Let A − λB be regular matrix pencil. Prove that if A is nonsingular, the

eigenvalues of A − λB are the same as the reciprocals of the eigenvalues of A−1B
or BA−1, where a zero eigenvalue of A−1B corresponds to an infinite eigenvalue of
A− λB.

(2p)

Question 7

• 1. Illustrate the process of bidiagonal reduction on a 4-by-4 example with a matrix

given by A=









x x x x
x x x x
x x x x
x x x x









.

(2p)
• 2. Present Jacobi method for the iterative solution of linear system of equations
Ax = b.

(2p)



4

Numerical Linear Algebra

TMA265/MMA600
Solutions to the examination at 3 January 2016

Question 1

1. We should solve characteristic equation det(A− λI) = 0 :

det

[

5− λ 7
7 2− λ

]

= 0.

Solving above equation for λ we get eigenvalues λ1 = (7 +
√
205)/2, λ2 = (7−

√
205)/2

which are solutions to the equation λ2 − 7λ − 39 = 0. Since λ1 > 0 and λ2 < 0 then the
matrix A is not symmetric positive definite.

2. The matrix

A =





2 −1 0
−1 2 −1
0 −1 2





is positive definite since for any non-zero vector

x =





x1

x2

x3



 ,

we have

xTAx =
[

x1 x2 x3

]





2 −1 0
−1 2 −1
0 −1 2









x1

x2

x3





=
[

(2x1 − x2) (−x1 + 2x2 − x3) (−x2 + 2x3)
]





x1

x2

x3





= 2x1
2 − 2x1x2 + 2x2

2 − 2x2x3 + 2x3
2

= x1
2 + (x1 − x2)

2 + (x2 − x3)
2 + x3

2

which is a sum of squares and therefore nonnegative; in fact, each squared summa can be
zero only when x1 = x2 = x3 = 0, so A is indeed positive-definite.

3. We use definition of A∗:

A∗ = AT

and thus

A∗ =





−1 −3 −1
3 2 5
−5 −7 10



 .

||A||1 = max(| − 1|+ | − 3|+ | − 1|, 3 + 2 + 5, | − 5|+ | − 7|+ 10) = max(5, 10, 22) = 22
(maximum absolute column sum),
||A||∞ = max(| − 1| + 3 + | − 5|, | − 3| + 2 + | − 7|, | − 1| + 5 + 10) = max(9, 12, 16) = 16
(maximum absolute row sum).

Question 2
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1. See Lectures 3,4 and examples therein as well as the course book.
2.
We first verify that the right hand side (Y) satisfies XY = I.

XY = (A+ uvT )

(

A−1 − A−1uvTA−1

1 + vTA−1u

)

= AA−1 + uvTA−1 − AA−1uvTA−1 + uvTA−1uvTA−1

1 + vTA−1u

= I + uvTA−1 − uvTA−1 + uvTA−1uvTA−1

1 + vTA−1u

= I + uvTA−1 − u(1 + vTA−1u)vTA−1

1 + vTA−1u
.

Note that vTA−1u is a scalar, so (1 + vTA−1u) can be factored out, leading to:

XY = I + uvTA−1 − uvTA−1 = I.

In the same way, it is verified that

Y X =

(

A−1 − A−1uvTA−1

1 + vTA−1u

)

(A+ uvT ) = I.

Question 3

1. See Lectures 2,3 and the course book.

• Consider linear system Ax = b ,
• x̂ such that x̂ = δx+ x is its computed solution.
• Suppose (A+ δA)x̂ = b+ δb.
• Goal: to bound the norm of δx ≡ x̂− x .
• Subtract the equalities and solve them for δx
• Rearranging terms we get:

δx = A−1(−δAx̂+ δb)

Taking norms and triangle inequality leads us to

‖δx‖ ≤ ‖A−1‖(‖δA‖ · ‖x̂‖+ ‖δb‖)
Rearranging inequality gives us

‖δx‖
‖x̂‖ ≤ ‖A−1‖ · ‖A‖ · (‖δA‖‖A‖ +

‖δb‖
‖A‖ · ‖x̂‖)

where k(A) = ‖A−1‖ · ‖A‖ is the condition number of the matrix A
2. See Lecture 5 and the course book.
Equilibration technique: choose an appropriate diagonal matrix D and solve DAx = Db

instead of Ax = b. D is chosen to try to make the condition number of DA smaller than
that of A.

Question 4

1. See Lecture 7 (you could present any of three methods for deriving of the solution of
linear least squares problem via QR decomposition) as well as the course book.

2. See Lecture 7 and the course book Theorem 3.3, part 5.
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‖Ax− b‖22 = ||UΣV Tx− b||22. Since A has full rank, so does Σ, and thus Σ is invertible.
Now let [U, Ũ ] be square and orthogonal as above so

||UΣV Tx− b||22 =

∥

∥

∥

∥

[

UT

ŨT

]

(UΣV Tx− b)

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

[

ΣV Tx− UT b

−ŨT b

]∥

∥

∥

∥

2

2

= ||ΣV Tx− UT b||22 + ‖ŨT b‖22.

This is minimized by making the first term zero, i.e., x = V Σ−1UT b.

Question 5

• 1. To get upper Hessenberg matrix we need to zero the (3, 1) entry. Apply Haush-
older transformation:

u = x+ αe1,

where x = (4, 3)T , α = −sign(4) · ||x||, ‖x‖ =
√
42 + 32 = 5, thenα = −5.

We can construct u = x+αe1 = (4, 3)T −5(1, 0)T = (−1, 3)T . Next, we construct

v =
u

‖u‖ .

with ‖u‖ =
√

(−1)2 + 32 =
√
10. Therefore v = (− 1√

10
, 3√

10
)T , and then

P ′ = I − 2/10

(

−1
3

)

(

−1 3
)

= I − 2/10

(

1 −3
−3 9

)

=

(

0.8 0.6
0.6 −0.8

)

.

Then the matrix of the Householder transformation is

P =





1 0 0
0 0.8 0.6
0 0.6 −0.8





Now, we can get the upper Hessenberg matrix as

PA =





0 −1 1
5 4 0
0 −2 0



 .

• 2. To obtain the upper Hessenberg matrix of the matrix

A =





0 −1 1
4 2 0
3 4 0





using Given’s rotation we have to zero out (3, 1) element of the matrix A.
We construct Given’s matrix G in order to zero out (3, 1) element of the matrix

A.
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To do that we compute c, s from the known a = 0 and b = 1 as
[

c −s
s c

]

·
[

a
b

]

=

[

r
0

]

to get formulas:

r =
√
a2 + b2 =

√
42 + 32 = 5,

c =
a

r
= 4/5 = 0.8,

s =
−b

r
= −3/5 = −0.6.

The Given’s matrix will be

G =





1 0 0
0 c −s
0 s c





or

G =





1 0 0
0 0.8 0.6
0 −0.6 0.8





Then the upper Hessenberg matrix will be

G ·A =





0 −1 1
5 4 0
0 2 0





Question 6

1. Proof.
If B is nonsingular and λ′ is an eigenvalue, then 0 = det(A−λ′B) = det(AB−1−λ′I) =

det(B−1A− λ′I) so λ′ is also an eigenvalue of AB−1 and B−1A.
2. Proof.
If A is nonsingular, det(A− λB) = 0 and det(A(I − λA−1B) = 0 if and only if det(I −

λA−1B) = 0 or det(I − λBA−1) = 0 . This equality can hold only if λ 6= 0 and 1/λ is an
eigenvalue of A−1B and BA−1.

Question 7

• 1. See Lecture 11 and the course book. Here is a 4-by-4 example of bidiagonal
reduction, which illustrates the general pattern:

1. Choose Q1 so

Q1A =







x x x x

0 x x x

0 x x x

0 x x x






andV1 soA1 ≡ Q1AV1 =







x x 0 0

0 x x x

0 x x x

0 x x x






.

Q1 is a Householder reflection, and V1 is a Householder reflection that leaves the
first column of Q1A unchanged.

2. Choose Q2 so

Q2A1 =







x x 0 0

0 x x x

0 0 x x

0 0 x x






andV2 soA2 ≡ Q2A1V2 =







x x 0 0

0 x x 0

0 0 x x

0 0 x x






.
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Q2 is a Householder reflection that leaves the first row of A1 unchanged. V2 is a
Householder reflection that leaves the first two columns of Q2A1 unchanged.

3. Choose Q3 so

Q3A2 =







x x 0 0

0 x x 0

0 0 x x

0 0 0 x






andV3 = I soA3 = Q3A2.

Q3 is a Householder reflection that leaves the first two rows of A2 unchanged. ⋄
In general, if A is n-by-n, then we get orthogonal matrices Q = Qn−1 · · ·Q1 and

V = V1 · · ·Vn−2 such that QAV = A′ is upper bidiagonal.
Note that A′TA′ = V TATQTQAV = V TATAV , so A′TA′ has the same eigenval-

ues as ATA; i.e., A′ has the same singular values as A.
• 2. See Lecture 11 and the course book.


