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Course in Numerical Linear Algebra
Purpose of the course

Solve Linear systems of equations using Gaussian elimination
with different pivoting strategies and blocking algorithms

Study and use QR decomposition and SVD decomposition

Solve eigenvalue problems based on transformation techniques
for symmetric and non-symmetric matrices

Use computer algorithms, programs and software packages
(BLAS/LAPACK, MATLAB, PETSC)

Solve real physical problems by modelling these problems via
NLA

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 1



Course in Numerical Linear Algebra
Lecture 1

Notions from linear algebra

Linear systems

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 1



Course in Numerical Linear Algebra
Lecture 1

Notions from linear algebra

Linear systems

Matrices (Identity matrix, triangular, singular, symmetric,
positive definite, conjugate transpose, rank, norm )

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 1



Course in Numerical Linear Algebra
Lecture 1

Notions from linear algebra

Linear systems

Matrices (Identity matrix, triangular, singular, symmetric,
positive definite, conjugate transpose, rank, norm )

Matrix operations, inverse, transposition, scalar (inner)
product, outer product

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 1



Course in Numerical Linear Algebra
Lecture 1

Notions from linear algebra

Linear systems

Matrices (Identity matrix, triangular, singular, symmetric,
positive definite, conjugate transpose, rank, norm )

Matrix operations, inverse, transposition, scalar (inner)
product, outer product

Gaussian elimination

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 1



Course in Numerical Linear Algebra
Lecture 1

Notions from linear algebra

Linear systems

Matrices (Identity matrix, triangular, singular, symmetric,
positive definite, conjugate transpose, rank, norm )

Matrix operations, inverse, transposition, scalar (inner)
product, outer product

Gaussian elimination

Eigenvalues

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 1



Course in Numerical Linear Algebra
Lecture 1

Notions from linear algebra

Linear systems

Matrices (Identity matrix, triangular, singular, symmetric,
positive definite, conjugate transpose, rank, norm )

Matrix operations, inverse, transposition, scalar (inner)
product, outer product

Gaussian elimination

Eigenvalues

Norms

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 1



Course in Numerical Linear Algebra
Lecture 1

Notions from linear algebra

Linear systems

Matrices (Identity matrix, triangular, singular, symmetric,
positive definite, conjugate transpose, rank, norm )

Matrix operations, inverse, transposition, scalar (inner)
product, outer product

Gaussian elimination

Eigenvalues

Norms

LU-factorization, pivoting, row echelon form
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Sources

Wikipedia

Course Literature
James W. Demmel: Applied Numerical Linear Algebra, SIAM
1997.

Lapack
http://netlib.org/lapack/

PETSC http://www.mcs.anl.gov/petsc/
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PETSc: example of Makefile

PETSC_DIR = /chalmers/sw/sup64/petsc-3.0.0-p12
PETSC_ARCH = /chalmers/sw/sup64/petsc-3.0.0-p12
include $PETSC_ARCH/conf/base
CC = gcc
CXX = g++
CXXFLAGS = -O3 -xHOST
BOPT = g++
MPI_INCLUDE = $PETSC_ARCH/include/mpiuni
CPPFLAGS += -I.
CPPFLAGS += -fpermissive
example : Example.o chkopts $CXX -o example Example.o
$(PETSC_LIB)
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Linear systems

A linear system is a mathematical model of a system which uses
definition of a linear operator. Linear systems have important
applications in automatic control theory, signal processing, and
telecommunications. For example, the propagation medium for
wireless communication systems can often be modeled by linear
systems.

A general deterministic system can be described by operator, H,
that maps an input, x(t), as a function of t to an output, y(t), a
type of black box description. Linear systems satisfy the properties
of superposition and scaling or homogeneity. Given two valid inputs
x1(t), x2(t) as well as their respective outputs

y1(t) = H {x1(t)} ; y2(t) = H {x2(t)}

a linear system must satisfy to the equation

αy1(t) + βy2(t) = H {αx1(t) + βx2(t)}
for any scalar values of α and β.
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Example of application of linear systems: image compression

using SVD

Definition SVD Let A be an arbitrary m-by-n matrix with m ≥ n. Then
we can write A = UΣV T , where U is m-by-n and satisfies UTU = I , V
is n-by-n and satisfies V TV = I , and Σ = diag(σ1, . . . , σn), where
σ1 ≥ · · · ≥ σn ≥ 0. The columns u1, . . . , un of U are called left singular

vectors. The columns v1, . . . , vn of V are called right singular vectors.
The σi are called singular values. (If m < n, the SVD is defined by
considering AT .)
Theorem

Write V = [υ1, υ2, . . . , υn] and U = [u1, u2, . . . , un], so
A = UΣV T =

∑n

i=1
σiuiυ

T
i (a sum of rank-1 matrices). Then a matrix

of rank k < n closest to A (measured with || · ||2 is Ak =
∑k

i=1
σiuiυ

T
i

and ||A− Ak ||2 = σk+1. We may also write Ak = UΣkV
T where

Σk = diag(σ1, . . . , σk , 0, . . . , 0).
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Example of application of linear systems: image compression

using SVD
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a) Original image b) Rank k=20 approximation
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Example of application of linear systems: image compression

using SVD in Matlab

See path for other pictures:
/matlab-2012b/toolbox/matlab/demos
load clown.mat;
Size(X) = m × n = 320 × 200 pixels.
[U,S,V] = svd(X);
colormap(map);
k=20;
image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)’);
Now: size(U)= m × k , size(V)= n × k .
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Example of application of linear systems: image compression
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Example of application of linear systems: image compression

using SVD for arbitrary image

To get image on the previous slide, I took picture in jpg-format and
loaded it in matlab like that:
A = imread(’autumn.jpg’);
You can not simply apply SVD to A: svd(A) Undefined function
’svd’ for input arguments of type ’uint8’.
Apply type "double” to A: DA = double(A), and then perform
[U,S,V] = svd(DA);
colormap(’gray’);
k=20;
image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)’);
Now: size(U)= m × k , size(V)= n × k .
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Example of application of linear systems: image deblurring

Original Image Blurred Image

Figure: left: exact matrix X, right: approximated matrix B
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The blurring model

Consider a grayscale image

X: m × n matrix representing the exact image

B: m × n matrix representing the blurred image
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The blurring model

Consider a grayscale image

X: m × n matrix representing the exact image

B: m × n matrix representing the blurred image

Assume linear blurring.

x = vec(X) =







x1

...
xn






∈ R

N , b = vec(B) =







b1

...
bn






∈ R

N

A N × N matrix, with N = m · n

Ax = b

Knowing X and A it is straightforward to compute the blurred
image.
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Motion blur

Motion Blurred Image PSF
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Out-of-focus blur

Blurred Image PSF
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Gaussian blur

Gaussian Blurred Image PSF
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Image deblurring: solution of an inverse problem

Let H be the Hilbert space H1 and let Ω ⊂ R
m,m = 2, 3, be a convex

bounded domain. Our goal is to solve a Fredholm integral equation of
the first kind for x ∈ Ω

∫

Ω

K (x − y)z(x)dx = u(y), (1)

where u(y) ∈ L2(Ω̄), z(x) ∈ H, K (x − y) ∈ C k
(

Ω
)

, k ≥ 0 be the kernel
of the integral equation.
Let us rewrite (1) in an operator form as

A(z) = u (2)

with an operator A : H → L2(Ω̄) defined as

A(z) :=

∫

Ω

K (x − y)z(x)dx . (3)
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Ill-posed problem.

Let the function z(x) ∈ H1 of the equation (1) be unknown in the
domain Ω. Determine the function z(x) for x ∈ Ω assuming the functions
K (x − y) ∈ C k

(

Ω
)

, k ≥ 0 and u(x) ∈ L2(Ω) in (1) are known.
Let δ > 0 be the error in the right-hand side of the equation (1):

A (z∗) = u∗, ‖u − u∗‖L2(σ)
≤ δ. (4)

where u∗ is the exact right-hand side corresponding to the exact solution
z∗.
To find the approximate solution of the equation (1) we minimize the
functional

Mα (z) = ‖Az − u‖2

L2(Ω) + α‖z‖2

H1(Ω), (5)

Mα : H1 → R,

where α = α (δ) > 0 is the small regularization parameter.
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We consider now more general form of the Tikhonov functional (5). Let
W1,W2,Q be three Hilbert spaces, Q ⊆ W1 as a set, the norm in Q is
stronger than the norm in W1 and Q = W1, where the closure is
understood in the norm of W1. We denote scalar products and norms in
these spaces as

(·, ·) , ‖·‖ for W1,

(·, ·)
2
, ‖·‖

2
for W2

and [·, ·] , [·] for Q.

Let A : W1 → W2 be a bounded linear operator. Our goal is to find the
function z(x) ∈ Q which minimizes the Tikhonov functional

Eα (z) : Q → R, (6)

Eα (z) =
1

2
‖Az − u‖2

2
+

α

2
[z − z0]

2
, u ∈ W2; z , z0 ∈ Q, (7)

where α ∈ (0, 1) is the regularization parameter. To do that we search
for a stationary point of the above functional with respect to z satisfying
∀b ∈ Q

E ′

α(z)(b) = 0. (8)

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 1



The following lemma is well known for the case W1 = W2 = L2.
Lemma 1. Let A : L2 → L2 be a bounded linear operator. Then the
Fréchet derivative of the functional (5) is

E ′

α (z) (b) = (A∗Az − A∗u, b) + α [z − z0, b] , ∀b ∈ Q. (9)

In particular, for the integral operator (1) we have

E ′

α (z) (b) =

∫

Ω

b (s)





∫

Ω

z (y)





∫

Ω

K (x − y)K (x − s)dx



 dy

−
∫

Ω

K (x − s)u (x) dxds

(10)

+α [z − z0, b] , ∀b ∈ Q.
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Lemma 2 is also well known, since A : W1 → W2 is a bounded linear
operator. We formulate this lemma only for our specific case.
Lemma 2. Let the operator A : W1 → W2 satisfies conditions of Lemma
1. Then the functional Eα (z) is strongly convex on the space Q with the
convexity parameter κ such that

(E ′

α (x)− E ′

α (z) , x − z) ≥ κ[x − z ]2, ∀x , z ∈ Q. (11)
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Similarly, the functional Mα(z) is also strongly convex on the
Sobolev space H1:

(

M ′

α
(x)−M ′

α
(z) , x − z

)

H1
≥ κ||x − z ||2H1

, ∀x , z ∈ H1, (12)

Find z via any gradient-like method. For example, perform usual
gradient update

zk+1 = zk + βE ′

α

(

zk
)

(b) . (13)

until ||zk+1 − zk || converges.
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Identity matrix

The identity matrix or unit matrix of size n is the n × n square
matrix with ones on the main diagonal and zeros elsewhere. It is
denoted by In, or simply by I .

I1 =
[

1
]

, I2 =

[

1 0
0 1

]

, · · · , In =











1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1











When A has size m×n, it is a property of matrix multiplication that
ImA = AIn = A.
Using the notation that is sometimes used to concisely describe
diagonal matrices, we can write:
In = diag(1, 1, ..., 1).
It can also be written using the Kronecker delta notation:
(In)ij = δij .
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Triangular matrix

A square matrix is called lower triangular if all the entries above the
main diagonal are zero.

L =

















l1,1 0
l2,1 l2,2

l3,1 l3,2
. . .

...
...

. . .
. . .

ln,1 ln,2 . . . ln,n−1 ln,n

















A square matrix is called upper triangular if all the entries below the
main diagonal are zero.

U =

















u1,1 u1,2 u1,3 . . . u1,n

u2,2 u2,3 . . . u2,n

. . .
. . .

...
. . . un−1,n

0 un,n
















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Triangular matrix

A triangular matrix is one that is either lower triangular or upper
triangular.

A matrix that is both upper and lower triangular is a diagonal
matrix.

Dn =











d1,1 0 · · · 0
0 d2,2 · · · 0
...

...
. . .

...
0 0 · · · dn,n










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Singular matrix

A square matrix that does not have a matrix inverse. A matrix is singular
if its determinant is 0. For example, there are 10 2 × 2 singular
(0, 1)-matrices:

[

0 0
0 0

] [

0 0
0 1

] [

0 0
1 0

] [

0 0
1 1

] [

0 1
0 0

]

[

0 1
0 1

] [

1 0
0 0

] [

1 0
1 0

] [

1 1
0 0

] [

1 1
1 1

]
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Symmetric and positive definite matrix

A symmetric matrix is a square matrix that is equal to its transpose.
Let A be a symmetric matrix. Then:

A = AT .

If the entries of matrix A are written as A = (aij), then the
symmetric matrix A is such that aij = aji .

An n × n real matrix M is positive definite if zTMz > 0 for all
non-zero vectors z with real entries (z ∈ R

n), where zT denotes the
transpose of z .

An n × n complex matrix M is positive definite if Re(z∗Mz) > 0 for
all non-zero complex vectors z , where z∗ denotes the conjugate
transpose of z and Re(c) is the real part of a complex number c .
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Examples

The following matrix is symmetric:





1 7 3
7 4 −5
3 −5 6



 .

Every diagonal matrix is symmetric, since all off-diagonal entries are
zero.

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 1



Examples

The nonnegative matrix

M0 =

[

1 0
0 1

]

is positive definite.

For a vector with entries

z =

[

z0
z1

]

the quadratic form is

[

z0 z1
]

[

1 0
0 1

] [

z0
z1

]

=
[

z0 · 1 + z1 · 0 z0 · 0 + z1 · 1
]

[

z0
z1

]

= z2

0
+z2

1
;

when the entries z0, z1 are real and at least one of them nonzero,
this is positive.
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A matrix in which some elements are negative may still be
positive-definite. An example is given by

M1 =





2 −1 0
−1 2 −1
0 −1 2



 .

It is positive definite since for any non-zero vector

x =





x1

x2

x3



 ,

we have
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xTM1x =
[

x1 x2 x3

]





2 −1 0
−1 2 −1
0 −1 2









x1

x2

x3





=
[

(2x1 − x2) (−x1 + 2x2 − x3) (−x2 + 2x3)
]





x1

x2

x3





= 2x1
2 − 2x1x2 + 2x2

2 − 2x2x3 + 2x3
2

= x1
2 + (x1 − x2)

2 + (x2 − x3)
2 + x3

2

which is a sum of squares and therefore nonnegative; in fact, each
squared summa can be zero only when x1 = x2 = x3 = 0, so M1 is
indeed positive-definite.
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Conjugate transpose matrix

The conjugate transpose, Hermitian transpose, Hermitian conjugate, or
adjoint matrix of an m-by-n matrix A with complex entries is the n-by-m
matrix A∗ obtained from A by taking the transpose and then taking the
complex conjugate of each entry (i.e., negating their imaginary parts but
not their real parts). The conjugate transpose is formally defined by

(A∗)ij = Aji

where the subscripts denote the i , j-th entry, and the overbar denotes a
scalar complex conjugate. (The complex conjugate of a+ bi , where a

and b are reals, is a− bi .)
This definition can also be written as

A∗ = (A)T = AT

where AT denotes the transpose and A, denotes the matrix with complex
conjugated entries.
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The conjugate transpose of a matrix A can be denoted by any of these
symbols:

A∗
or AH,

commonly used in linear algebra.
Example
If

A =

[

3 + i 5 −2i
2 − 2i i −7 − 13i

]

then

A∗ =





3 − i 2 + 2i
5 −i

2i −7 + 13i




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Basic remarks

A square matrix A with entries aij is called Hermitian or self-adjoint
if A = A∗, i.e., aij = aji .

normal if A∗A = AA∗.

unitary if A∗ = A−1. a unitary matrix is a (square) n × n complex
matrix A satisfying the condition A∗A = AA∗ = In, where In is the
identity matrix in n dimensions.

Even if A is not square, the two matrices A∗A and AA∗ are both
Hermitian and in fact positive semi-definite matrices.

Finding the conjugate transpose of a matrix A with real entries
reduces to finding the transpose of A, as the conjugate of a real
number is the number itself.
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Row echelon form

In linear algebra a matrix is in row echelon form if

All nonzero rows (rows with at least one nonzero element) are
above any rows of all zeroes [All zero rows, if any, belong at the
bottom of the matrix]

The leading coefficient (the first nonzero number from the left, also
called the pivot) of a nonzero row is always strictly to the right of
the leading coefficient of the row above it.

All entries in a column below a leading entry are zeroes (implied by
the first two criteria).

This is an example of 3 × 4 matrix in row echelon form:





1 a1 a2 a3

0 2 a4 a5

0 0 −1 a6




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Row echelon form

A matrix is in reduced row echelon form (also called row canonical form)
if it satisfies the additional condition: Every leading coefficient is 1 and is
the only nonzero entry in its column, like in this example:





1 0 0 b1

0 1 0 b2

0 0 1 b3





Note that this does not always mean that the left of the matrix will be an
identity matrix. For example, the following matrix is also in reduced
row-echelon form:





1 0 1/2 0 b1

0 1 −1/3 0 b2

0 0 0 1 b3




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Rank

Column rank of a matrix A is the maximum number of linearly
independent column vectors of A. The row rank of a matrix A is the
maximum number of linearly independent row vectors of A.
Equivalently, the column rank of A is the dimension of the column
space of A, while the row rank of A is the dimension of the row
space of A.

A result of fundamental importance in linear algebra is that the
column rank and the row rank are always equal. It is commonly
denoted by either rk(A) or rank A. Since the column vectors of A
are the row vectors of the transpose of A (denoted here by AT ),
column rank of A equals row rank of A is equivalent to saying that
the rank of a matrix is equal to the rank of its transpose, i.e.
rk(A) = rk(AT ).

The rank of an m × n matrix cannot be greater than m nor n. A
matrix that has a rank as large as possible is said to have full rank;
otherwise, the matrix is rank deficient.
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Cofactor

In linear algebra, the cofactor (sometimes called adjunct, see below)
describes a particular construction that is useful for calculating both the
determinant and inverse of square matrices. Specifically the cofactor of
the (i , j) entry of a matrix, also known as the (i , j) cofactor of that
matrix, is the signed minor of that entry.
Informal approach to minors and cofactors

Finding the minors of a matrix A is a multi-step process:

Choose an entry aij from the matrix.

Cross out the entries that lie in the corresponding row i and column
j.

Rewrite the matrix without the marked entries.

Obtain the determinant Mij of this new matrix.

If i + j is an even number, the cofactor Cij of aij coincides with its minor:
Cij = Mij .
Otherwise, it is equal to the additive inverse of its minor: Cij = −Mij .

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 1



Formal definition of cofactor

If A is a square matrix, then the minor of its entry aij , also known
as the (i , j) minor of A, is denoted by Mij and is defined to be the
determinant of the submatrix obtained by removing from A its i-th
row and j-th column.
It follows:Cij = (−1)i+jMij and Cij is called the cofactor of aij .
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Example

Given the matrix

B =





b11 b12 b13

b21 b22 b23

b31 b32 b33





suppose we wish to find the cofactor C23. The minor M23 is the
determinant of the above matrix with row 2 and column 3 removed.

M23 =

∣

∣

∣

∣

∣

∣

b11 b12 �

� � �

b31 b32 �

∣

∣

∣

∣

∣

∣

yields M23 =

∣

∣

∣

∣

b11 b12

b31 b32

∣

∣

∣

∣

= b11b32 − b31b12

Using the given definition it follows that

C23 = (−1)2+3(M23)

C23 = (−1)5(b11b32 − b31b12)

C23 = b31b12 − b11b32.
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Invertible matrix

In linear algebra an n-by-n (square) matrix A is called invertible
(some authors use nonsingular or nondegenerate) if there exists an
n-by-n matrix B such that AB = BA = In, where In denotes the
n-by-n identity matrix and the multiplication used is ordinary matrix
multiplication. If this is the case, then the matrix B is uniquely
determined by A and is called the inverse of A, denoted by A−1. It
follows from the theory of matrices that if AB = I for finite square
matrices A and B , then also BA = I.

Non-square matrices (m-by-n matrices which do not have an
inverse). However, in some cases such a matrix may have a left
inverse or right inverse. If A is m-by-n and the rank of A is equal to
n, then A has a left inverse: an n-by-m matrix B such that BA = I .
If A has rank m, then it has a right inverse: an n-by-m matrix B

such that AB = I .

A square matrix that is not invertible is called singular or degenerate.
A square matrix is singular if and only if its determinant is 0.
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Methods of matrix inversion

Gaussian elimination

Gauss-Jordan elimination is an algorithm that can be used to
determine whether a given matrix is invertible and to find the
inverse. An alternative is the LU decomposition which generates
upper and lower triangular matrices which are easier to invert. For
special purposes, it may be convenient to invert matrices by treating
m·n-by-m·n matrices as m-by-m matrices of n-by-n matrices, and
applying one or another formula recursively (other sized matrices
can be padded out with dummy rows and columns). For other
purposes, a variant of Newton’s method may be convenient.
Newton’s method is particularly useful when dealing with families of
related matrices: sometimes a good starting point for refining an
approximation for the new inverse can be the already obtained
inverse of a previous matrix that nearly matches the current matrix.
Newton’s method is also useful for "touch up" corrections to the
Gauss-Jordan algorithm which has been contaminated by small
errors due to imperfect computer arithmetic.
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Eigendecomposition

Let A be a square n × n matrix. Let q1...qk be an eigenvector basis, i.e.
an indexed set of k linearly independent eigenvectors, where k is the
dimension of the space spanned by the eigenvectors of A. If k = n, then
A can be written

A = QUQ−1

where Q is the square n × n matrix whose i-th column is the basis
eigenvector qi of A, and U is the diagonal matrix whose diagonal
elements are the corresponding eigenvalues, i.e. Uii = λi .
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Properties

Let A be an n × n matrix with eigenvalues λi , i = 1, 2, . . . , n. Then

Trace of A

tr(A) =
∑

λi = λ1 + λ2 + · · ·+ λn.

Determinant of A

det(A) =
∏

λi = λ1λ2 · · ·λn.

Eigenvalues of Ak are λk
1
, . . . , λk

n .
These first three results follow by putting the matrix in
upper-triangular form, in which case the eigenvalues are on the
diagonal and the trace and determinant are respectively the
sum and product of the diagonal.

If A = AH , i.e., A is Hermitian, every eigenvalue is real.

Every eigenvalue of a Unitary matrix has absolute value
|λ| = 1.
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Example

We take a 2 × 2 matrix

A =

[

1 0
1 3

]

and want it to be decomposed into a diagonal matrix. First, we
multiply to a non-singular matrix

B =

[

a b

c d

]

, [a, b, c , d ] ∈ R.

Then
[

a b

c d

]

−1

[

1 0
1 3

] [

a b

c d

]

=

[

x 0
0 y

]

,

for some real diagonal matrix
[

x 0
0 y

]

.

Shifting B to the right hand side:
[

1 0
1 3

] [

a b

c d

]

=

[

a b

c d

] [

x 0
0 y

]
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The above equation can be decomposed into 2 simultaneous
equations:






















[

1 0

1 3

][

a

c

]

=

[

ax

cx

]

[

1 0

1 3

][

b

d

]

=

[

by

dy

]

Factoring out the eigenvalues x and y :






















[

1 0

1 3

][

a

c

]

= x

[

a

c

]

[

1 0

1 3

][

b

d

]

= y

[

b

d

]

Letting

−→a =

[

a

c

]

,
−→
b =

[

b

d

]

,

this gives us two vector equations:
{

A−→a = x−→a
A
−→
b = y

−→
b
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And can be represented by a single vector equation involving 2
solutions as eigenvalues:
Au = λu
where λ represents the two eigenvalues x and y, u represents the

vectors −→a and
−→
b .

Shifting λu to the left hand side and factorizing u out
(A − λI)u = 0
Since B is non-singular, it is essential that u is non-zero. Therefore,
(A − λI) = 0

Considering the determinant of (A − λI),
[

1 − λ 0
1 3 − λ

]

=0

Thus
(1 − λ)(3 − λ) = 0
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Giving us the solutions of the eigenvalues for the matrix A as λ = 1
or λ = 3, and the resulting diagonal matrix from the
eigendecomposition of A is thus
[

1 0
0 3

]

.

Putting the solutions back into the above simultaneous equations






















[

1 0

1 3

][

a

c

]

= 1

[

a

c

]

[

1 0

1 3

][

b

d

]

= 3

[

b

d

]

Solving the equations, we have a = −2c , a ∈ R and b = 0, d ∈ R

Thus the matrix B required for the eigendecomposition of A is
[

−2c 0
c d

]

, [c, d]∈ R.i .e. :
[

−2c 0
c d

]

−1

[

1 0
1 3

] [

−2c 0
c d

]

=

[

1 0
0 3

]

, [c , d ] ∈ R
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Methods of matrix inversion

Eigendecomposition

If matrix A can be eigendecomposed and if none of its eigenvalues
are zero, then A is nonsingular and its inverse is given by
A−1 = QΛ−1Q−1.

Furthermore, because U is a diagonal matrix, its inverse is easy to
calculate:

[

Λ−1
]

ii
= 1

λi
.

Cholesky decomposition

If matrix A is positive definite, then its inverse can be obtained as
A−1 = (L∗)−1L−1 , where L is the lower triangular Cholesky
decomposition of A.
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Methods of matrix inversion

Analytic solution

Writing the transpose of the matrix of cofactors, known as an
adjugate matrix, can also be an efficient way to calculate the inverse
of small matrices, but this recursive method is inefficient for large
matrices. To determine the inverse, we calculate a matrix of
cofactors:

A−1 =
1
∣

∣A
∣

∣

(

CT
)

ij
=

1
∣

∣A
∣

∣

(Cji ) =
1
∣

∣A
∣

∣











C11 C21 · · · Cn1

C12 C22 · · · Cn2

...
...

. . .
...

C1n C2n · · · Cnn











where |A| is the determinant of A,Cij is the matrix of cofactors, and
CT represents the matrix transpose.
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Inversion of 2 × 2 matrices

The cofactor equation listed above yields the following result for
2 × 2 matrices. Inversion of these matrices can be done easily as
follows:

A
−1 =

[

a b

c d

]

−1

=
1

det(A)

[

d −b

−c a

]

=
1

ad − bc

[

d −b

−c a

]

.

This is possible because 1/(ad − bc) is the reciprocal of the
determinant of the matrix in question, and the same strategy could
be used for other matrix sizes.
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Inversion of 3 × 3 matrices

A computationally efficient 3 × 3 matrix inversion is given by

A
−1 =





a b c

d e f

g h k





−1

=
1

det(A)





A B C

D E F

G H K





T

=
1

det(A)





A D G

B E H

C F K





where the determinant of A can be computed by applying the rule
of Sarrus as follows:
det(A) = a(ek − fh)− b(kd − fg) + c(dh − eg).
If the determinant is non-zero, the matrix is invertible, with the
elements of the above matrix on the right side given by

A = (ek − fh) D = (ch − bk) G = (bf − ce)
B = (fg − dk) E = (ak − cg) H = (cd − af )
C = (dh − eg) F = (gb − ah) K = (ae − bd).
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Eigenvalues and eigenvectors

The vector x is an eigenvector of the matrix A with eigenvalue λ
(lambda) if the following equation holds: Ax = λx.

If the eigenvalue λ > 1, x is stretched by this factor. If λ = 1, the
vector x is not affected at all by multiplication by A. If 0 < λ < 1,
x is shrunk (or compressed). The case λ = 0 means that x shrinks
to a point (represented by the origin), meaning that x is in the
kernel of the linear map given by A. If λ < 0 then x flips and points
in the opposite direction as well as being scaled by a factor equal to
the absolute value of λ.

As a special case, the identity matrix I is the matrix that leaves all
vectors unchanged: Ix = 1x = x.,

Every non-zero vector x is an eigenvector of the identity matrix with
eigenvalue λ = 1.
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Eigenvalues and eigenvectors

The eigenvalues of A are precisely the solutions λ to the equation
det(A− λI ) = 0.

Here det is the determinant of the matrix formed by A− λI . This
equation is called the characteristic equation of A. For example, if A
is the following matrix (a so-called diagonal matrix):

A =











a1,1 0 · · · 0
0 a2,2 · · · 0
...

...
. . . 0

0 0 0 an,n











,

then the characteristic equation reads
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det(A− λI ) = det





















a1,1 0 · · · 0
0 a2,2 · · · 0
...

...
. . . 0

0 0 0 an,n











− λ











1 0 · · · 0
0 1 · · · 0
...

...
. . . 0

0 0 0 1





















= det











a1,1 − λ 0 · · · 0
0 a2,2 − λ · · · 0
...

...
. . . 0

0 0 0 an,n − λ











= (a1,1 − λ)(a2,2 − λ) · · · (an,n − λ) = 0.

The solutions to this equation are the eigenvalues λi = ai , i(i = 1, ..., n).
The eigenvalue equation for a matrix A can be expressed as
Ax − λIx = 0,
which can be rearranged to (A− λI )x = 0.

A criterion from linear algebra states that a matrix (here: AλI ) is
non-invertible if and only if its determinant is zero, thus leading to the
characteristic equation.
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Example

A =

[

2 1
1 2

]

.

The characteristic equation of this matrix reads

det(A− λI ) = det

[

2 − λ 1
1 2 − λ

]

= 0.

Calculating the determinant, this yields the quadratic equation
λ2 − 4λ+ 3 = 0, whose solutions (also called roots) are λ = 1 and λ = 3.
The eigenvectors for the eigenvalue λ = 3 are determined by using the
eigenvalue equation, which in this case reads

[

2 1
1 2

] [

x

y

]

= 3

[

x

y

]

.

This equation reduces to a system of the following two linear equations:

2x + y = 3x ,

x + 2y = 3y .
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Example

Both equations reduce to the single linear equation x = y . Or any vector
of the form (x , y) with y = x is an eigenvector to the eigenvalue λ = 3.
However, the vector (0, 0) is excluded. A similar calculation shows that
the eigenvectors corresponding to the eigenvalue λ = 1 are given by
non-zero vectors (x , y) such that y = −x . For example, an eigenvector
corresponding to λ = 1 is

[

−1
1

]

whereas an eigenvector corresponding to λ = 3 is

[

1
1

]

.
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Singular values

The singular values, or s-numbers of a compact operator T : X → Y

acting between Hilbert spaces X and Y , are the square roots of the
eigenvalues of the nonnegative self-adjoint operator T ∗T : X → X

(where T ∗ denotes the adjoint of T ).
The singular values are nonnegative real numbers, usually listed in
decreasing order (s1(T ), s2(T ), ...). If T is self-adjoint, then the largest
singular value s1(T ) is equal to the operator norm of T .
In the case of a normal matrix A (or A∗A = AA∗, when A is real then
ATA = AAT ), the spectral theorem can be applied to obtain unitary
diagonalization of A as A = UΛU∗. Therefore,

√
A∗A = U|Λ|U∗ and so

the singular values are simply the absolute values of the eigenvalues.
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Gaussian elimination

Norms

LU-factorization, pivoting
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