
Larisa Beilina, Evgenii Karchevskii,
and Mikhail Karchevskii

Numerical Linear Algebra:

Theory and Applications

March 3, 2017

Springer

Contents

Preface . xi

1 Preliminaries . 1

1.1 Complex Numbers and Polynomials . 1

1.1.1 Complex Numbers: Basic Operations and Formulas 1

1.1.2 Algebraic Operations with Polynomials 7

1.1.3 Roots of Polynomials and their Properties 10

1.1.4 Vieta’s Formulas . 13

1.1.5 Polynomials with Real Coefficients . 14

1.2 Systems of Linear Equations, Matrices, Determinants 15

1.2.1 Permutations . 15

1.2.2 Determinants and their Basic Properties 17

1.2.3 Cramer’s Rule . 26

1.2.4 Matrices: Basic Operations and Transformations 29

1.2.5 Gaussian Elimination . 39

1.2.6 The Determinant of the Product of Matrices 45

1.2.7 Basic Matrix Types . 46

1.2.8 Block Matrices and Basic Operations with Block Matrices . . 48

2 Vector Spaces . 51

2.1 The Vector Spaces Rn and Cn . 51

2.1.1 The Vector Space Rn . 51

2.1.2 The Vector Space Cn . 52

2.2 Abstract Vector Spaces . 53

2.2.1 Definitions and Examples . 53

2.2.2 Linearly Dependent Vectors . 55

2.2.3 Linearly Independent Sets of Vectors . 57

2.2.4 The Rank of a Set of Vectors . 59

2.3 Finite-Dimensional Vector Spaces. Bases . 60

2.3.1 Bases in the Space Cn . 60

2.3.2 Finite-Dimensional Spaces. Examples 60

v

vi Contents

2.3.3 Change of Basis . 62

3 Inner Product Spaces . 65

3.1 Inner products on Rn and Cn . 65

3.2 Abstract Inner Product Spaces . 67

3.2.1 Definitions and Examples . 67

3.2.2 The Cauchy-Schwarz Inequality . 68

3.2.3 The Gram Matrix . 70

3.2.4 Orthogonal Sets of Vectors. Gram-Schmidt

Orthogonalization Process . 71

3.2.5 The Expansion of a Vector with Respect to the Basis in an

Inner Product Space . 74

3.2.6 The Calculation of an Inner Product . 75

3.2.7 Reciprocal Basis Vectors . 75

3.2.8 Examples of Orthogonal Bases . 76

3.3 Subspaces . 79

3.3.1 The Sum and the Intersection of Subspaces 79

3.3.2 The Dimension of the Sum of Subspaces 81

3.3.3 The Orthogonal Projection of a Vector onto a Subspace 82

3.3.4 The Orthogonal Decomposition of an Inner Product Space . . 86

4 Linear Operators . 87

4.1 Linear Operators and their Basic Properties . 87

4.1.1 Basic Definitions. Operations with Operators 87

4.1.2 The Inverse Operator . 89

4.1.3 The Coordinate Representation Operator 90

4.1.4 Isomorphism of Finite-Dimensional Linear Spaces 90

4.1.5 The Matrix of a Linear Operator . 91

4.1.6 The Matrix of the Inverse Operator . 95

4.1.7 The Linear Space of Linear Operators 96

4.1.8 The Image and the Kernel of a Linear Operator 96

4.1.9 The Rank of a Matrix . 97

4.1.10 Calculating the Rank of a Matrix Using Determinants 99

4.1.11 The General Solution of a Linear Equation 101

4.1.12 Systems of Linear Algebraic Equations. Solvability

Conditions . 102

4.1.13 The General Solution of a System of Linear Algebraic

Equations . 104

4.2 Eigenvalues and Eigenvectors of a Linear Operator 106

4.2.1 Invariant Subspaces . 106

4.2.2 Basic Properties of Eigenvalues and Eigenvectors 108

4.2.3 Diagonalizable Operators . 114

4.2.4 Invariants of an Operator . 115

4.2.5 Invariant Subspaces of an Operator in the Real Space 118

4.2.6 Nilpotent Operators . 119

Contents vii

4.2.7 The Triangular Form of the Matrix of an Operator 120

4.2.8 The Real Schur Form . 124

4.3 Operators on Unitary Spaces . 125

4.3.1 Linear Functionals . 125

4.3.2 The Adjoint Operator . 125

4.3.3 Linear Equations in Unitary Spaces . 128

4.3.4 The Pseudo-Solution. The Tikhonov Regularization Method 129

4.3.5 Self-Adjoint and Skew-Hermitian operators 131

4.3.6 Positive Definite and Non-Negative Semidefinite Operators . 133

4.3.7 Unitary Operators . 134

4.3.8 Normal Operators . 134

4.3.9 The Root of a Non-Negative Semidefinite Self-Adjoint

Operator . 137

4.3.10 Congruent Hermitian Operators . 138

4.3.11 Variational Properties of Eigenvalues of Self-Adjoint

Operators . 139

4.3.12 Examples of Application of Variational Properties of

Eigenvalues . 142

4.4 Operators on Euclidean Spaces . 147

4.4.1 Overview . 147

4.4.2 The Structure of Normal Operators . 148

4.4.3 The Structure of Orthogonal Operators 150

4.4.4 Givens Rotations and Householder Transformations 151

5 Canonical Forms and Factorizations . 155

5.1 The Singular Value Decomposition . 155

5.1.1 Singular Values and Singular Vectors of an Operator 155

5.1.2 The Polar Decomposition . 159

5.1.3 Basic Properties of the Pseudoinverse Operator 160

5.1.4 Elements of the Theory of Majorization 161

5.1.5 Some Estimates of Eigenvalues and Singular Values 165

5.2 The Jordan Canonical Form . 169

5.2.1 Existence and Uniqueness of the Jordan Canonical Form . . . 170

5.2.2 Root and Cyclic Subspaces . 175

5.2.3 The real Jordan Canonical Form . 176

5.2.4 The Power Series of Matrices . 178

5.3 Matrix Pencils . 181

5.3.1 Definitions and Basic Properties . 181

5.3.2 The Quasidiagonal Form of a Regular Pencil 184

5.3.3 The Weierstrass Canonical Form . 185

5.3.4 Hermitian and Definite Pencils . 186

5.3.5 Singular Pencils. The Theorem on Reduction 187

5.3.6 The Kronecker Canonical Form . 191

5.3.7 Applications to Systems of Linear Differential Equations . . . 192

viii Contents

6 Vector and Matrix Norms . 197

6.1 Basic Inequalities . 197

6.2 Norms on the Space Cn . 199

6.3 The Hahn-Banach Theorem. Dual Norms . 202

6.4 Norms on the Space of Matrices . 205

6.5 The Gap between Two Subspaces of Cn . 213

7 Elements of the Perturbation Theory . 217

7.1 Perturbations in the Symmetric Eigenvalue Problem 217

7.2 Perturbations of Singular Values and Singular Vectors 222

7.3 Perturbations of Characteristic Values of Arbitrary Matrices 223

7.4 Perturbations and the Invertibility of a Matrix 226

7.5 The Stability of Systems of Linear Equations 228

7.6 Perturbations in the Linear Least Squares Problem 231

8 Solving Systems of Linear Equations . 235

8.1 Algorithms for Gaussian Elimination . 235

8.1.1 LU Factorization with Pivoting . 235

8.1.2 The Need for Pivoting . 238

8.1.3 A Numerical Example . 241

8.2 Error Analysis . 244

8.2.1 Round-off Analysis in Polynomial Evaluation 244

8.2.2 Error Analysis in Gaussian Elimination 249

8.2.3 Estimating the Condition Number . 252

8.2.4 Estimating the Relative Condition Number 255

8.2.5 Practical Error Bounds . 255

8.3 Algorithms for Improving the Accuracy of the Solution 256

8.4 Special Linear Systems . 259

8.4.1 Real Symmetric Positive Definite Matrices 259

8.4.2 Symmetric Indefinite Matrices . 262

8.4.3 Band Matrices . 263

8.4.4 A Numerical example . 267

Questions . 268

9 Numerical solution of Linear Least Squares Problems 275

9.1 Linear Least Squares Problems . 276

9.2 Nonlinear least squares problems . 281

9.3 Method of normal equations . 287

9.4 QR Decomposition . 289

9.5 Orthogonalization methods . 290

9.5.1 Householder Transformations . 291

9.5.2 Givens Rotation . 302

9.5.3 Gram-Schmidt orthogonalization . 306

9.6 Singular Value Decomposition . 309

9.6.1 Rank-deficient Least Squares Problems 316

Contents ix

9.6.2 How to solve rank-deficient least squares problems 319

9.7 Software for the solution of linear least squares problems 320

Questions . 321

10 Algorithms for the Nonsymmetric Eigenvalue Problem 327

10.1 Power Method . 327

10.2 Inverse Iteration . 330

10.3 Orthogonal Iteration . 333

10.4 QR Iteration . 337

10.5 QR Iteration with Shifts . 338

10.6 Hessenberg Reduction . 340

10.7 Tridiagonal and Bidiagonal Reduction . 344

10.7.1 Tridiagonal Reduction using Householder Transformation . . 347

10.7.2 Tridiagonal Reduction using Givens Rotation 349

10.8 QR Iteration with Implicit Shifts . 351

Questions . 354

11 Algorithms for Solution of Symmetric Eigenvalue problem 357

11.1 Tridiagonal QR Iteration . 358

11.2 Rayleigh Quotient Iteration . 359

11.3 Divide-and-Conquer . 362

11.4 Bisection and Inverse Iteration . 367

11.5 Jacobi’s Method . 370

11.6 Algorithms for the Singular Value Decomposition 374

11.7 Different Versions of QR Iteration for the Bidiagonal SVD 377

11.8 Jacobi’s Method for the SVD . 381

Questions . 383

12 Introduction to Iterative Methods for Solution of Linear Systems . . . 387

12.1 Basic Iterative Methods . 387

12.2 Jacobi Method . 389

12.3 Gauss-Seidel Method . 391

12.4 Successive Overrelaxation SOR(ω) Method . 393

12.5 Symmetric Successive Overrelaxation SSOR(ω) Method 394

12.6 Study of Convergence of Main Iterative Methods 398

12.7 Krylov Subspace Methods . 403

12.8 Conjugate Gradient Method . 408

12.9 Preconditioning for Linear Systems . 412

Questions . 415

A Matlab Programs . 419

A.1 Matlab Programs for Gaussian Elimination using LU Factorization . 419

A.2 Matlab programs for Cholesky decomposition 424

A.3 Matlab Programs testing Hager’s condition estimator 427

A.4 Matlab Program FitFunctionNormaleq.m to test fitting to a

polynomial using method of normal equations 428

x Contents

A.5 Matlab Program FitFunctionQRCGS.m to test fitting to a

polynomial using QR decomposition via CGS 429

A.6 Matlab Program CGS.m performing QR decomposition via CGS. . . 431

A.7 Matlab Programs to fit a function using linear splines. The main

program is MainHatFit.m . 432

A.8 Matlab Programs to fit a function using bellsplines. The main

program is MainBellspline.m. Functions newtonIR.m,

LLSChol.m, LLSQR.m, LLSSVD.m are the same as in section

A.7. 438

A.9 Matlab Program PowerM.m to Test Power Method 441

A.10 Matlab Program InverseIteration.m to Test Inverse

Iteration Method . 442

A.11 Matlab Program MethodOrtIter.m to Test Method of

Orthogonal Iteration . 444

A.12 Matlab Program MethodQR iter.m to Test Method of QR

Iteration . 446

A.13 Matlab Program MethodQR shift.m to Test Method of QR

Iteration with Shift σ = A(n,n) . 448

A.14 Matlab Program MethodQR Wshift.m to Test Method of QR

Iteration with Wilkinson’s Shift . 451

A.15 Matlab Program HessenbergQR.m: First we Use Hessenberg

Reduction and then the Method of QR Iteration 453

A.16 Matlab Program RayleighQuotient.m for computation the

Rayleigh Quotient . 456

A.17 Matlab Program DivideandConq.m . 457

A.18 Matlab Program Bisection.m . 461

A.19 Matlab Program testClassicalJacobi.m 464

A.20 Matlab Program testSVDJacobi.m . 466

A.21 Matlab Program Poisson2D Jacobi.m. The function

DiscretePoisson2D.m is given in section A.1. 469

A.22 Matlab Program Poisson2D Gauss Seidel.m. The function

DiscretePoisson2D.m is given in section A.1. 474

A.23 Matlab Program Poisson2D Gauss SeidelRedBlack.m.

The function DiscretePoisson2D.m is given in section A.1. . 478

A.24 Matlab Program Poisson2D SOR.m. The function

DiscretePoisson2D.m is given in section A.1. 483

A.25 Matlab Program Poisson2D ConjugateGrad.m. The

function DiscretePoisson2D.m is given in section A.1. 489

A.26 Matlab Program Poisson2D PrecConjugateGrad.m. The

function DiscretePoisson2D.m is given in section A.1 493

A.27 PETSc programs for the solution of the Poisson’s equation in two

dimensions. 496

References . 509

Preface

Problems of numerical linear algebra arise in all fields of modern science. Important

examples are computational fluid dynamics, solid mechanics, electrical networks,

signal analysis, and optimization. In our book we present extended basic theory of

linear algebra like matrix algebra, theory for linear systems of equations, spectral

theory, vector and matrix norms combined with main direct and iterative numeri-

cal methods for solution of linear systems of equations, least squares problems and

eigenproblems. In this book we wanted to combine a solid theoretical background

in linear algebra with practical algorithms for numerical solution of linear algebra

problems. Most numerical algorithms are illustrated by computer programs written

in MATLAB, which are given in the Appendix. These programs allow the reader to

get experience in implementation and evaluation of numerical algorithms for prob-

lems of linear algebra described in the book and apply them for the solution of com-

puter exercises of this book. They can also give the reader a better understanding of

professional numerical software for the solution of real-life problems of numerical

linear algebra.

This book is suitable for use as course material in a one or two-semester course

on numerical linear algebra, matrix computations, large sparse matrices at advanced

undergraduate or graduate level. We recommend to use the material of Chapters 1-7

for courses in theoretical aspects of linear algebra, or as the first part for a course in

numerical linear algebra. In addition to traditional content for courses in linear al-

gebra for students of physical and mathematical specializations we include in these

chapters some sections, which can be useful as course material for special courses on

various applications of linear algebra. We hope that this material can be interesting

also for scientists. We recommend Chapters 8-12 for courses related to numerical

linear algebra, or as the second part for course in numerical linear algebra. The ma-

terial of Chapters 8-12 follows the book of Demmel [23]. Compared with [23] we

present the numerical material of Chapters 8-12 in a more concise form, which is

appropriate to a one semester course in numerical linear algebra on the undergradu-

ate level. We also enrich our Chapters 8-12 with numerical examples, which can be

tested by the MATLAB and PETSc programs presented in the Appendix.

xi

xii Preface

In the first four chapters we introduce readers to the topic of linear algebra

and give main definitions of complex numbers and polynomials, systems of lin-

ear equations, matrices, determinants, vector and inner product spaces, subspaces,

linear operators, eigenvalues and eigenvectors of a linear operator. In Chapter 5

we present canonical forms and factorizations: the Singular Value Decomposition,

the Jordan canonical form, matrix pencils and Weierstrass canonical form, the Kro-

necker canonical form and their applications in the theory of ordinary differential

equations. Chapter 6 discusses vector and matrix norms and Chapter 7 presents

main elements of the perturbation theory for the basic problems of linear algebra.

Chapters 8-11 deal with numerical solution of systems of linear equations, linear

least squares problems and solution of eigenvalue problems. In Chapter 12 we give

a brief introduction to the main iterative methods for the solution of linear systems:

Jacobi, Gauss-Seidel, Successive overrelaxation. We also discuss Krylov subspace

methods, the conjugate gradient algorithm and the preconditioned conjugate gradi-

ent algorithm. Compared with other books on the same subject, this book presents a

combination of extended material on the rigorous theory of linear algebra together

with numerical aspects and implementation of algorithms of linear algebra in MAT-

LAB. The material of this book was developed from a number of courses which

the authors taught repeatedly for a long period at the Master’s program in Engineer-

ing Mathematics and Computational Science at Chalmers University of Technology

and Gothenburg University in Sweden and at Institute of Computer Mathematics

and Information Technologies of Kazan Federal University, Russia. Chapters 1-7

were written by Mikhail and Evgenii Karchevskii. Larisa Beilina wrote Chapters

8-12 with Appendix.

The authors want to thank the following colleagues and students for correc-

tions, proofreading and contributions to the material of this book: Yu.A. Al’pin,

V.B. Andreev, A. Bergqvist, E.V. Chizhonkov, R.Z. Dautov, H. Eklund, N. Eric-

sson, M. Hoppe, J. Jagers, J. Jansson, B. Galimullin, A.V. Goolin, R.N. Gumerov,

A.S. Ilinskii, A. Mutygullin, A. Repina, R.R. Shagidullin, Yu.G. Smirnov, E.L. Stolov,

S.I. Soloviov, M.R. Timerbaev, A. Vasilyeva, O. Wickius.

Göteborg, Sweden Larisa Beilina

Kazan, Russia Evgenii Karchevskii

February 2017 Mikhail Karchevskii

Chapter 1

Preliminaries

In this chapter we provide the necessary initial knowledge from the theory of com-

plex numbers. Then we describe the basic properties of polynomials and their roots.

We introduce the concept of determinants, set their properties, and present the basic

theory for systems of linear algebraic equations with nonsingular matrices. Main

types of rectangular matrices are described.

1.1 Complex Numbers and Polynomials

1.1.1 Complex Numbers: Basic Operations and Formulas

It is well known that not every quadratic equation has a real solution. For example,

a simple equation like

x2 +1 = 0 (1.1)

has no real solution, since the square of a real number is never negative. The situa-

tion is changed if we introduce a new number (more precisely, a new symbol). This

number is called the imaginary unit and is denoted by i. By definition, put

i2 =−1.

Then α1 = i is a root of equation (1.1). It is natural that

(−i)2 = (−1)2i2 =−1.

Then α2 = −i is the second root of equation (1.1), i.e., this equation has two solu-

tions similarly to the equation

x2 −1 = 0.

Consider a quadratic equation

x2 +q = 0,

1

2 1 Preliminaries

where q > 0. It is natural to decide that this equation has two roots:

α1 = i
√

q and α2 =−i
√

q.

The numbers of the form ib, where b is real, are called imaginary numbers.

Let us now consider a general quadratic equation. For convenience we write it in

the reduced form:

x2 −2px+q = 0. (1.2)

Using elementary calculations, we get

(x− p)2 +q− p2 = 0.

Suppose that q− p2 > 0, i.e., the discriminant of equation (1.2) is negative. It is

natural to decide that equation (1.2) has two roots too:

α1 = p+ i
√

q− p2, α2 = p− i
√

q− p2. (1.3)

The numbers α1, α2 in (1.3) have the new form a+ ib, where a and b are real.

They are called complex numbers. In the particular case when b = 0 the complex

number a+ ib will be the same as the real number a. If a = 0, then the complex

number will be the same as the imaginary number ib.

Usually we denote a complex number by the letter z:

z = x+ iy.

The real number x is called the real part of z and is denoted by Rez. The real

number y is called the imaginary part of z and is denoted by Imz. Therefore, we can

write

z = Rez+ i Imz.

By definition, two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 are equal if

and only if x1 = x2 and y1 = y2.

Let us verify that the numbers α1, α2 defined by (1.3) actually satisfy quadratic

equation (1.2). To do this we have to introduce the algebraic operations with com-

plex numbers.

The sum of the complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 is the complex

number z = x+ iy, where x = x1 + x2, y = y1 + y2, i.e.,

Re(z1 + z2) = Rez1 +Rez2,

Im(z1 + z2) = Imz1 + Imz2.

The difference of the complex numbers z1 and z2 is the complex number

z = (x1 − x2)+ i(y1 − y2).

Clearly, if z is the difference of complex numbers z1 and z2, then z2 + z = z1.

1.1 Complex Numbers and Polynomials 3

For example, the sum of the complex numbers z1 = 1+ i2 and z2 = 3+ i4 is equal

to z = 4+ i6, their difference is z =−2− i2.
The complex number 0+ i0 is called zero and is denoted by the symbol 0.

Multiplication of complex numbers is carried out in the same way as the multi-

plication of usual binomials using the relation i2 =−1. Therefore, we have

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 − y1y2 + i(x1y2 + x2y1),

i.e., by definition,

Re(z1z2) = Rez1Rez2 − Imz1Imz2, (1.4)

Im(z1z2) = Rez1Imz2 +Rez2Imz1. (1.5)

For example, the product of the complex numbers z1 = 1+ i2, z2 = 3+ i4 is

calculated as follows:

z1z2 = (1+ i2)(3+ i4) = (1×3−2×4)+ i(1×4+3×2) =−5+ i10.

For any complex number z we have z×0 = 0× z = 0.
The reader can easily prove that the defined above operations of addition and

multiplication of complex numbers have the same properties as the corresponding

operations with real numbers.

1. Commutativity: z1 + z2 = z2 + z1, z1z2 = z2z1.

2. Associativity: (z1 + z2)+ z3 = z1 +(z2 + z3), (z1z2)z3 = z1(z2z3).
3. Distributivity: (z1 + z2)z3 = z1z3 + z2z3.

Now using direct substitution the reader can check that the numbers α1 and α2

defined by (1.3) satisfy quadratic equation (1.2).

Division of the complex numbers z1 and z2 is defined by the following relation-

ship:

zz2 = z1. (1.6)

Here the complex number z is the quotient of z1 divided by z2.

If z2 6= 0, then there exists a unique solution z of equation (1.6). Indeed, us-

ing (1.4), (1.5), we can write (1.6) in more detail:

xx2 − yy2 + i(xy2 + x2y) = x1 + iy1. (1.7)

Equating the real and imaginary parts, we get

xx2 − yy2 = x1, (1.8)

xy2 + yx2 = y1. (1.9)

System of equations (1.8), (1.9) has the unique solution

4 1 Preliminaries

x =
x1x2 + y1y2

x2
2 + y2

2

, (1.10)

y =
x2y1 − x1y2

x2
2 + y2

2

. (1.11)

Formulas (1.10) and (1.11) define the rule of division of complex numbers.

For example, let us divide the complex number z1 = 1+ i2 by z2 = 3+ i4:

z1

z2
=

1+ i2

3+ i4
=

1×3+2×4

32 +42
+ i

3×2−1×4

32 +42
=

11

25
+ i

2

25
.

For any natural number n, by definition, put zn = zz · · ·z, where the factor is

repeated n times, z0 = 1, z−n = (1/z)n.

It is important to note that if the imaginary parts of complex operands are equal

to zero, then the operations with complex numbers defined above are identical to the

operations with real numbers (check it!). Therefore, we can accept that the field of

all complex numbers is an extension of the field of all real numbers.

For a complex number z = x+ iy, the number z = x− iy is called the complex

conjugate of z. Evidently,

z = z, z1 + z2 = z1 + z2, z1z2 = z1z2. (1.12)

Note also that

z+ z = 2x, z− z = i2y, zz = x2 + y2.

The real nonnegative number |z| =
√

zz =
√

x2 + y2 is called the absolute value

(or modulus) of z = x+ iy. Obviously,

if |z|= 0, then x = 0, y = 0, i.e., z = 0. (1.13)

For any complex numbers z1, z2 by elementary calculations we get

|z1z2|= |z1||z2|. (1.14)

For any real numbers x, y the following inequality is well known:

2|xy| ≤ (x2 + y2).

Using it, the reader can easily prove that for any complex numbers z1, z2 the next

inequality holds:

|z1 + z2| ≤ |z1|+ |z2|. (1.15)

Relationships (1.13), (1.14), (1.15) show that we can use the absolute values of

complex numbers in the same way as the absolute values of real numbers.

Note that |z1| = |z1 − z2 + z2| ≤ |z1 − z2|+ |z2|, therefore, |z1|− |z2| ≤ |z1 − z2|.
Similarly, |z2|− |z1| ≤ |z1 − z2|. Thus,

||z2|− |z1|| ≤ |z1 − z2|. (1.16)

1.1 Complex Numbers and Polynomials 5

Recall that every real number x is assumed to correspond to a point on the number

line. Analogously, the complex numbers may be thought of as a Cartesian plane

with “real axis” x and “imaginary axis” y. Thus, z = x+ iy may be identified with

the point (x,y) in the complex plane. Then complex conjugation is reflection across

the real axis, and |z| is the Euclidean distance of z from the origin in the complex

plane (check it by drawing!).

Recall that the sum of two vectors (x1,y1) and (x2,y2) is the vector with coordi-

nates x1 + x2 and y1 + y2. Therefore the sum of two complex numbers z1 = x1 + iy1

and z2 = x2 + iy2 corresponds to the sum of two vectors (make a drawing!). Hence

inequalities (1.15), (1.16) can be interpreted as the well known triangle inequalities

for vectors.

In the last two paragraphs we have described the complex plane in terms of rect-

angular coordinates. The complex plane may also be represented usefully in terms

of polar coordinates, in which the position of z in the plane is described in terms of

the modulus of z and the angle ϕ , measured in the counterclockwise direction from

the positive real axis. The angle ϕ belongs to the interval [0,2π) and is called the

argument of z. The following notation is often used:

ϕ = argz, ρ = |z|. (1.17)

Let us obtain an explicit representation of z using |z| and argz. We have

z = |z|
(

x

|z| + i
y

|z|

)
.

Evidently (make a drawing!),

x

|z| = cosϕ,
y

|z| = sinϕ, (1.18)

thus,

z = ρ(cosϕ + i sinϕ). (1.19)

Relationships (1.17)–(1.19) give the so-called trigonometric form of a complex

number. This form enables us to take a fresh look at algebraic operations with com-

plex numbers and to obtain several useful formulas.

If z1 = ρ1(cosϕ1 + i sinϕ1), z2 = ρ2(cosϕ2 + i sinϕ2), then using well known

trigonometric formulas, we have

z1z2 = ρ1ρ2 (cos(ϕ1 +ϕ2)+ i sin(ϕ1 +ϕ2)) , (1.20)

i.e., to multiply two complex numbers, we multiply their absolute values and add

their arguments.

For example, the product of the complex numbers z1 = 3(cos(π/2)+ i sin(π/2))
and z2 = 2(cos(π/4)+ i sin(π/4)) is z1z2 = 6(cos(3π/4)+ i sin(3π/4)) .

Note that, using formula (1.20), we can obtain ϕ1 +ϕ2 ≥ 2π . Naturally, because

of the periodicity of trigonometric functions the argument of a complex number is

6 1 Preliminaries

determined up to mod 2π . Hence equalities like (1.20) involving arguments will

always be interpreted as congruence mod 2π; i.e., we shall neglect differences of

integer multiples of 2π .

Using the trigonometric form of complex numbers and formula (1.20), we can

write equation (1.6) as

ρρ2(cos(ϕ +ϕ2)+ i sin(ϕ +ϕ2)) = ρ1(cosϕ1 + i sinϕ1). (1.21)

Whence,

z =
z1

z2
=

ρ1

ρ2
(cos(ϕ1 −ϕ2)+ i sin(ϕ1 −ϕ2)), (1.22)

i.e., to divide two complex numbers, we divide their absolute values and subtract

their arguments.

For example, using formula (1.22), for the numbers z1 = 3(cos(π/2)+ i sin(π/2))
and z2 = 2(cos(π/4)+ i sin(π/4)), we get z1/z2 = (3/2)(cos(π/4)+ i sin(π/4)) .

Let us obtain a formula expressing the powers of a complex number. If we

put z1 = z2 = z in (1.20), then we get

z2 = zz = ρ2(cos2ϕ + i sin2ϕ),

and generally,

zn = ρn(cosnϕ + i sinnϕ) (1.23)

for any integer n (including zero and negative integers). Formula (1.23) is called

de Moivre’s formula.1

Let us now turn to the problem of calculation of an n-th root of a complex num-

ber z = ρ(cosϕ + i sinϕ). Here n ≥ 1 is integer. This is the problem of calculation

of a number z̃ = ρ̃(cos ϕ̃ + i sin ϕ̃) such that

z̃n = ρ̃n(cosnϕ̃ + i sinnϕ̃) = ρ(cosϕ + i sinϕ). (1.24)

Evidently, equation (1.24) has the following solutions:

ρ̃ = n
√

ρ, ϕ̃ =
ϕ

n
+

2πk

n
, k = 0,1,

Here n
√

ρ is the arithmetical value of the n-th root of a real nonnegative number ρ .

Hence we see that the n complex numbers

zk = n
√

ρ (cosϕk + i sinϕk) , ϕk =
ϕ

n
+

2πk

n
, k = 0,1, . . . ,n−1, (1.25)

are the n-th roots of a complex number z. For k > n−1 the numbers zk are periodi-

cally repeated because of the periodicity of trigonometric functions.

For example, the four fourth roots of the complex number

1 Abraham de Moivre (1667–1754) was a French mathematician.

1.1 Complex Numbers and Polynomials 7

z = 3
(

cos
π

2
+ i sin

π

2

)

are calculated by the following formulas:

zk =
4
√

3(cosϕk + i sinϕk), ϕk =
π

8
+ k

π

2
, k = 0,1,2,3.

Thus each complex number (except zero) has n pairwise different n-th roots. All

these roots belong to the circle of radius n
√

ρ centered at the origin. They divide it

into n equal parts.

The question naturally arises: is it possible to find other roots of a complex num-

ber z? The answer is negative. To verify this, the reader can use the results of Sub-

sect. 1.1.3, p. 10, interpreting equation (1.24) as a problem of calculation of roots of

a polynomial of order n.

Formula (1.25) is often written in a slightly different form. Let

qk = cos
2πk

n
+ i sin

2πk

n
, k = 0,1,2, . . . ,n−1.

Obviously, qn
k = 1 for k = 0,1,2, . . . ,n−1, i.e., qk are n-th roots of unity. It is easy

to see that

zk = z0qk, k = 0,1,2, . . . ,n−1.

Therefore, if we calculate the first root

z0 = n
√

ρ (cosϕ/n+ i sinϕ/n) ,

then we obtain all other roots by successive shifts through the angle 2π/n on the

unit circle.

1.1.2 Algebraic Operations with Polynomials

A polynomial is a function of the form

Pn(z) = a0 +a1z+a2z2 + · · ·+anzn. (1.26)

Here a0,a1, . . . ,an are fixed complex numbers. They are called the coefficients of

the polynomial. If an 6= 0, then the integer number n ≥ 0 is called the degree of the

polynomial, an is called the leading coefficient of the polynomial. The variable z can

take any complex value.

Two polynomials Pn(z) and Qn(z) are equal if they have exactly the same coeffi-

cients.

If all coefficients of a polynomial are equal to zero, then the polynomial is equal

to zero for all z. This polynomial is called the zero polynomial and is denoted by 0.

The degree of the zero polynomial is undefined.

8 1 Preliminaries

The sum of two polynomials Pn(z)+Qm(z) is a polynomial, and its degree is less

than or equal to the maximum of n and m, or it is the zero polynomial.

The product of two polynomials Pn(z)Qm(z) is a polynomial of degree n+m.

The addition of the zero polynomial to any polynomial does not change this

polynomial. The product of two polynomials is equal to the zero polynomial if and

only if one of the factors is the zero polynomial (prove it!).

Let us introduce and investigate the operation of division of polynomials.

Theorem 1.1. For any polynomials P(z) and Q(z) there exist polynomials q(z) and

r(z) such that

P(z) = Q(z)q(z)+ r(z), (1.27)

and either r = 0 or the degree of r(z) is less than the degree of Q(z). More-

over, the polynomials q(z) and r(z) are uniquely determined by the polynomi-

als P(z) and Q(z).

Proof. First we suppose that either P= 0 or the degree of P(z) is less than the degree

of Q(z). Then the unique solution of equation (1.27) is q = 0 and r(z) = P(z).
Assume now that P(z) is a polynomial of degree n, Q(z) has degree m, and n≥m.

To simplify the notation we suppose that the leading coefficient of the polyno-

mial Q(z) is equal to one. If we suppose that the leading coefficient is an arbitrary

nonzero number, then the formulas written below should be modified in an obvious

way. Thus we take

P(z) = anzn +an−1zn−1 + · · ·+a0,
Q(z) = zm +bm−1zm−1 + · · ·+b0,
q(z) = cn−mzn−m + cn−m−1zn−m−1 + · · ·+ c0,
r(z) = dm−1zm−1 +dm−2zm−2 + · · ·+d0.

The coefficients of polynomials P(z) and Q(z) are known. Let us calculate the coef-

ficients of q(z) and r(z). Collecting all coefficients with the same power of z on the

right hand side of (1.27) and equating them with the corresponding coefficients of

the polynomial P(z), we get

an = cn−m,
an−1 = cn−m−1 + cn−mbm−1,
an−2 = cn−m−2 + cn−m−1bm−1 + cn−mbm−2,
.
am = c0 + c1bm−1 + c2bm−2 + · · ·+ cmb0,
am−1 = dm−1 + c0bm−1 + c1bm−2 + · · ·+ cm−1b0,
.
a0 = d0 + c0b0.

(1.28)

The obtained relationships form a system of linear equations for the coefficients of

polynomials q(z) and r(z). This system is easily solved and uniquely defines the

coefficients of these polynomials. First the coefficients c j are calculated in the order

of descending of indexes:

1.1 Complex Numbers and Polynomials 9

cn−m = an,
cn−m−1 = an−1 − cn−mbm−1,
cn−m−2 = an−2 − cn−m−1bm−1 − cn−mbm−2,
.
c0 = am − c1bm−1 − c2bm−2 −·· ·− cmb0.

(1.29)

Then, using calculated values of c j, the coefficients d j are calculated by the follow-

ing formulas:

dm−1 = am−1 − c0bm−1 − c1bm−2 −·· ·− cm−1b0,
dm−2 = am−2 − c0bm−2 − c1bm−3 −·· ·− cm−2b0,
.
d0 = a0 − c0b0.

(1.30)

Note that cn−m 6= 0, since an 6= 0, but the coefficients of r(z) generally speaking can

be equal to zero.

We suppose here that 2m ≤ n. If 2m > n, then formulas (1.28)–(1.30) should be

modified in an obvious way. ⊓⊔ 1

The method of calculation of the coefficients of polynomials q(z) and r(z), which

is described in the proof, is called Horner’s rule.2 It is commonly used for algebraic

calculations.

Formula (1.27) defines the operation of division of a polynomial P(z) by a poly-

nomial Q(z). The polynomials q(z) and r(z) are called the quotient and the remain-

der of division, respectively. If r = 0, then we say that Q(z) divides P(z), or Q(z)
is a factor of P(z).

Remark 1.1. It follows from (1.29) and (1.30) that if P(z) and Q(z) are polynomials

with real coefficients, then the coefficients of polynomials q(z) and r(z) are real

numbers.

As an example of application of Horner’s rule let us divide

P4(z) = 2z4 −3z3 +4z2 −5z+6 by Q2(z) = z2 −3z+1,

i.e., let us calculate polynomials

q2(z) = c2z2 + c1z+ c0 and r(z) = d1z+d0

such that

P4(z) = Q2(z)q2(z)+ r(z).

In this example we have n = 4 and m = 2. First, using (1.29), we calculate the

coefficients c2, c1, and c0:

1 Here and below the symbol � indicates the end of the proof.
2 William George Horner (1786–1837) was a British mathematician.

10 1 Preliminaries

c2 = a4 = 2,
c1 = a3 − c2b1 =−3−2(−3) = 3,
c0 = a2 − c1b1 − c2b0 = 4−3(−3)−2×1 = 11.

Then, using (1.30), we calculate the coefficients d1 and d0:

d1 = a1 − c0b1 − c1b0 =−5−11(−3)−3×1 = 25,
d0 = a0 − c0b0 = 6−11×1 =−5.

Thus,

q2(z) = 2z2 +3z+11, r(z) = 25z−5.

The question naturally arises: are the corresponding coefficients of polynomi-

als Pn(z) and Qn(z) equal if the values of these polynomials are equal for all z? In

other words, are all coefficients of a polynomial equal to zero if this polynomial

is identically zero? The answer is yes, but we will prove it somewhat later. Oddly

enough: a simple proof is based on some results of the theory of systems of linear

algebraic equations (see. Subsect. 1.2.3, p. 26).

1.1.3 Roots of Polynomials and their Properties

A root of a polynomial Pn(z) is a complex number α such that Pn(α) = 0.

Theorem 1.2 (Bezout1 theorem). Let α be a complex number, n ≥ 1. Then z−α
divides the polynomial Pn(z)−Pn(α).

Proof. Using theorem 1.1, p. 8, we get Pn(z)−Pn(α) = qn−1(z)(z−α)+ r, where r

is either a number (a polynomial of degree zero) or the zero polynomial. If in the

last equality we take z = α , then r = 0, i.e., Pn(z)−Pn(α) = qn−1(z)(z−α). ⊓⊔

The next corollary immediately follows from Bezout’s theorem.

Corollary 1.1. A complex number α is a root of a polynomial Pn(z) if and only

if z−α divides Pn(z).

A complex number α is called a root of multiplicity k ≥ 1 of a polynomial Pn(z)
if (z−α)k divides Pn(z):

Pn(z) = (z−α)kqn−k(z),

but z−α does not divide qn−k(z), i.e., the number α is not a root of the polyno-

mial qn−k(z).
A root of multiplicity one is called simple.

A polynomial is called normalized if the original polynomial was divided by the

leading coefficient. Evidently, each root of the original polynomial is a root of the

1 Etienne Bezout (1730–1783) was a French mathematician.

1.1 Complex Numbers and Polynomials 11

normalized polynomial, and, conversely, each root of the normalized polynomial is

a root of the original polynomial. To simplify the notation, properties of roots of

polynomials are usually investigated for polynomials in normalized form.

Theorem 1.3 (The Fundamental Theorem of Algebra). Each polynomial

Pn(z) = zn +an−1zn−1 + · · ·+a0, n ≥ 1,

has at least one root.

Proof. As usual we denote by x1,x2 the Cartesian coordinates of points in the

plane R2. Let x = (x1,x2) ∈ R2 and z = x1 + ix2 be the corresponding complex

number. The equality f (x) = |Pn(z)| determines the function f of two real variables.

This function is nonnegative for all x ∈ R2. If there exists a point y = (y1,y2) such

that f (y) = 0, then the complex number α = y1 + iy2 is a root of the polynomial Pn.

To prove the existence of such point y, first of all, we check that the function f is

continuous on R2.

From (1.16), p. 4, it follows that

| f (x̃)− f (x)|= ||Pn(z̃)|− |Pn(z)|| ≤ |Pn(z̃)−Pn(z)|

for any two points x and x̃. Here z̃ = x̃1 + ix̃2. Put h = z̃− z. Then

Pn(z̃) = Pn(z+h) = (z+h)n +an−1(z+h)n−1 + · · ·+a1(z+h)+a0. (1.31)

Using the binomial formula, we see that

(z+h)k = zk +C1
k zk−1h+ · · ·+Ck−1

k zhk−1 +hk

for each integer k ≥ 1. Further, we group like terms on the right hand side of (1.31)

and get

Pn(z+h) = Pn(z)+ c1h+ c2h2 + · · ·+ cn−1hn−1 +hn, (1.32)

where the coefficients c1, . . . ,cn−1 depend only on z and on the coefficients of the

polynomial Pn. Using (1.14), (1.15), p. 4, it is easy to verify that

| f (x̃)− f (x)| ≤ |Pn(z+h)−Pn(z)| ≤ L(|h|+ |h|2 + · · ·+ |h|n), (1.33)

where L depends only on |z| and on the modulus of the coefficients of the polyno-

mial Pn. The right hand side of inequality (1.33) is less than any preassigned positive

number if the distance |h| between points x̃ and x is small enough. This means that

the function f is continuous.

Suppose that f (0) = |a0|> 0. Otherwise zero is a root of the polynomial. Let BR

be the open disk of radius R centered at the origin. Denote by SR the circle that

constitutes the boundary of BR. Take x ∈ SR. Write f (x) in the form

f (x) = |zn − (−an−1zn−1 −·· ·−a0)|.

Using (1.16), p. 4, we get

12 1 Preliminaries

f (x)≥ |z|n −|an−1||z|n−1 −·· ·− |a0|= Rn −|an−1|Rn−1 −·· ·− |a0|
= Rn(1−|an−1|R−1 −·· ·− |a0|R−n).

The right hand side of the last inequality tends to infinity as R →∞. Therefore, if R

is big enough, then

f (x)≥ 2 f (0) for all x ∈ SR. (1.34)

As we have seen, the function f is continuous on the whole plane. Hence, by the ex-

treme value theorem, in the closure of BR there exists a point y where the function f

attains its minimum. Evidently, f (y) ≤ f (0), and using (1.34), we see that y /∈ SR,

i.e., y is an interior point of BR. We assume that f (y)> 0. Otherwise α = y1 + iy2 is

a root of the polynomial Pn.

Let h = h1 + ih2. If |h| is small enough, then ỹ = (y1 + h1,y2 + h2) ∈ BR. By

definition, f (ỹ) = |Pn(α +h)|. Using (1.32), we get

Pn(α +h) = Pn(α)+ c1h+ c2h2 + · · ·+hn,

where the coefficients c1, . . . ,cn−1 depend only on α and on the coefficients of the

polynomial Pn. Since by assumption Pn(α) 6= 0, we can write:

Pn(α +h)

Pn(α)
= 1+d1h+ · · ·+dnhn.

Among the numbers d1, . . . ,dn at least the number dn is not equal to zero. Suppose

that dk 6= 0 and d j = 0, j = 1, . . . ,k−1. Then for any c 6= 0 we have

Pn(α +h)

Pn(α)
= 1+

dk

ck
(ch)k +

dk+1

ck+1
(ch)k+1 + · · ·+ dn

cn
(ch)n. (1.35)

Choose the number c such that ck =−dk (see p. 6) and put v = ch. Then

f (ỹ)

f (y)
=

|Pn(α +h)|
|Pn(α)| = |1− vk + vkb(v)|,

where

b(v) =
dk+1

ck+1
v+ · · ·+ dn

cn
vn−k.

Choose now the number h such that 0< v< 1 and |b(v)| ≤ 1/2. For this v, evidently,

f (ỹ)

f (y)
≤ 1− vk

2
< 1,

but it is impossible, since in the closure of BR the function f attains the minimum

value at the point y. Thus we have a contradiction. Therefore, f (y) = 0, i.e., the

number α = y1 + iy2 is a root of the polynomial Pn. ⊓⊔
Theorem 1.4. Each polynomial of degree n ≥ 1 has n roots (considering their mul-

tiplicities).

1.1 Complex Numbers and Polynomials 13

Proof. Let Pn(z) = zn + an−1zn−1 + · · ·+ a0, n ≥ 1. By the Fundamental Theorem

of Algebra, the polynomial Pn has a root. Denote this root by α1, and suppose that

its multiplicity is equal to k1 ≥ 1. Then

Pn(z) = (z−α1)
k1qn−k1

(z).

If k1 = n, then, evidently, qn−k1
= 1. Otherwise the polynomial qn−k1

(z) has a root.

Denote it by α2. Clearly, the number α2 is a root of the polynomial Pn, and by

construction, α2 6= α1. Suppose that the multiplicity of α2 as a root of the polyno-

mial qn−k1
is equal to k2. Then

qn−k1
(z) = (z−α2)

k2qn−k1−k2
(z),

hence,

Pn(z) = (z−α1)
k1(z−α2)

k2qn−k1−k2
(z).

Obviously, the number k2 is the multiplicity of α2 as the root of the polynomial Pn.

Continuing this process, we get

Pn(z) = (z−α1)
k1(z−α2)

k2 · · ·(z−αm)
km , (1.36)

where the integers k1, k2, . . . ,km are more than or equal to one, and

k1 + k2 + · · ·+ km = n.

⊓⊔

Theorem 1.5. No polynomial Pn of degree n ≥ 1 can have more than n roots.

Proof. Indeed, let Pn(α) = 0, and suppose that the root α is not equal to any roots

α1,α2, . . . ,αm, which were defined in the proof of the previous theorem. By the

corollary of Bezout’s theorem, we have Pn(z) = (z − α)qn−1(z). Therefore, us-

ing (1.36), we get

(z−α1)
k1(z−α2)

k2 · · ·(z−αm)
km = (z−α)qn−1(z).

For z = α the right hand side of the last equality is equal to zero, but the left hand

side is not equal to zero. This contradiction means that the polynomial Pn has only

the roots α1,α2, . . . ,αm. ⊓⊔

1.1.4 Vieta’s Formulas

Let Pn(z)=a0 + a1z+ a2z2 + · · ·+ anzn be a polynomial of degree n≥1. Suppose

that the polynomial Pn has roots α1,α2, . . . ,αm of multiplicities k1,k2, . . . ,km, re-

spectively, and k1 + k2 + · · ·+ km = n. Using the results of Subsect. 1.1.3, we can

write the polynomial Pn in the form

14 1 Preliminaries

Pn(z) = A(z−α1)
k1(z−α2)

k2 · · ·(z−αm)
km ,

where A is a constant.

Let now Pn be a normalized polynomial of degree n ≥ 1. Let us numerate the

roots of Pn by integers 1, 2, . . . , n, repeating each root according to its multiplicity,

and write (1.36) in the form

Pn(z) = (z−α1)(z−α2) · · ·(z−αn).

Removing brackets, collecting all coefficients with the same power of z on the right

hand side of the last equality, and equating them with the corresponding coefficients

of the polynomial Pn, we get the following formulas that relate the coefficients of Pn

to sums and products of its roots:

an−1 =−(α1 +α2 + · · ·+αn),

an−2 = α1α2 +α1α3 + · · ·+αn−1αn,

. .

a0 = (−1)nα1α2 · · ·αn.

The rule of construction of these formulas is obvious: the number of factors in-

creases by one per line, then all the possible products of different factors are added

up in each line. They are called Vieta’s formulas.1

1.1.5 Polynomials with Real Coefficients

Suppose that all coefficients of a polynomial Pn(z) = zn + an−1zn−1 + · · ·+ a0 of

degree n≥1 are real, and α is a root of Pn. Then the complex conjugate number α
is also a root of Pn. Indeed, if Pn(α)=0, then Pn(α)=0. Further, using (1.12), p. 4,

we see that Pn(α) = αn +an−1αn−1 + · · ·+a0 = Pn(α).
Assume now that α1, α2, . . . , αs are the all real roots of the polynomial Pn.

Denote by k1, k2, . . . , ks their multiplicities and put

r = k1 + k2 + · · ·+ ks, Qr(z) = (z−α1)
k1(z−α2)

k2 · · ·(z−αs)
ks .

Then

Pn(z) = Qr(z)Rn−r(z). (1.37)

Evidently, all coefficients of the polynomial Qr are real, therefore all coefficients of

the polynomial Rn−r are also real (see the remark at page 9). By construction, the

polynomial Rn−r can have only complex roots. Note that for any z and α we have

(z−α)(z−α) = z2 + pz+q,

1 Francois Viete (Latin: Franciscus Vieta; 1540–1603) was a French mathematician.

1.2 Systems of Linear Equations, Matrices, Determinants 15

where p = −α −α = −2Reα , q = αα = |α|2 are real numbers. Hence if α is a

complex root of the polynomial Pn, and so it is a root of Rn−r, then, using (1.37), we

get

Pn(z) = Qr(z)(z
2 + pz+q)Rn−r−2(z).

Since the numbers p and q are real, the polynomial Rn−r−2 has only real coefficients.

Continuing this process, we see that

Pn(z)= (z−α1)
k1(z−α2)

k2 · · ·(z−αs)
ks(z2+ p1z+q1) · · ·(z2+ ptz+qt). (1.38)

Here s is the number of distinct real roots of the polynomial Pn, and t is the number

of all pairs of complex conjugate roots of Pn.

From (1.38) it follows immediately that each polynomial with real coefficients

of odd degree has at least one real root.

Assuming that z in equality (1.38) is real, we see that each polynomial with real

coefficients can be written in the form of a product of linear and quadratic real

factors.

For example, it is easy to see that the number α =−3 is a root of the polynomial

P3(z) = a3z3 +a2z2 +a1z+a0 = z3 −6z+9.

Let us divide P3(z) by Q1(z) = z+b0 = z+3, i.e., let us calculate a polynomial

q2(z) = c2z2 + c1z+ c0

such that P3(z) = Q1(z)q2(z). We perform calculations by Horner’s rule and see

that q2(z) = z2 − 3z + 3. The remainder is equal to zero, since z + 3 divides the

polynomial P3(z):
P3(z) = (z+3)

(
z2 −3z+3

)
.

Clearly, the number α = −3 is not a root of the polynomial q2(z). Hence α is a

simple root of the polynomial P3(z). To find the two other roots we have to solve the

quadratic equation z2−3z+3 = 0. The discriminant of this equation is equal to −3,

therefore it does not have real roots. Thus we have written the polynomial P3(z) with

real coefficients of order three in the form of a product of its linear and quadratic

real factors.

1.2 Systems of Linear Equations, Matrices, Determinants

1.2.1 Permutations

Let us consider the set of n integers: Mn = {1,2,3, . . . ,n}. We can arrange these

integers in different orders. Each arrangement of Mn in some definite order is called

a permutation. For example, the following permutations exist:

16 1 Preliminaries

1, 2, 3, . . . , n (1.39)

and

2, 1, 3, . . . , n. (1.40)

In general, a permutation of Mn can be written in the form

n1, n2, . . . , nn, (1.41)

where n1,n2, . . . ,nn are the integers 1,2,3, . . . ,n in some order.

The number of all permutations of the set Mn is usually denoted by Pn. Let us

prove by induction that Pn is equal to the product of the first n integers: 1×2×3 · · ·n,
which is written as n! and referred to as “n factorial”. We obviously have P1 = 1! and

P2 = 2!. Suppose that Pn−1 = (n−1)!. Take a permutation of Mn−1 and unite it with

the element n. We can put n at the first place, at the second place, and so on. The

last place for the element n is n-th. Hence, using each permutation of Mn−1, we can

construct n permutations of Mn. Since by the induction hypothesis Pn−1 = (n−1)!,
we see that

Pn = n!. (1.42)

We say that two elements ni and n j in permutation (1.41) construct an inversion

if i < j but ni > n j. For example, permutation (1.39) has no inversions, and permu-

tation (1.40) involves a single inversion. The elements n1 and n2 construct it.

The number of all inversions in a given permutation is called the signature of the

permutation and is denoted by σ(n1,n2, . . . ,nn).
A permutation is called even or odd according to whether the signature of the

permutation is even or odd, respectively (as usual we suppose that zero is even).

For example, permutation (1.39) is even, and permutation (1.40) is odd.

If any two elements in a permutation are interchanged, we say that in the per-

mutation a transposition is made. Each transposition is uniquely determined by the

serial numbers of the two interchanged elements. For example, permutation (1.40)

is transformed from permutation (1.39) by the transposition (1,2).

Theorem 1.6. Any transposition changes the parity of each permutation.

Proof. It is enough to check that the numbers of inversions in the permutations

n1,n2, . . . ,ni−1,ni,ni+1, . . . ,n j−1,n j,n j+1, . . . ,nn, (1.43)

n1,n2, . . . ,ni−1,n j,ni+1, . . . ,n j−1,ni,n j+1, . . . ,nn (1.44)

differ by an odd number. Let us introduce the sets

B1 = {n1,n2, . . . ,ni−1}, B2 = {ni+1, . . . ,n j−1}, B3 = {n j+1, . . . ,nn},

and denote by B+
ks (B−

ks) the number of elements in the set Bk that are greater

(less) than ns, s = i, j. Clearly, B+
ks +B−

ks = card(Bk) for any k = 1,2,3 and s = i, j.

Here card(Bk) is the number of elements in the set Bk. The transposition (i, j) de-

scribed in (1.43), (1.44) changes only the pairs that include ni or n j. Hance, it is

1.2 Systems of Linear Equations, Matrices, Determinants 17

enough to calculate only the numbers of inversions in the permutations (1.43), (1.44)

corresponding to the pairs that include ni or n j. Evidently, the number of inversions

of such kind in the permutation (1.43) is equal to

BI = B+
1i +B−

2i +B−
3i +B+

1 j +B+
2 j +B−

3 j + I(ni,n j),

where I(ni,n j) is the number of inversions in the pair ni,n j, and for the permuta-

tion (1.44) this number is equal to

BII = B+
1 j +B−

2 j +B−
3 j +B+

1i +B+
2i +B−

3i + I(n j,ni).

Obviously,

BI −BII = B−
2i −B+

2i +B+
2 j −B−

2 j + I(ni,n j)− I(n j,ni)

= B−
2i −B+

2i +B+
2 j −B−

2 j ±1 = B−
2i −B+

2i +B+
2 j −B−

2 j ±2(B+
2i +B−

2 j)±1

= B−
2i +B+

2i +B+
2 j +B−

2 j −2(B+
2i +B−

2 j)±1

= 2card(B2)−2(B+
2i +B−

2 j)±1.

Thus the number BI −BII is odd. ⊓⊔
Theorem 1.7. For each natural number n the number of all even permutations is

equal to the number of all odd permutations.

Proof. It follows from Theorem 1.6 that by the operation of transposition each even

permutation is transformed to an odd permutation. The converse is also true. There-

fore there is an one-to-one correspondence between the set of all even permutations

and the set of all odd permutations of Mn. These two sets are finite, thus the numbers

of even and odd permutations are equal. ⊓⊔

1.2.2 Determinants and their Basic Properties

A square matrix of order n is a square array consisting of n rows and n columns:

A =




a11 a12 . . . a1n

a21 a22 . . . a2n

.
an1 an2 . . . ann


 . (1.45)

Here ai j, i, j = 1,2, . . . ,n, are (generally speaking) complex numbers.

The determinant of the matrix A is the number

|A|= ∑
n1n2...nn

(−1)σ(n1,n2,...,nn)a1n1
a2n2

· · ·annn . (1.46)

We also use the following notations:

18 1 Preliminaries

|A|= det(A) = ∆ =

∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n

.
an1 an2 . . . ann

∣∣∣∣∣∣∣∣
. (1.47)

Observe that the determinant of the matrix A of order n is the sum of n! summands.

The summands are all possible products of n elements of the matrix A such that

each term in (1.46) contains one element from each row and one element from each

column of the matrix A. Each product enters into the determinant with a + sign if

the permutation n1,n2, . . . ,nn is even or a − sign if it is odd.

Using Theorem 1.7 we see that the number of terms in (1.46) with a + sign is

equal to the number of terms with a − sign.

We say that elements a1n1
,a2n2

, . . . ,annn construct the diagonal of the matrix A.

The diagonal is called even if the permutation n1,n2, . . . ,nn is even or odd if this

permutation is odd.

It is useful to note that
∣∣∣∣
a11 a12

a21 a22

∣∣∣∣= a11a22 −a12a21, (1.48)

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= a11a22a33 +a12a23a31 +a13a21a32

−a13a22a31 −a12a21a33 −a11a23a32.

The reader can prove the following equality by himself, using only the definition

of the determinant:
∣∣∣∣∣∣∣∣

1 0 . . . 0

a21 a22 . . . a2n

.
an1 an2 . . . ann

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

a22 a23 . . . a2n

a32 a33 . . . a3n

.
an2 an3 . . . ann

∣∣∣∣∣∣∣∣
. (1.49)

Note that the left hand side of (1.49) contains a determinant of order n and the right

hand side contains a determinant of order n−1.

Denote by ak the k-th row of the matrix A, i.e., ak = (ak1,ak2, . . . ,akn). The sum

of two rows f = (f1, f2, . . . , fn) and g = (g1,g2, . . . ,gn), by definition, is the row

f +g = (f1 +g1, f2 +g2, . . . , fn +gn).

The product of a number α and a row f is the row

α f = (α f1,α f2, . . . ,α fn).

If all elements of a row are equal to zero, then we say that this row is zero and

write 0 = (0,0, . . . ,0).

1.2 Systems of Linear Equations, Matrices, Determinants 19

Often it is useful to consider the determinant as the function of its rows, i.e

write ∆ = ∆(a1,a2, . . . ,an). Similarly, we can consider the determinant as the func-

tion of its columns.

Let us formulate and prove the basic properties of determinants.

1. If all elements of a row (or a column) of a determinant |A| is equal to zero,

then the determinant is equal to zero. The proof immediately follows from the fact

that in this case each diagonal of the matrix A contains a zero element.

2. The determinant is a linear function of each row (or column) separately with

the others fixed, namely,

∆(a1,a2, . . . ,ak +bk, . . . ,an)

= ∆(a1,a2, . . . ,ak, . . . ,an)+∆(a1,a2, . . . ,bk, . . . ,an),

∆(a1,a2, . . . ,αak, . . . ,an) = α∆(a1,a2, . . . ,ak, . . . ,an),

where α is a number. This statement immediately follows from formula (1.46).

3. If two rows (or two columns) of a determinant |A| are identical, then the deter-

minant vanishes. Suppose that row ai is equal to row a j, i < j. We can represent the

set of all diagonals of the matrix A as the union of all pairs of the form

a1n1
,a2n2

, . . . ,aini
, . . . ,a jn j

, . . . ,annn , (1.50)

a1n1
,a2n2

, . . . ,ain j
, . . . ,a jni

, . . . ,annn . (1.51)

The diagonals (1.50), (1.51) have opposite parity, since the corresponding permuta-

tions have form (1.43), (1.44), and each of them is transformed from the other by

the transposition (i, j). The product of all elements in diagonal (1.50) is equal to the

product for diagonal (1.51), since, by assumption, aini
= a jni

, ain j
= a jn j

. Therefore

in (1.46) the sum of each pair of terms corresponding to diagonals (1.50) and (1.51)

is equal to zero, thus, |A|= 0. In the same way we can prove that if two columns of

a determinant are identical, then the determinant is equal to zero.

4. If two rows (or columns) of a determinant ∆ are interchanged, then the result-

ing determinant has the value −∆. To simplify the notation, we prove the statement

for the rows a1 and a2. The proof for any other rows is analogous. By Property 3 we

have ∆(a1+a2,a1+a2,a3, . . . ,an) = 0. On the other hand, using Properties 2 and 3,

we see that

0 = ∆(a1 +a2,a1 +a2,a3, . . . ,an)

= ∆(a1,a1 +a2,a3, . . . ,an)+∆(a2,a1 +a2,a3, . . . ,an)

= ∆(a1,a1,a3, . . . ,an)+∆(a1,a2,a3, . . . ,an)

+∆(a2,a1,a3, . . . ,an)+∆(a2,a2,a3, . . . ,an)

= ∆(a1,a2,a3, . . . ,an)+∆(a2,a1,a3, . . . ,an),

20 1 Preliminaries

i.e., ∆(a1,a2,a3, . . . ,an) =−∆(a2,a1,a3, . . . ,an).

5. The value of a determinant remains unchanged if to any row is added the

product of any number and another row. The same is true for columns. Let us prove

as above the statement for the first two rows. Then by Properties 2 and 3 we have

∆(a1 +αa2,a2,a3, . . . ,an)

= ∆(a1,a2,a3, . . . ,an)+α∆(a2,a2,a3, . . . ,an)

= ∆(a1,a2,a3, . . . ,an).

6. Now we prove the formulas of expansion of determinants in terms of rows and

columns, which is often used in calculations. Let us introduce the unit row:

ik = (0, . . . ,0︸ ︷︷ ︸
k−1

,1,0, . . . ,0︸ ︷︷ ︸
n−k

).

Using Property 2, we easily get

∆(a1,a2,a3, . . . ,an) =
n

∑
k=1

a1k∆(ik,a2,a3, . . . ,an). (1.52)

The determinant ∆(ik,a2,a3, . . . ,an) is called the cofactor of the element a1k in

the determinant ∆(a1,a2,a3, . . . ,an) and is denoted by A1k. Using this notation we

write (1.52) in the form

∆(a1,a2,a3, . . . ,an) =
n

∑
k=1

a1kA1k.

For the same reason,

∆(a1,a2,a3, . . . ,an) =
n

∑
k=1

aikAik, i = 1,2, . . . ,n. (1.53)

Here Aik is the cofactor of aik, i.e., the determinant obtained when the row ai in

the determinant ∆(a1,a2,a3, . . . ,an) is replaced by the unit row ik. Formula (1.53)

is known as the expansion of the determinant ∆(a1,a2,a3, . . . ,an) in terms of the

row ai.

Note that
n

∑
k=1

aikAlk = 0 for l 6= i. Indeed, the left hand side of the last equality is

the expansion of the determinant with ai = al , but we know that such determinant is

equal to zero. Combining this equality with (1.53), we get

n

∑
k=1

aikAlk = |A|δil , i, l = 1,2, . . . ,n, (1.54)

where

1.2 Systems of Linear Equations, Matrices, Determinants 21

δil =

{
0, i 6= l,

1, i = l,
(1.55)

is the Kronecker delta.1

Often it is more convenient to write the determinant Alk in another form. The

reader can easily prove that Alk = (−1)k+lMlk, where Alk is the cofactor and Mlk

is the determinant obtained from the determinant |A| by deleting of l-th row and

k-th column (hint: rearranging rows and columns, write Alk in the form of the deter-

minant on the left hand side of equation (1.49)). The determinant Mlk is called the

minor of the element alk.

Note that the following formula for the expansion of the determinant in terms of

its columns holds:

n

∑
k=1

akiAkl = |A|δil , i, l = 1,2, . . . ,n. (1.56)

As an example, let us calculate the fifth-order determinant

∆ =

∣∣∣∣∣∣∣∣∣∣

−2 5 0 −1 3

1 0 3 7 −2

3 −1 0 5 −5

2 6 −4 1 2

0 −3 −1 2 3

∣∣∣∣∣∣∣∣∣∣

.

First we zero out the third column except for the last entry. To do this we multiply

the last row by three and add to the second row, after that we multiply the last row

by four and subtract from the fourth row. As a result we get

∆ =

∣∣∣∣∣∣∣∣∣∣

−2 5 0 −1 3

1 −9 0 13 7

3 −1 0 5 −5

2 18 0 −7 −10

0 −3 −1 2 3

∣∣∣∣∣∣∣∣∣∣

.

Expanding this determinant in terms of the third column, we obtain

∆ = (−1)3+5(−1)

∣∣∣∣∣∣∣∣

−2 5 −1 3

1 −9 13 7

3 −1 5 −5

2 18 −7 −10

∣∣∣∣∣∣∣∣
.

Now we zero out the first column except for the second element. To do this we

multiply the second row by two and add to the first row, after that we multiply the

second row by three and subtract from the third row, and finally we multiply the

second row by two and subtract from the last row. As a result we get

1 Leopold Kronecker (1823–1891) was a German mathematician.

22 1 Preliminaries

∆ =−

∣∣∣∣∣∣∣∣

0 −13 25 17

1 − 9 13 7

0 26 −34 −26

0 36 −33 −24

∣∣∣∣∣∣∣∣
.

Expanding this determinant in terms of the first column, we obtain

∆ =−(−1)2+1

∣∣∣∣∣∣

−13 25 17

26 −34 −26

36 −33 −24

∣∣∣∣∣∣
=

∣∣∣∣∣∣

−13 25 17

26 −34 −26

36 −33 −24

∣∣∣∣∣∣
.

Let us calculate the third-order determinant, expanding it in terms of the third row:

∆ = 36

∣∣∣∣
25 17

−34 −26

∣∣∣∣− (−33)

∣∣∣∣
−13 17

26 −26

∣∣∣∣+(−24)

∣∣∣∣
−13 25

26 −34

∣∣∣∣

= 36(−72)− (−33)(−104)+(−24)(−208) =−1032.

7. The matrix

AT =




a11 a21 . . . an1

a12 a22 . . . an2

.
a1n a2n . . . ann


 (1.57)

is called the transpose of a matrix A. Observe that in (1.57) we write the columns

of A as the rows of AT .

The determinants of matrices A and AT are equal.

Let us prove this statement by induction over the order of the determinant. For the

second-order determinant the statement is evidently true. Suppose that this equality

holds for each determinant of order n−1 and prove it for an arbitrary determinant |A|
of order n. Expanding |A| in terms of the first row, we get

|A|= a11M11 −a12M12 + · · ·+(−1)n+1a1nM1n. (1.58)

Expanding the determinant |AT | along the first column, we obtain

|AT |= a11MT
11 −a12MT

21 + · · ·+(−1)n+1a1nMT
n1. (1.59)

Here MT
i j is the minor of the element in the position i, j in the determinant |AT |. By

the inductive assumption, MT
i j = M ji, thus, |AT |= |A|.

8. We say that the rows of the matrix A are linearly dependent if there exist scalars

α1,α2, . . . ,αn, not all zero, such that

α1a1 +α2a2 + · · ·+αnan = 0. (1.60)

In the contrary case, i.e., when (1.60) implies α1 = · · ·= αn = 0, the rows are called

linearly independent. Evidently, if the rows of the matrix are linearly independent,

1.2 Systems of Linear Equations, Matrices, Determinants 23

then each of them is not equal to zero. The concept of linear dependence of the

columns of the matrix is introduced similarly.

The determinant of a matrix A is equal to zero if and only if the rows of the

matrix A are linearly dependent. Let us prove this statement.

Suppose that the rows of A are linearly dependent, and for definiteness suppose

that equality (1.60) holds for α1 6= 0. Using the property of linearity of the determi-

nant in the first row, and then using Properties 5 and 1, we get

α1∆(a1,a2, . . . ,an) = ∆(α1a1,a2, . . . ,an)

= ∆(α1a1 +α2a2 + · · ·+αnan,a2, . . . ,an) = 0.

Thus, ∆(a1,a2, . . . ,an) = 0, since α1 6= 0.

Let us prove the converse statement, namely, if the rows of a matrix are lin-

early independent, then the determinant of the matrix is not equal to zero. Suppose

that |A|= 0. Let us consider all determinants of order n−1 obtained from the deter-

minant |A| by deleting of a row and a column. If each of them is equal to zero, then

we consider the determinants of order n− 2 and so on. Finally, either all elements

of the matrix A are equal to zero (then the assertion is obviously true) or there is a

nonzero determinant of order k ≥ 1 obtained from the determinant |A| by deleting

of some n− k rows and some n− k columns, and all determinants of order greater

than k are equal to zero. Denote this determinant by dk. Since after interchanging of

rows and columns of a determinant only its sign is changed, we can assume with-

out loss of generality that dk consists of elements of the first k rows and the first k

columns of the matrix A.

Consider the determinant dk+1, which consists of the elements of the first k+ 1

rows and the first k+1 columns of the matrix A. By assumption, dk+1 = 0. Expand-

ing dk+1 in terms of the last column, we get

α1a1k+1 +α2a2k+1 + · · ·+αkakk+1 +dkak+1k+1 = 0. (1.61)

We emphasize that dk 6= 0, and the numbers α1, α2, . . . , αk are cofactors of corre-

sponding elements of the last column of the determinant dk+1.

By interchanging of columns in the determinant |A| we can construct the last

column of the determinant dk+1 using the following elements:

a1 j, a2 j, . . . , ak j, ak+1 j, j = k+2, k+3, . . . , n.

By assumption, each of the constructed determinants dk+1 is equal to zero. Expand-

ing each of them in terms of its last column, we get

α1a1 j +α2a2 j + · · ·+αkak j +dkak+1 j = 0, j = k+2, k+3, . . . , n. (1.62)

Finally, if we put on the place of the k + 1-th column of the determinant |A|
its column with number j ≤ k, then we obtain the zero determinant (since the two

columns of this determinant are equal). For the same reason we have dk+1 = 0.

Expanding again each constructed dk+1 in terms of its last column, we get

24 1 Preliminaries

α1a1 j +α2a2 j + · · ·+αkak j +dkak+1 j = 0, j = 1, 2, . . . , k. (1.63)

Thus,

α1a1 j +α2a2 j + · · ·+αkak j +dkak+1 j +0×ak+2 j + · · ·+0×an j = 0,

where j = 1, 2, . . . , n; dk 6= 0, i.e., the rows of the matrix A are linearly dependent.

Remark 1.2. Since |AT | = |A|, it is clear that the determinant of a matrix A is equal

to zero if and only if the columns of the matrix A are linearly dependent.

Below are two examples of calculation of determinants, which are often used in

applications.

1. The determinant of a triangular matrix. A matrix A is called upper triangular

if ai j = 0 for i > j. A matrix A is called lower triangular if ai j = 0 for i < j.

If a matrix A is triangular, then

|A|= a11a22 · · ·ann. (1.64)

Let us prove this statement for an upper triangular matrix. Then (1.64) holds also

for each lower triangular matrix A, since |A| = |AT | and AT is an upper triangular

matrix.

For determinants of order one and two equality (1.64) is evidently true. Let us

check (1.64) by induction over the order of the determinant. Suppose that (1.64)

holds for each determinant of order n−1 and consider the following determinant:

|A|=

∣∣∣∣∣∣∣∣∣∣

a11

0

0

. . .
0

a12

a22

0

. . .
0

a13

a23

a33

. . .
0

. . .

. . .

. . .

. . .

. . .

a1n

a2n

a3n

. . .
ann

∣∣∣∣∣∣∣∣∣∣

.

Expanding |A| in terms of the first column, we get

|A|= a11

∣∣∣∣∣∣∣∣

a22

0

. . .
0

a23

a33

. . .
0

. . .

. . .

. . .

. . .

a2n

a3n

. . .
ann

∣∣∣∣∣∣∣∣
.

The determinant on the right hand side in the last equality has order n− 1, and by

the inductive assumption it is equal to a22a33 · · ·ann, thus (1.64) holds.

2. The Vandermonde1 determinant of order n is the determinant defined as fol-

lows:

1 Alexandre-Theophile Vandermonde (1735–1796) was a French musician and mathematician.

1.2 Systems of Linear Equations, Matrices, Determinants 25

d =

∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1

a1 a2 a3 . . . an

a2
1 a2

2 a2
3 . . . a2

n

.

an−1
1 an−1

2 an−1
3 . . . an−1

n

∣∣∣∣∣∣∣∣∣∣

.

Let us prove that for any n ≥ 2 the Vandermonde determinant is equal to the product

of all possible differences ai −a j, where 1 ≤ j < i ≤ n, namely,

d = ∏
1≤ j<i≤n

(ai −a j).

The assertion is obviously true for n = 2. Let us use the method of mathematical

induction. Suppose that the assertion is true for the Vandermonde determinant of

order n−1, i.e.,

∣∣∣∣∣∣∣∣

1 1 . . . 1

a2 a3 . . . an

.

an−2
2 an−2

3 . . . an−2
n

∣∣∣∣∣∣∣∣
= ∏

2≤ j<i≤n

(ai −a j).

Consider the determinant d. Multiply the penultimate row by a1 and subtract from

the last row, then multiply the (n−2)-th row by a1 and subtract from the (n−1)-th
row, and so on. As a result we get




1 1 1 . . . 1

0 a2 −a1 a3 −a1 . . . an −a1

0 a2
2 −a1a2 a2

3 −a1a3 . . . a2
n −a1an

.

0 an−1
2 −a1an−2

2 an−1
3 −a1an−2

3 . . . an−1
n −a1an−2

n




Expanding d in terms of the first column, we obtain the following determinant of

order n−1:

d =

∣∣∣∣∣∣∣∣

a2 −a1 a3 −a1 . . . an −a1

a2
2 −a1a2 a2

3 −a1a3 . . . a2
n −a1an

.

an−1
2 −a1an−2

2 an−1
3 −a1an−2

3 . . . an−1
n −a1an−2

n

∣∣∣∣∣∣∣∣
.

Note that a2 −a1 is a common multiple of all elements of the first column, a3 −a1

is a common multiple of all elements of the second column, and so on. Therefore,

d = (a2 −a1)(a3 −a1) . . .(an −a1)

∣∣∣∣∣∣∣∣

1 1 . . . 1

a2 a3 . . . an

.

an−2
2 an−2

3 . . . an−2
n

∣∣∣∣∣∣∣∣
,

where the last multiplier is the Vandermonde determinant of order n−1. Thus,

26 1 Preliminaries

d = (a2 −a1)(a3 −a1) . . .(an −a1) ∏
2≤ j<i≤n

(ai −a j) = ∏
1≤ j<i≤n

(ai −a j).

1.2.3 Cramer’s Rule

In this section we consider systems of linear algebraic equations in which the num-

ber of unknowns is equal to the number of equations:

a11x1 +a12x2 + · · ·+a1nxn = b1,
a21x1 +a22x2 + · · ·+a2nxn = b2,
. .

an1x1 +an2x2 + · · ·+annxn = bn.

(1.65)

The square matrix

A =




a11 a12 . . . a1n

a21 a22 . . . a2n

.
an1 an2 . . . ann


 (1.66)

which consists of the coefficients of these equations, is called the matrix of sys-

tem (1.65). In this section we assume that |A| 6= 0. In this case the matrix A is called

nonsingular (if |A| = 0, then the matrix A is called singular). The array of num-

bers b1,b2, . . . ,bn is called the column of the right-hand side of system (1.65). If

the right-hand side of the system is zero, i.e., bi = 0 for all i = 1, 2, . . . , n, then

system (1.65) is called homogeneous. A homogeneous system of equations always

has a solution. For example, we can take x1, x2, . . . , xn = 0. This solution is called

trivial.

Theorem 1.8. Every homogeneous system of linear algebraic equations with a

square nonsingular matrix has only the trivial solution.

Proof. Assume the contrary. Then there exist scalars x1, x2, . . . , xn, not all zero,

such that
a11x1 +a12x2 + · · ·+a1nxn = 0,
a21x1 +a22x2 + · · ·+a2nxn = 0,
. .

an1x1 +an2x2 + · · ·+annxn = 0.

(1.67)

This means that the columns of the matrix A are linearly dependent, hence we

get |A| = 0, which is impossible for the nonsingular matrix A. Therefore our as-

sumption on the existence of a nontrivial solution of system (1.67) with a nonsingu-

lar matrix is incorrect. ⊓⊔

Remark 1.3. System (1.67) has a nontrivial solution if and only if |A| = 0. This

statement immediately follows from Remark 1.2.

1.2 Systems of Linear Equations, Matrices, Determinants 27

Theorem 1.9. For any right-hand side system (1.65) with a nonsingular matrix A

cannot have two different solutions.

Proof. Assume the contrary, and let x1,x2, . . . ,xn and y1,y2, . . . ,yn be two different

solutions of system (1.65), i.e.,

a11x1 +a12x2 + · · ·+a1nxn = b1,
a21x1 +a22x2 + · · ·+a2nxn = b2,
. .

an1x1 +an2x2 + · · ·+annxn = bn

(1.68)

and
a11y1 +a12y2 + · · ·+a1nyn = b1,
a21y1 +a22y2 + · · ·+a2nyn = b2,
. .

an1y1 +an2y2 + · · ·+annyn = bn.

(1.69)

Put z1 = x1 − y1, z2 = x2 − y2, . . . , zn = xn − yn. Subtracting term by term the

corresponding equations in (1.68) and (1.69), we see that z1, z2, . . . , zn is the

solution of homogeneous system (1.67). Then by Theorem 1.8, it follows that

z1 = z2 = · · · = zn = 0, i.e., the assumption on the existence of two different so-

lutions of system (1.65) is incorrect. ⊓⊔

Theorem 1.10. For any right-hand side system (1.65) with a nonsingular matrix A

has a solution.

Proof. Let us construct the solution of system (1.65) in the form

xi = ci1b1 + ci2b2 + · · ·+ cinbn, i = 1,2, . . . ,n. (1.70)

Here cik, i,k = 1,2, . . . ,n are unknown coefficients. Substituting (1.70) into the equa-

tions of system (1.65) and collecting on the left hand side of these equations all

coefficients of the same bi, we get

b1(ai1c11 +ai2c21 + · · ·+aincn1)

+b2(ai1c12 +ai2c22 + · · ·+aincn2)

+ · · ·+bi(ai1c1i +ai2c2i + · · ·+aincni)

+ · · ·+bn(ai1c1n +ai2c2n + · · ·+aincnn) = bi, (1.71)

where i = 1, 2, . . . , n. Clearly, if we can find coefficients cik such that the following

conditions hold:

ai1c1k +ai2c2k + · · ·+aincnk = δik, i,k = 1,2, . . . ,n, (1.72)

where δik is the Kronecker delta, then formulas (1.70) gives us a solution of sys-

tem (1.65). Comparing (1.72) and (1.54), p. 20, we see that equations (1.72) hold if

we put

28 1 Preliminaries

cik =
Aki

|A| , i,k = 1,2, . . . ,n. (1.73)

Substituting (1.73) into (1.70), we get the following formulas for the solution of

system (1.65):

xi = (A1ib1 +A2ib2 + · · ·+Anibn)/|A|, i = 1,2, . . . ,n. (1.74)

Using the expansion of a determinant in terms of a column, we can write (1.74) in

more compact form:

xi =
∆i

∆
, i = 1,2, . . . ,n. (1.75)

Here ∆ = |A|, ∆i is the determinant obtained when the i-th column of |A| is replaced

by the right-hand side of system (1.65). ⊓⊔

Formulas (1.75) are called Cramer’s 1 formulas (or Cramer’s rule). As an exam-

ple, we now solve the following system of equations using Cramer’s rule:

x1 + x2 + x3 =−2,

x1 +3x2 −2x4 =−4,

2x1 + x3 − x4 =−1,

2x2 − x3 −3x4 =−3.

Let us calculate the corresponding determinants:

∆ =

∣∣∣∣∣∣∣∣

1 1 1 0

1 3 0 −2

2 0 1 −1

0 2 −1 −3

∣∣∣∣∣∣∣∣
= 4, ∆1 =

∣∣∣∣∣∣∣∣

−2 1 1 0

−4 3 0 −2

−1 0 1 −1

−3 2 −1 −3

∣∣∣∣∣∣∣∣
= 4, ∆2 =

∣∣∣∣∣∣∣∣

1 −2 1 0

1 −4 0 −2

2 −1 1 −1

0 −3 −1 −3

∣∣∣∣∣∣∣∣
=−4,

∆3 =

∣∣∣∣∣∣∣∣

1 1 −2 0

1 3 −4 −2

2 0 −1 −1

0 2 −3 −3

∣∣∣∣∣∣∣∣
=−8, ∆4 =

∣∣∣∣∣∣∣∣

1 1 1 −2

1 3 0 −4

2 0 1 −1

0 2 −1 −3

∣∣∣∣∣∣∣∣
= 4.

By Cramer’s rule, we get x1 = ∆1/∆ = 1, x2 = ∆2/∆ = −1, x3 = ∆3/∆ = −2,
and x4 = ∆4/∆ = 1.

For numerical computations Cramer’s formulas are used very rarely. Systems of

linear equations are usually solved numerically by different variants of Gaussian

elimination or by iterative methods (see p. 39 in this chapter and Chapters 8, 12).

As an example of application of Cramer’s rule let us construct the so-called La-

grange2 interpolation formula.

1 Gabriel Cramer (1704–1752) was a Swiss mathematician.
2 Joseph-Louis Lagrange (1736–1813) was a French mathematician.

1.2 Systems of Linear Equations, Matrices, Determinants 29

Theorem 1.11. Let z0,z1, . . . ,zn be distinct numbers, and h0,h1, . . . ,hn be arbitrary

numbers. Then there exists one and only one polynomial

Pn(z) = a0 +a1z+a2z2 + · · ·+anzn

such that

Pn(z j) = h j, j = 0,1, . . . ,n. (1.76)

Proof. Conditions (1.76) is the system of linear equations for the coefficients of the

polynomial Pn. The determinant of this system is the Vandermonde determinant (see

p. 24). Obviously, it is not equal to zero, hence system (1.76) has a unique solution

for every right-hand side. ⊓⊔

It is clear now that if a polynomial of order n for at least n+1 points is equal to

zero, then all its coefficients are equal to zero.

It is not hard to construct the polynomial, satisfying conditions (1.76), in an ex-

plicit form. Namely, the Lagrange interpolation formula gives the solution of this

problem:

Pn(z) = h0Φ0(z)+h1Φ1(z)+ · · ·+hnΦn(z), (1.77)

where Φ j is a polynomial of order n, satisfying the following conditions:

Φ j(zk) = 0, k = 0,1, . . . , j−1, j+1, . . . ,n, (1.78)

Φ j(z j) = 1, (1.79)

for j = 0,1,2 . . . ,n.
As we have seen in Subsect. 1.1.3, p. 10, each polynomial is uniquely determined

up to a constant factor by all its roots, therefore,

Φ j(z) = A j(z− z0)(z− z1) · · ·(z− z j−1)(z− z j+1) · · ·(z− zn).

Using (1.79), we see that

A j =
1

(z j − z0)(z j − z1) · · ·(z j − z j−1)(z j − z j+1) · · ·(z j − zn)
,

i.e.,

Φ j(z) =
(z− z0)(z− z1) · · ·(z− z j−1)(z− z j+1) · · ·(z− zn)

(z j − z0)(z j − z1) · · ·(z j − z j−1)(z j − z j+1) · · ·(z j − zn)
,

where j = 0,1,2, . . . ,n.

1.2.4 Matrices: Basic Operations and Transformations

We have introduced the concept of a square matrix (see p. 17). A rectangular m-by-n

matrix is a rectangular array consisting of m rows and n columns:

30 1 Preliminaries

A =




a11 a12 . . . a1n

a21 a22 . . . a2n

.
am1 am2 . . . amn


 . (1.80)

Here ai j, i = 1,2, . . . ,m, j = 1,2, . . . ,n, are (generally speaking) complex numbers.

Sometimes the dimensions of the matrix A are indicated explicitly and we use the

following notations: A(m,n) or Am×n.

In the particular case of m = n we have a square matrix of order n. The set of all

rectangular m-by-n matrices we denote by Mm,n. The set of all square matrices of

order n we denote by Mn.

There are two more special cases. If m = 1 and n is arbitrary we have the row

matrix

x = (x1,x2, . . . ,xn). (1.81)

The row matrix is often called the row, and we say that this row has length n. If n= 1

and m is arbitrary we have the column matrix

x =




x1

x2

...

xm


 . (1.82)

This matrix is also called the column of length m. Note that the second subscript

in the notations of elements of rows and columns usually is not used. Rows and

columns we often call vectors.

Let us describe some special types of square matrices.

The elements a11,a22, . . . ,ann of a square matrix A of order n constitute its main

diagonal. A diagonal matrix is a square matrix all of whose elements outside the

main diagonal are equal to zero:

D =




d11 0 . . . 0

0 d22 . . . 0

.
0 0 . . . dnn


 . (1.83)

We also denote this matrix by

D = diag(d11,d22, . . . ,dnn).

If dii = 1 for i = 1,2, . . . ,n, then the diagonal matrix is called the identity matrix,

and is denoted by I:

I =




1 0 . . . 0

0 1 . . . 0

.
0 0 . . . 1


 . (1.84)

1.2 Systems of Linear Equations, Matrices, Determinants 31

A permutation matrix is a matrix obtained from the identity matrix by interchang-

ing the i-th and the k-th columns, it is denoted by Pik. For example, the following

three matrices are the permutation matrices of order 3:

P12 =




0 1 0

1 0 0

0 0 1


 , P13 =




0 0 1

0 1 0

1 0 0


 , P23 =




1 0 0

0 0 1

0 1 0


 .

Let us recall that a lower triangular matrix L is a square matrix all of whose

elements above the main diagonal are equal to zero:

L =




l11 0 . . . 0

l21 l22 . . . 0

.
ln1 ln2 . . . lnn


 , (1.85)

and an upper triangular matrix U is a square matrix all of whose elements below

the main diagonal are equal to zero:

U =




u11 u12 . . . u1n

0 u22 . . . u2n

.
0 0 . . . unn


 . (1.86)

The triangular matrix

Lk =




1 · · · 0 0 · · · 0

.
0 · · · lk,k 0 · · · 0

0 · · · lk+1,k 1 · · · 0

.
0 · · · ln,k 0 · · · 1




(1.87)

is called the elementary lower triangular matrix. Note that this matrix differs from

the identity matrix only by the elements of the k-th column.

Let us introduce the operations of matrix addition and multiplication of matrices

by scalars.

The product of an m-by-n matrix A by a scalar α is the matrix

αA =




αa11 αa12 . . . αa1n

αa21 αa22 . . . αa2n

.
αam1 αam2 . . . αamn


 .

Each element of the matrix αA is the product of the corresponding element of the

matrix A by the number α .

The sum of two m-by-n matrices A and B is the m-by-n matrix C with the ele-

ments ci j = ai j +bi j. In matrix notation we write this as C = A+B.

32 1 Preliminaries

The zero matrix is the matrix all of whose elements are equal to zero, it is denoted

by 0.

The reader can easily verify the following properties of the two operations, which

have been introduced:

1. A+0 = A,

2. (A+B)+C = A+(B+C),
3. A+B = B+A,

4. (α +β)A = αA+βA.

Note that the sum of two upper (lower) triangular matrices is an upper (lower)

triangular matrix.

By definition, the product of a row x and a column y of the same length n is the

number

(x1,x2, . . . ,xn)




y1

y2

...

yn


=

n

∑
k=1

xkyk. (1.88)

In other words, this product is obtained by multiplying together corresponding ele-

ments in the row x and the column y and then adding the products.

For example,

(
5 −1 3 1

)



−1

−2

3

4


= 5× (−1)+(−1)× (−2)+3×3+1×4 = 10.

The product of an m-by-n matrix A by a vector x of length n is the vector y of

length m with the elements

yi =
n

∑
j=1

ai jx j, i = 1,2, . . . ,m.

In matrix notation it is written as follows:

y = Ax.

We can write the same in detail:




y1

y2

...

ym


=




a11 a12 . . . a1n

a21 a22 . . . a2n

.
am1 am2 . . . amn







x1

x2

...

xn


 .

Observe that the i-th element of the column y is the product of the i-th row of the

matrix A and the column x.

1.2 Systems of Linear Equations, Matrices, Determinants 33

For example, 


0 −3 1

2 1 5

−4 0 −2






3

−2

2


=




8

14

−16


 .

It immediately follows from the definition, that for any scalars α , β and for any

vectors x, y (of suitable length) we have

A(αx+βy) = αAx+βAy. (1.89)

Therefore we say that the operation of matrix-vector multiplication is linear.

The product of a row x of length m by an m-by-n matrix A is the row y of length n

with the elements

y j =
m

∑
i=1

ai jxi, j = 1,2, . . . ,n.

In matrix notation it is written as follows:

y = xA.

We can write the same in detail:

(
y1,y2, . . . ,yn

)
=
(
x1,x2, . . . ,xm

)



a11 a12 . . . a1n

a21 a22 . . . a2n

.
am1 am2 . . . amn


 .

The j-th element of the row y is the product of the row x and the j-th column of the

matrix A.

For example,

(
5 1 0 −3

)



2 0

1 −4

3 1

0 −1


=

(
11 −1

)
.

It immediately follows from the definition, that for any scalars α , β and for any

rows x, y (of suitable length) we have

(αx+βy)A = αxA+βyA. (1.90)

This means that the operation of multiplication of a row by a matrix is linear.

Using the operations, which we have introduced, we can write system (1.65) of n

linear equations with n unknowns either in the form

Ax = b, (1.91)

where A is a given square matrix, b is a given vector, x is an unknown vector, or in

the form

xAT = b, (1.92)

34 1 Preliminaries

where b is a given row, and x is an unknown row. Form (1.91) is used more often.

Suppose that A is an m-by-n matrix, and B is an n-by-p matrix. Then the m-by-p

matrix C with the elements

ci j =
n

∑
q=1

aiqbq j, i = 1,2, . . . ,m, j = 1,2, . . . , p,

is called the product of the matrices A and B, which is written as C = AB, or in detail

as follows:



c11 c12 . . . c1p

c21 c22 . . . c2p

.
cm1 cm2 . . . cmp


=




a11 a12 . . . a1n

a21 a22 . . . a2n

.
am1 am2 . . . amn







b11 b12 . . . b1p

b21 b22 . . . b2p

.
bn1 bn2 . . . bnp


 .

It is useful to observe that each column in the matrix C is calculated as the product

of the matrix A by the corresponding column of the matrix B. Similarly, each row in

the matrix C is calculated as the product of the corresponding row of the matrix A

by the matrix B. Note also that each element ci j is the product of the i-th row of the

matrix A and the j-th column of the matrix B.

For instance,

(
5 −1 3 1

2 0 −1 4

)



−1 3 0

−2 1 1

3 0 −2

4 1 2


=

(
10 15 −5

11 10 10

)
.

The matrix product depends on the order of the factors. For example,

(
1 2

3 2

)(
1 2

1 1

)
=

(
3 4

5 8

)
,

(
1 2

1 1

)(
1 2

3 2

)
=

(
7 6

4 4

)
.

Two matrices A, B commute (with each other), or are commuting matrices if

AB = BA.

Commuting matrices exist. For example,

(
7 −12

−4 7

)(
26 45

15 26

)
=

(
26 45

15 26

)(
7 −12

−4 7

)
=

(
2 3

1 2

)
.

For any square matrix A we have

AI = IA = A.

1.2 Systems of Linear Equations, Matrices, Determinants 35

Let us verify the following properties of the operation of matrix multiplication:

1. (A+B)C = AC+BC,

2. C(A+B) =CA+CB,

3. A(BC) = (AB)C.

Clearly, the dimensions of these matrices are matched such that all operations here

make sense.

It is easy to see that Properties 1, 2 follows from (1.90), (1.89), respectively. To

prove Property 3 note that each element of the matrix D = A(BC) is a number of

the form di j = ai(Bc j), where ai is the i-th row of the matrix A, and c j is the j-

th column of the matrix C. The elements of the matrix F = (AB)C are the num-

bers fi j = (aiB)c j. Therefore it is enough to prove that x(By) = (xB)y for any row x

and any column y (obviously, their lengths have to correspond to the dimensions of

the matrix B). Suppose that the matrix B has m rows and n columns. By elementary

calculations we get

x(By) =
m

∑
i=1

xi

n

∑
j=1

bi jy j =
m

∑
i=1

n

∑
j=1

bi jxiy j, (1.93)

similarly,

(xB)y =
n

∑
j=1

y j

m

∑
i=1

bi jxi =
n

∑
j=1

m

∑
i=1

bi jxiy j. (1.94)

Sums (1.93), (1.94) differ only in the order of their summands, and hence equal.

The proof of the following statements is left to the reader.

1. Let Pik be a permutation matrix. Then the vector Pikx is obtained from the vector x

by interchanging the elements xi and xk.

2. The matrix PikA is obtained from the matrix A by interchanging the i-th and the

k-th rows. Hint: this is a consequence of the previous statement.

3. If matrices L, M are lower triangular, then the matrix LM is lower triangular, and

the same is true for upper triangular matrices.

4. Each lower triangular matrix L can be represented in the form of the product of

the elementary lower triangular matrices Lk, namely,

L = L1L2 · · ·Ln−1Ln. (1.95)

Hint: make calculations according to the following placement of parentheses:

L = L1(L2 · · ·(Ln−2(Ln−1Ln) · · ·),

i.e., firstly premultiply Ln by Ln−1, then premultiply the product by Ln−2 and

so on.

5. For each square matrix A the following equalities hold:

det(PikA) = detPik detA =−detA. (1.96)

36 1 Preliminaries

Let us prove that for each square matrix A and the elementary lower triangular

matrix Lk the following equality holds:

det(LkA) = lkk detA. (1.97)

Indeed, let a = (a1,a2, . . . ,an) be a vector. By elementary calculations we get

Lka =




a1

a2

...

ak−1

lk,kak

lk+1,kak +ak+1

lk+2,kak +ak+2

...

ln,kak +an




.

Each column of the matrix LkA has this form. Therefore we can factor out from

the k-th row of det(LkA) the common factor lkk. Then we can see that the obtained

determinant is equal to detA if we multiply the k-th row in it by l jk and subtract

from the j-th row for j = k+1, k+2, . . . , n. As a result we get (1.97).

Now using (1.97), (1.95), and (1.64), the reader can easily verify the equality

det(LA) = detL detA (1.98)

for any square matrix A and any lower triangular matrix L, and also the analogous

equality for any upper triangular matrix R:

det(RA) = detR detA. (1.99)

Let us discuss the concept of transpose of a rectangular matrix, whose definition

is analogous to the definition of transpose of a square matrix (see p. 22).

Clearly, the transpose of an m-by-n matrix is an n-by-m matrix. For instance, the

transpose of a row matrix is a column matrix, and conversely.

The basic properties of the operation of transposition of rectangular matrices are

the following.

1. For any matrix A we have (AT)T = A.

2. For any numbers α , β and any matrices A, B of the same dimensions we have

(αA+ βB)T = αAT + βBT . This means that the operation of transposition is

linear.

3. If the product AB is defined, then the product BT AT is also defined and

(AB)T = BT AT .

All properties except 3 (b) immediately follow from the definition (prove them!).

1.2 Systems of Linear Equations, Matrices, Determinants 37

Let us prove Property 3 (b). The (i, j)-th element of the matrix (AB)T is the

product of the j-th row of the matrix A and the i-th column of the matrix B. The

(i, j)-th element of the matrix BT AT is the product of the i-th row of the matrix BT

and the j-th column of the matrix AT . The i-th row of the matrix BT is equal to the

i-th column of the matrix B, and the j-th column of the matrix AT is equal to the

j-th row of the matrix A. Thus Property 3 (b) is true.

We shall next investigate the operation of inversion of square matrices using re-

sults of Subsect. 1.2.3, p. 26. Let us recall that if |A| 6= 0, then the matrix A is called

nonsingular; and if |A| = 0, then the matrix A is called singular. The two following

statements we prove using Remark 1.3.

If both the square matrices A, B are nonsingular, then the matrix C = AB is non-

singular. To prove this, it is enough to show that the homogeneous system of linear

equations

ABx = 0 (1.100)

has only the trivial solution. Indeed, Bx = 0, since A is nonsingular, and hence x = 0,

since B is nonsingular.

If one of the square matrices A, B is singular, then the matrix C = AB is also

singular. Indeed, in this case it is enough to show that system (1.100) has a nontrivial

solution. Suppose that the matrix B is singular. Then there exists a vector x 6= 0 such

that Bx = 0, therefore, ABx = 0.

Let now the matrix A be singular, but the matrix B be nonsingular. Then there

exists a vector y 6= 0 such that Ay = 0. Since B is nonsingular, the system Bx = y

has a unique solution x. The vector x is not equal to zero since y 6= 0. Again we get

ABx = 0 for x 6= 0.

A matrix X is called a right inverse of the matrix A if

AX = I. (1.101)

A matrix Y is called a left inverse of the matrix A if

YA = I. (1.102)

If the matrix A is singular, then it does not have a right inverse. Indeed, if there

exists a right inverse X , then

det(AX) = det(I) = 1.

On the other hand, det(AX) = 0, since A is singular. It is proved similarly, that the

singular matrix does not have a left inverse.

If det(A) 6= 0, then there exists one and only one right inverse of the matrix A.

Indeed, let us denote by xk the k-th column of the matrix X , and by ik the k-th column

of the matrix I. Using (1.101), we get the following systems of linear equations:

Axk = ik, k = 1,2, . . . ,n. (1.103)

38 1 Preliminaries

Each of these n systems has a unique solution xk, since the matrix A is nonsingu-

lar. The proof of the existence and uniqueness of a left inverse of the nonsingular

matrix A is similar.

In fact, the left inverse and the right inverse of a nonsingular matrix A are equal

to each other. Indeed, if YA = I, then YAX = X , but AX = I, hence, Y = X .

Thus, if (1.101) holds, then the matrix X is called the inverse of A. The inverse

matrix of the matrix A is denoted by A−1, and by definition,

AA−1 = I.

Let us write the inverse matrix in an explicit form. To do this we introduce the

so-called the adjugate matrix. The adjugate matrix Ã of A is the transpose of the

matrix of cofactors of the elements of the matrix A. Namely,

Ã =




A11 A21 . . . An1

A12 A22 . . . An2

.
A1n A2n . . . Ann


 ,

where Ai j denotes the cofactor of the element ai j in A.

Now we can write formulas (1.54), p. 20, in matrix form

AÃ = |A|I. (1.104)

Therefore, if |A| 6= 0, then the matrix

A−1 = |A|−1Ã (1.105)

is the inverse of the matrix A.

For example, let us calculate the inverse of the matrix

A =




3 −1 0

−2 1 1

2 −1 4


 .

Expanding the determinant of A in terms of the first row, we get |A|= 5. The cofac-

tors of the elements of the matrix A are calculated in the following way:

A11 =

∣∣∣∣
1 1

−1 4

∣∣∣∣= 5, A12 =−
∣∣∣∣
−2 1

2 4

∣∣∣∣= 10, A13 =

∣∣∣∣
−2 1

2 −1

∣∣∣∣= 0,

A21 =−
∣∣∣∣
−1 0

−1 4

∣∣∣∣= 4, A22 =

∣∣∣∣
3 0

2 4

∣∣∣∣= 12, A23 =−
∣∣∣∣

3 −1

2 −1

∣∣∣∣= 1,

A31 =

∣∣∣∣
−1 0

1 1

∣∣∣∣=−1, A32 =−
∣∣∣∣

3 0

−2 1

∣∣∣∣=−3, A33 =

∣∣∣∣
3 −1

−2 1

∣∣∣∣= 1.

Using (1.105), we obtain

1.2 Systems of Linear Equations, Matrices, Determinants 39

A−1 =
1

|A|




A11 A21 A31

A12 A22 A32

A13 A23 A33


=




1 4/5 −1/5

2 12/5 −3/5

0 1/5 1/5


 .

Below are some properties of the operation of inversion of matrices.

1. The matrix A−1 is nonsingular and (A−1)−1 = A. This statement is an evident

consequence of the equality AA−1 = I.

2. If the matrices A, B are nonsingular, then (AB)−1 = B−1A−1. Indeed, the follow-

ing equalities are true: AB(B−1A−1) = A(BB−1)A−1 = AA−1 = I.

3. If the matrix A is nonsingular, then AT is nonsingular and (AT)−1 = (A−1)T .
The matrix AT is nonsingular, since the equality |AT | = |A| holds. Using Prop-

erty 3 (b), p. 36, we see that (AT)(A−1)T = (A−1A)T = IT = I, i.e., the ma-

trix (A−1)T is the inverse of AT .

The proof of the following statements is left to the reader.

1. If matrices A1, A2,. . . , Ap are nonsingular, then

(A1A2 · · ·Ap)
−1 = A−1

p A−1
p−1 · · ·A−1

1 . (1.106)

2. If Pik is a permutation matrix, then

P−1
ik = Pik. (1.107)

3. If Lk is an elementary lower triangular matrix such that lkk 6= 0, then

L−1
k =




1 . . . 0 0 . . . 0

. .
0 . . . 1/lk,k 0 . . . 0

0 . . . −lk+1,k/lk,k 1 . . . 0

. .
0 . . . −ln,k/lk,k 0 . . . 1



. (1.108)

4. If L is a lower triangular matrix such that all elements of its main diagonal are

nonzero, then the inverse L−1 exists and is a lower triangular matrix. The analo-

gous statement is true for upper triangular matrices.

1.2.5 Gaussian Elimination

In this section we consider an algorithm for solving the system of linear equations

Ax = b (1.109)

40 1 Preliminaries

with a square nonsingular matrix A. This algorithm is called Gaussian elimination.1

As many other methods it is based on the following statement.

Let B be a given nonsingular matrix. Then the system of linear equations

BAx = Bb (1.110)

is equivalent to system (1.109), namely, each solution of system (1.110) is a solution

of (1.109), and conversely, each solution of system (1.109) is a solution of (1.110).

Indeed, if x is a solution of system (1.110), then

B(Ax−b) = 0,

but the matrix B is nonsingular, hence, Ax−b = 0. The converse is obvious.

Usually the matrix B is chosen such that the matrix BA is “easier” than A and the

solution of system (1.110) is easier to calculate than the solution of system (1.109).

In Gaussian elimination the matrix B is the product of special lower triangular ma-

trices such that the matrix BA is upper triangular. In this case problem (1.110) is

trivial.

Let us describe the Gaussian elimination algorithm. In the first step we take in

the first column of the matrix A the element with the largest absolute value. Suppose

that this element is ai1. It is not equal to zero. Indeed, if ai1 = 0, then all elements in

the first column of A are equal to zero, and |A|= 0, but we assume that the matrix A

is nonsingular.

Then we multiply both sides of system (1.109) by the permutation matrix Pi1. We

denote this matrix by P1 (note that P1 = I if in the first column of A the element with

the largest absolute value is a11) and get

A1x = b1, (1.111)

where A1 = P1A, b1 = P1b. Observe that the matrix A1 is obtained from the matrix A

by interchanging the first and the i-th rows, and the column b1 is obtained from the

column b by interchanging the first and the i-th elements. We denote by a
(1)
kl the

elements of the matrix A1, and by b
(1)
k the elements of the column b1. By construc-

tion, a
(1)
11 6= 0.

After that we multiply both sides of system (1.111) by the elementary lower

triangular matrix

L1 =




l1,1 0 0 . . . 0 0

l2,1 1 0 . . . 0 0

.
ln−1,1 0 0 . . . 1 0

ln,1 0 0 . . . 0 1



, (1.112)

where l11 = 1/a
(1)
11 , l21 =−a

(1)
21 /a

(1)
11 , . . . , ln1 =−a

(1)
n1 /a

(1)
11 , and get

1 Johann Carl Friedrich Gauss (1777–1855) was a German mathematician.

1.2 Systems of Linear Equations, Matrices, Determinants 41

A2x = b2, (1.113)

where b2 = L1b1,

A2 = L1A1 =




1 a
(2)
12 a

(2)
13 . . . a

(2)
1n

0 a
(2)
22 a

(2)
23 . . . a

(2)
2n

.

0 a
(2)
n2 a

(2)
n3 . . . a

(2)
nn


 . (1.114)

The multiplication of the matrices L1 and A1 is equivalent to the following trans-

formation of the matrix A1: all elements of the first row of the matrix A1 are di-

vided by a
(1)
11 , after that for all i = 2, . . . ,n the first row is multiplied by a

(1)
i1 and

is subtracted from the i-th row of A1. Similarly, the elements of the column b2

are calculated by the following formulas: b
(2)
1 = b

(1)
1 /a

(1)
11 , b

(2)
i = b

(1)
i − b

(2)
1 a

(1)
i1 ,

where i = 2, . . . ,n.

Note that all elements of the first column of the matrix A2 except the first element

are equal to zero. Now we take the element with the largest absolute value among

the elements a
(2)
22 , a

(2)
32 , . . . , a

(2)
n2 . Suppose that this element is a

(2)
i2 . It is not equal to

zero. Indeed, if a
(2)
i2 = 0, then all the numbers a

(2)
22 , a

(2)
32 , . . . , a

(2)
n2 are equal to zero,

and expanding the determinant of A2 in terms of the first column, we get detA2 = 0.

On the other hand, we see that

detA2 = l11 det(P1A) = det(P1A)/a
(1)
11 =±det(A)/a

(1)
11 6= 0,

since L1 is an elementary lower triangular matrix and P1 either is the identity matrix

or a permutation matrix.

Then we multiply both sides of system (1.113) by the permutation matrix P2 =P2i

(in other words we interchange the second row and the i-th row of the matrix A2)

and get

Ã2x = P2L1P1b, (1.115)

where

Ã2 = P2A2 =




1 a
(2)
12 a

(2)
13 . . . a

(2)
1n

0 ã
(2)
22 ã

(2)
23 . . . ã

(2)
2n

.

0 ã
(2)
n2 ã

(2)
n3 . . . ã

(2)
nn


 .

Multiplying both sides of (1.115) by the elementary lower triangular matrix

L2 =




1 0 0 0 . . . 0 0

0 l2,2 0 0 . . . 0 0

0 l3,2 1 0 . . . 0 0

.
0 ln−1,2 0 0 . . . 1 0

0 ln,2 0 0 . . . 0 1



,

42 1 Preliminaries

where l22 = 1/ã
(2)
22 , l32 =−ã

(2)
32 /ã

(2)
22 , . . . , ln2 =−ã

(2)
n2 /ã

(2)
22 , we get

A3x = L2P2L1P1b,

where A3 = L2Ã2 = L2P2L1P1A. It is easy to see that

A3 =




1 a
(2)
12 a

(2)
13 . . . a

(2)
1n

0 1 a
(3)
23 . . . a

(3)
2n

0 0 a
(3)
33 . . . a

(3)
3n

.

0 0 a
(3)
n3 . . . a

(3)
nn



.

It is important to note that all elements of the second column of the matrix A3 except

the first two elements are equal to zero.

Continuing this process, we finally get the system of linear equations

Ux = f (1.116)

(which obviously is equivalent to the original system), where

U = LnPnLn−1Pn−1 · · ·L1P1A, (1.117)

f = LnPnLn−1Pn−1 · · ·L1P1b,

and what is important

U =




1 a
(2)
12 a

(2)
13 . . . a

(2)
1n−1 a

(2)
1n

0 1 a
(3)
23 . . . a

(3)
2n−1 a

(3)
2n

0 0 1 . . . a
(4)
3n−1 a

(4)
3n

. .

0 0 0 . . . 1 a
(n)
n−1,n

0 0 0 . . . 0 1




(1.118)

is a triangular matrix with ones on the main diagonal.

Problem (1.116) is not difficult. From the last equation of system (1.116) we see

that xn = fn. Using the penultimate equation, we get

xn−1 = fn−1 −a
(n)
n−1,nxn, (1.119)

and so on. Finally, using the first equation, we obtain

x1 = f1 −a
(2)
1,2x2 −a

(2)
1,3x3 −·· ·−a

(2)
1,nxn. (1.120)

Thus the Gaussian elimination algorithm can be divided into two parts. In the

first part (sometimes called forward elimination) we reduce a given system to a

1.2 Systems of Linear Equations, Matrices, Determinants 43

system with a triangular matrix U . In the second part (sometimes called backward

substitution) we solve this system with the triangular matrix.

Remark 1.4. We choose the elements with the largest absolute values for forward

elimination to improve the numerical stability. These elements are called the pivot

elements and the corresponding interchanging of rows is called pivoting (see Sect. 8.1,

p. 235 for a detailed description). If we do not worry about roundoff errors of nu-

merical computations, then we can use as a pivot element any nonzero element of

the column in each step of forward elimination.

Gaussian elimination also allows to compute the determinant of a square matrix.

Using (1.117), (1.106), and (1.107), we get

A = P1L−1
1 P2L−1

2 · · ·PnL−1
n U. (1.121)

From (1.121), (1.96), and (1.98) it follows that

detA = det(P1L−1
1 P2L−1

2 · · ·PnL−1
n U) =

n

∏
i=1

detPi

n

∏
i=1

detL−1
i

=±
n

∏
i=1

detL−1
i . (1.122)

Here we have taken into account that detU = 1. Using (1.108), it is easy to see that

detL−1
i = ã

(i)
ii ,

hence,

detA =±a
(1)
11 ã

(2)
22 · · · ã(n)nn . (1.123)

Thus the determinant of the matrix A is equal to the product of all pivot elements up

to sign. The sign is determined by the number of interchanging of rows in forward

elimination. If this number is even, then the sign is plus; if this number is odd, then

the sign is minus.

Let us estimate the number of arithmetic operations required to solve a system of

linear equations by Gaussian elimination. In the first step of forward elimination the

matrix L1 is constructed. This requires n operations. Then the matrix L1 is multiplied

by the matrix A1. It is easy to verify that the multiplication of the matrix L1 by a

column requires 2(n− 1) + 1 = 2n− 1 operations. The total number of columns

is n. Therefore the multiplication of the matrix L1 by the matrix A1 requires 2n2 −n

operations. After that the matrix L1 is multiplied by the column P1b. Thus the first

step of forward elimination requires 2n2 +n−1 operations.

It is easy to see that in the second step of forward elimination the product L2Ã2

is calculated by the multiplication of matrices of order n − 1. Hence the second

step requires 2(n− 1)2 + (n− 2) operations, and all steps of forward elimination

requires 2(12 +22 + · · ·+n2)+ (1+2+ · · ·+(n−1)) operations. It is well-known

that 1+2+ · · ·+n−1 = n(n−1)/2, 12 +22 + · · ·+n2 = n(n+1)(2n+1)/6. Thus

the forward elimination requires

44 1 Preliminaries

n(n+1)(2n+1)/3+n(n−1)/2 ≈ 2n3/3

arithmetic operations. Note that we neglect the terms of order n2, assuming that n

is big enough. It is easy to see that the calculations by formulas (1.119), (1.120)

require 2(n−1)+2(n−2)+ · · ·+2 = 2(1+ · · ·+n−1) = n(n−1)≈ n2 operations,

and finally, we can conclude that to solve a system of n equations for n unknowns

the Gaussian elimination algorithm requires approximately 2n3/3 operations.

Note that Cramer’s formulas require, as it is easy to calculate, n2n! arithmetic

operations, which is much bigger. For example, if n = 20, then n2n! ≈ 9,7× 1020

and 2n3/3 ≈ 5,3×103.

For example, let us solve the following system of linear equations by Gaussian

elimination:

3x1 +6x2 +15x3 = 60,

3x1 +2x2 + 9x3 = 34,

9x1 +6x2 − 3x3 = 12.

First of all we write down the matrix and the column of the right-hand side of the

system:

A =




3 6 15

3 2 9

9 6 −3


 , b =




60

34

12


 .

The element with the largest absolute value in the first column of the matrix A

is a31 = 9. In accordance with the algorithm described above the matrix A1 and

the column b1 look as follows

A1 =




9 6 −3

3 2 9

3 6 15


 , b1 =




12

34

60




(we have interchanged the first row of the matrix A with its third row and the first

element of the column b with its third element).

Now we divide the first row of the matrix A1 by 9, multiply it by 3, and subtract

it from the second and the third rows; also we divide the first element of the column

b1 by 9, multiply it by 3, and subtract it from the second and the third elements of

b1. As a result we get

A2 =




1 2/3 −1/3

0 0 10

0 4 16


 , b2 =




4/3

30

56


 .

The element with the largest absolute value among the elements a
(2)
22 , a

(2)
32 is a

(2)
32 .

Therefore we interchange the second and the third rows of the matrix A2, and also

the second and the third elements of the column b2, and obtain

1.2 Systems of Linear Equations, Matrices, Determinants 45

Ã2 =




1 2/3 −1/3

0 4 16

0 0 10


 , b̃2 =




4/3

56

30


 .

We divide the second row of the matrix Ã2 and the second element of the column b̃2

by 4, and get

˜̃A2 =




1 2/3 −1/3

0 1 4

0 0 10


 , ˜̃b2 =




4/3

14

30


 .

Finally, we divide the last row of ˜̃A2 and the last element of ˜̃b2 by 10, and get

A3 =




1 2/3 −1/3

0 1 4

0 0 1


 , b3 =




4/3

14

3


 .

The forward elimination is done.

Using the back substitution algorithm, we consequentially calculate x3 = 3, after

that x2 = 14−3×4 = 2, and finally, x1 = 4/3− (2/3)×2+(1/3)×3 = 1.

As we have seen above the determinant of the matrix A is equal to the product of

all the pivot elements up to sign. In this example the pivot elements are 9, 4, and 10.

The number of interchanging of rows in forward elimination was two. Therefore the

determinant is equal to the product of the pivot elements: det(A) = 360.

1.2.6 The Determinant of the Product of Matrices

Theorem 1.12. The determinant of the product of arbitrary square matrices A and B

is equal to the product of their determinants:

det(AB) = detAdetB. (1.124)

Proof. If the matrix A is singular, then the matrix AB is also singular (see p. 37),

and in this case equality (1.124) obviously holds.

If the matrix A is nonsingular, then, using (1.121), we get

AB = P1L−1
1 P2L−1

2 · · ·PnL−1
n UB.

In this product each factor except B either is a permutation matrix or a triangular

matrix, hence,

det(AB) =
n

∏
i=1

detPi

n

∏
i=1

detL−1
i det(U)detB =

n

∏
i=1

detPi

n

∏
i=1

detL−1
i detB,

but we have (see (1.122))

46 1 Preliminaries

n

∏
i=1

detPi

n

∏
i=1

detL−1
i = detA.

Thus equality (1.124) holds. ⊓⊔

From (1.124) it follows immediately that if the matrix A is nonsingular, then

det(A−1) = 1/detA.

1.2.7 Basic Matrix Types

In this section we describe some types of matrices that are often used in different

problems of linear algebra. Here we consider some basic properties of these matri-

ces. A more detailed study will be done in the next chapters.

Let A be a rectangular matrix. The Hermitian1adjoint A∗ of A is defined by

A∗ = (Ā)T , where Ā is the component-wise conjugate. Another name for the Hermi-

tian adjoint of a matrix is the conjugate transpose. It is easy to see that (A∗)∗ = A,

(αA)∗ = ᾱA∗, (A+B)∗ = A∗+B∗, (AB)∗ = B∗A∗.
A square matrix A is called Hermitian if A = A∗, it is called skew-Hermitian

if A = −A∗. The determinant of any Hermitian matrix is a real number. Indeed,

since det(A∗) = det((A)T) = det(A) = det(A), we see that det(A) = det(A) if the

matrix A is Hermitian.

Each square matrix A can be represented in the form

A = H1 + iH2, (1.125)

where H1, H2 are Hermitian matrices, i is the imaginary unit. The matrices H1, H2

are uniquely determined by the matrix A. Indeed, representation (1.125) follows

from the obvious identity

A =
1

2
(A+A∗)+ i

1

2i
(A−A∗)

and the following easily verifiable equalities:

(A+A∗)∗ = A+A∗,

(
1

i
(A−A∗)

)∗
=

1

i
(A−A∗).

If we assume that in addition to (1.125) the exists one more representation

A = H̃1 + iH̃2

with Hermitian matrices H̃1, H̃2, then

(H1 − H̃1)+ i(H2 − H̃2) = 0. (1.126)

1 Charles Hermite (1822–1901) was a French mathematician.

1.2 Systems of Linear Equations, Matrices, Determinants 47

Hermitian adjoint of the left part of equality (1.126) also is equal to zero:

(H1 − H̃1)− i(H2 − H̃2) = 0. (1.127)

Adding together the corresponding terms in (1.126) and (1.127), we get H1 = H̃1,

hence, H2 = H̃2. Thus representation (1.125) is unique.

A real matrix is a matrix whose elements consist entirely of real numbers.

A real Hermitian matrix is called symmetric. For each symmetric matrix we

have A = AT . A real square matrix is called skew-symmetric if A =−AT .

For each real square matrix the following representation holds:

A = A1 +A2, (1.128)

where A1 is a symmetric matrix and A2 is skew-symmetric. Arguing as above, we

see that this representation is unique and

A1 =
1

2
(A+AT), A2 =

1

2
(A−AT).

A square matrix A is called unitary if AA∗ = I, in other words if A−1 = A∗.

It follows from the definition that the absolute value of the determinant of each

unitary matrix is equal to one. The product of two unitary matrices is a unitary

matrix (prove it!).

An important example of a unitary matrix is the diagonal matrix with diagonal

elements q1, q2, . . . , qn such that the absolute value of each element is equal to one.

The reader can easily prove that this matrix is unitary.

Let A be a unitary matrix of order n. Sometimes we call unitary the rectangu-

lar matrix B that consists of m, m < n, columns of the square unitary matrix A.

Clearly, B∗B = Im, where Im is the identity matrix of order m.

A real unitary matrix is called orthogonal. The determinant of each orthogonal

matrix is either plus one or minus one. Two examples of orthogonal matrices are

following: the permutation matrix Pkl , the second-order matrix

Q2(ϕ) =

(
cosϕ −sinϕ
sinϕ cosϕ

)
,

where ϕ is a real number.

A square matrix A is called normal if AA∗ = A∗A, that is, if A commutes with

its Hermitian adjoint. It is easy to see that Hermitian, skew-Hermitian, and unitary

matrices are normal.

For example, the matrix A =

(
1 −1

1 1

)
is normal, but it belongs to none of men-

tioned above matrix types.

48 1 Preliminaries

1.2.8 Block Matrices and Basic Operations with Block Matrices

It is useful in many cases to interpret a matrix as having been broken into sections

called blocks or submatrices, that is, to represent it in the form

A =




A11 A12 . . . A1n

A21 A22 . . . A2n

.
Am1 Am2 . . . Amn


 , (1.129)

where the elements Ai j are themselves matrices. Note that all blocks in (1.129) be-

longing to one row have the same number of rows and all blocks in one column

have the same number of columns. Any matrix may be interpreted as a block matrix

in different ways, with each interpretation defined by how its rows and columns are

partitioned. For example,




1 8 7 6

3 5 0 2

1 4 9 3


 ,




1 8 7 6

3 5 0 2

1 4 9 3


 ,




1 8 7 6

3 5 0 2

1 4 9 3


 .

It is easy to see that with block matrices we can operate by the same formal rules

as with ordinary matrices. If in addition to matrix (1.129) we introduce the matrix

B =




B11 B12 . . . B1n

B21 B22 . . . B2n

.
Bm1 Bm2 . . . Bmn


 (1.130)

such that for each pair of indexes i, j the dimensions of blocks Ai j, Bi j coincide,

then the matrix C = A+B can be represented as the block matrix with the blocks

Ci j = Ai j +Bi j, i = 1, . . . ,m, j = 1, . . . ,n. Suppose that

B =




B11 B12 . . . B1p

B21 B22 . . . B2p

.
Bn1 Bn2 . . . Bnp


 . (1.131)

Then the matrix C = AB can be represented as the block matrix with blocks

Ci j =
n

∑
q=1

AiqBq j, i = 1,2, . . . ,m, j = 1,2, . . . , p. (1.132)

This, of course, requires that each product AiqBq j exists, i.e., the horizontal dimen-

sion of each block Aiq coincides with the vertical dimension of the corresponding

block Bq j.

1.2 Systems of Linear Equations, Matrices, Determinants 49

Let us obtain some useful formulas for calculation of determinants of block ma-

trices. We start with the simplest case. Suppose that

A =

(
I A12

0 A22

)
(1.133)

is a 2-by-2 block matrix, I is the identity matrix, A22 is a square matrix, and A12 is

a (generally speaking) rectangular matrix. Then, expanding |A| and obtained deter-

minants along their first columns, we get

|A|= |A22|. (1.134)

Similarly, if

A =

(
A11 A12

0 I

)
, (1.135)

where A11 is a square matrix, then

|A|= |A11|. (1.136)

Theorem 1.13. Suppose that

A =

(
A11 A12

0 A22

)
, (1.137)

where A11, A22 are square matrices. Then

|A|= |A11||A22|. (1.138)

Proof. First we prove that if the matrix A11 is singular, then |A| = 0. By n1 denote

the order of the matrix A11, by n2 denote the order of A22. If |A11| = 0, then there

exists a vector x1 6= 0 of length n1 such that A11x1 = 0. Then for the nonzero vector

x = (x1,0, . . . ,0) of length n1 + n2 we obviously have Ax = 0, therefore, |A| = 0.

Thus we have proved that if |A11| = 0, then equality (1.138) trivially holds. Let

now |A11| 6= 0. It is easy to see that

(
A11 A12

0 A22

)
=

(
A11 0

0 I

)(
I A−1

11 A12

0 A22

)
, (1.139)

hence,

|A|=
∣∣∣∣
A11 0

0 I

∣∣∣∣
∣∣∣∣
I A−1

11 A12

0 A22

∣∣∣∣ .

Combining the last equality, (1.134), and (1.136), finally, we obtain (1.138). ⊓⊔

The proof of the following statements is left to the reader.

1. Suppose that

50 1 Preliminaries

A =




A11

0

0

. . .
0

A12

A22

0

. . .
0

A13

A23

A33

. . .
0

. . .

. . .

. . .

. . .

. . .

A1n

A2n

A3n

. . .
Ann




(1.140)

is a block triangular matrix, where Aii, i = 1,2, . . . ,n, are arbitrary square matri-

ces. Then |A|= |A11||A22| · · · |Ann|.
2. Suppose that

A =

(
A11 A12

A21 A22

)

is a block matrix, A11, A22 are square matrices, and |A11| 6= 0. Then

|A|= |A11||A22 −A21A−1
11 A12|. (1.141)

Hint: calculate the product

(
A11 A12

A21 A22

)(
I −A−1

11 A12

0 I

)
.

Relationship (1.141) can be considered as a generalization of formula (1.48) for

calculation of a second-order determinant.

A matrix A of form (1.140) is called block upper triangular, a block lower trian-

gular matrix can be defined similarly. A matrix A of the form

A =




A11

0

0

. . .
0

0

A22

0

. . .
0

0

0

A33

. . .
0

. . .

. . .

. . .

. . .

. . .

0

0

0

. . .
Ann



,

where Aii, i = 1,2, . . . ,n, are arbitrary square matrices, is called block diagonal. In

this case we use also the following notation: A = diag(A11,A22, . . . ,Ann).

Chapter 2

Vector Spaces

In courses of analytical geometry basic operations with vectors in three-dimensional

Euclidean space are studied. If some basis in the space is fixed, then the one-to-one

correspondence between the geometrical vectors and the ordered triples of real num-

bers (the coordinates of vectors in the basis) is determined, and algebraic operations

with the coordinates can be substituted for geometrical operations with vectors .

Similar situations arise in many other areas of mathematics and its applications,

when investigated objects are described by tuples (finite ordered lists) of real (or

complex) numbers. Then the concept of a multi-dimensional coordinate space as a

set of all tuples with algebraic operations on tuples naturally arises.

In this chapter we will systematically construct and investigate spaces of such

kind. First of all we will introduce the space Rn of all n-tuples of real numbers

and the space Cn of all n-tuples of complex numbers. We will start with definitions

and basic properties of these spaces, since later we will introduce and study more

general vector spaces. All results, which we will obtain for general spaces, hold for

the vector spaces Rn and Cn. We will provide also a variety of useful examples of

specific bases in finite-dimensional spaces.

2.1 The Vector Spaces Rn and Cn

2.1.1 The Vector Space Rn

The vector space Rn is the set of all n-tuples x = (x1,x2, . . . ,xn) of real numbers,

where n ≥ 1 is a given integer. Elements of the space Rn are called vectors or points;

the numbers xk, k = 1, 2, . . . , n, are called the components of the vector x.

Two vectors x,y ∈ Rn are equal if and only if xk = yk for all k = 1,2, . . . ,n. The

vector all of whose components are zero is called the zero vector and is denoted

by 0. The vector of the form

51

52 2 Vector Spaces

ik = (0, . . . ,0︸ ︷︷ ︸
k−1

,1,0, . . . ,0︸ ︷︷ ︸
n−k

),

where the k-th component is equal to one and all other components are zero, is

called the standard unit vector. In the space Rn there are exactly n standard unit

vectors: i1, i2, . . . , in.

The following linear operations are introduced on the space Rn: scalar multipli-

cation (the multiplication of a vector by a scalar) and vector addition. Namely, for

any real number α and any x, y ∈ Rn, by definition, put

αx = (αx1,αx2, . . . ,αxn),

x+ y = (x1 + y1,x2 + y2, . . . ,xn + yn).

The following properties of the introduced linear operations hold. In the list be-

low, x, y, z are arbitrary vectors in Rn, and α , β are arbitrary real numbers.

1. Commutativity of vector addition: x+ y = y+ x.

2. Associativity of vector addition: (x+ y)+ z = x+(y+ z).
3. The zero vector is the identity element of vector addition: x+0 = x.

4. For every vector x there exists the unique inverse element such that x+(−x) = 0,

where, by definition, −x = (−1)x.

5. Distributivity of scalar multiplication with respect to vector addition:

α(x+ y) = αx+αy.

6. Distributivity of scalar multiplication with respect to scalar addition:

(α +β)x = αx+βx.

7. Associativity of scalar multiplication: (αβ)x = α(βx).
8. The number 1 is the identity element of scalar multiplication: 1x = x.

Properties 1–8 are called the vector space axioms. They follow immediately from

the definition of linear operations with elements of the space Rn. It is easy to see that

Axioms 1–8 correspond exactly to the properties of linear operations with vectors

in three-dimensional Euclidean space.

It is important to note that R1 is a vector space, but at the same time it is the set

of all real numbers. As usual we denote R1 by R.

2.1.2 The Vector Space Cn

The vector space Cn is the set of all n-tuples x= (x1,x2, . . . ,xn) of complex numbers,

where n≥ 1 is a given integer. Elements of the space Cn are called vectors or points;

the numbers xk, k = 1, 2, . . . , n, are called the components of the vector x.

2.2 Abstract Vector Spaces 53

Two vectors x,y ∈ Cn are equal if and only if xk = yk for all k = 1,2, . . . ,n. The

vector all of whose components are zero is called the zero vector and is denoted by 0.

The vector ik whose k-th component is equal to one and all other components are

equal to zero is called the standard unit vector. In the space Cn there are exactly n

standard unit vectors: i1, i2, . . . , in.

The linear operations of scalar multiplication and vector addition are introduced

on the space Cn in the usual way: for any complex number α and any x, y ∈ Cn, by

definition, put

αx = (αx1,αx2, . . . ,αxn),

x+ y = (x1 + y1,x2 + y2, . . . ,xn + yn).

Note that, actually, we have already met with this linear space. We can interpret

the set of all m-by-n matrices with operations of matrix addition and multiplication

of matrices by scalars (see p. 31) as the space Cmn of all vectors of length mn. The

vectors were written in the form of rectangular arrays, but from the point of view of

linear operations with vectors this fact does not matter.

Properties 1–8, p. 52, hold also for the linear operations on the space Cn.

Note that C1 is the vector space, but at the same time it is the set of all complex

numbers. As usual we denote C1 by C.

2.2 Abstract Vector Spaces

2.2.1 Definitions and Examples

Two more general concepts than the spaces Rn and Cn are widely used in many areas

of mathematics. These generalizations are abstract vector spaces: real and complex.

A real vector space X is a set that is closed under the operations of vector addition

and scalar multiplication that satisfy the axioms listed below. Elements of X are

called vectors. The operation of vector addition takes any two elements x,y ∈ X

and assigns to them a third element z = x+ y ∈ X, which is called the sum of the

vectors x and y. The operation of scalar multiplication takes any real number α and

any element x ∈ X and gives another element αx ∈ X, which is called the product

of α and x.

In order for X to be a real vector space, the following vector space axioms, which

are analogous to Properties 1–8 of the space Rn (see p. 52), must hold for any

elements x,y,z ∈ X and any real numbers α , β .

1. Commutativity of vector addition: x+ y = y+ x.

2. Associativity of vector addition: (x+ y)+ z = x+(y+ z).
3. There exists a unique element 0 ∈ X, called the zero element of the space X, such

that x+0 = x for all x ∈ X.

54 2 Vector Spaces

4. For every element x ∈ X there exists a unique element x′ ∈ X, called the additive

inverse of x, such that x+ x′ = 0.1

5. Distributivity of scalar multiplication with respect to vector addition:

α(x+ y) = αx+αy.

6. Distributivity of scalar multiplication with respect to scalar addition:

(α +β)x = αx+βx.

7. Associativity of scalar multiplication: (αβ)x = α(βx).
8. The number 1 is the identity element of scalar multiplication: 1x = x.

If in the definition of the space X multiplication by complex numbers is allowed,

then X is called a complex vector space. It is assumed that Axioms 1–8, where

α, β ∈ C, hold.

The proof of the following statements is left to the reader (here X is an arbitrary

vector space):

1. −0 = 0 (here 0 is the zero element of X);

2. α0 = 0 for any number α;

3. 0x = 0 for any vector x ∈ X;

4. if αx = 0, x ∈ X, then at least one of the factors is zero;

5. −x = (−1)x for any x ∈ X;

6. y+(x− y) = x for any x,y ∈ X, where, by definition, x− y = x+(−y).

In the remaining part of the book we denote vector spaces by the capital letters X,

Y, Z. Unless otherwise stated, the vector spaces are complex. Mostly, the definitions

and the results are true for real spaces too. The cases when some distinctions arise

during the interpretations of results for real spaces are specially considered.

The proof that the following sets are vector spaces is left to the reader.

1. The set V3 of all geometrical vectors of three-dimensional Euclidean space with

the usual definitions of operations of multiplication of a vector by a real scalar

and vector addition is a real vector space.

2. The set of all real-valued functions of a real variable is a real vector space if the

sum of two functions and the product of a function and a real number are defined

as usual.

3. The set of all real-valued functions that are defined and continuous on the closed

segment [a,b] of the real axis is a real vector space. This space is denoted by

C[a,b]. Hint: recall that the sum of two continuous functions is a continuous

function, the product of a continuous function and a real number is a continuous

function.

4. The set of all functions in the space C[a,b] that are equal to zero at a fixed point

c ∈ [a,b] is a real vector space.

1 Usually the vector x′ is denoted by −x.

2.2 Abstract Vector Spaces 55

5. The set of all polynomials with complex coefficients with the usual definitions

of the sum of two polynomials and the product of a polynomial and a complex

number is a complex vector space.

6. The set Qn of all polynomials of order no more than n, where n ≥ 0 is a given

integer, joined with the zero polynomial, is a complex vector space. Hint: as

we have seen in Subsect. 1.1.2, p. 7, the sum of two polynomials is either a

polynomial of degree no more than the maximum degree of the summands, or

the zero polynomial.

The reader can answer by himself the next two questions.

1. Consider the set of all positive functions defined on the real axis and introduce on

this set the operation of vector addition as the multiplication of two functions f ·g
and the operation of scalar multiplication as the calculation of the power func-

tion f α . Is this set a vector space?

2. Consider the set of all even functions defined on the segment [−1,1] and in-

troduce on this set the operation of vector addition as the multiplication of two

functions and the operation of scalar multiplication as usual multiplication of a

function by a scalar. Is this set a vector space?

2.2.2 Linearly Dependent Vectors

Two vectors a and b in a vector space X are said to be linearly dependent (propor-

tional) if there exist numbers α and β , not both zero, such that

αa+βb = 0.

Clearly, in this case we have either a = γb or b = δa, where γ , δ are some numbers.

For example, if k 6= l, then the standard unit vectors ik, il ∈Cn are non-proportional

(prove it!).

Vectors x1 =(1+ i,3,2− i,5), x2 =(2,3−3i,1−3i,5−5i)∈C4 are proportional,

since 2/(1+ i) = (3−3i)/3 = (1−3i)/(2− i) = (5−5i)/5 = 1− i.

Let us generalize the concept of linear dependence of two vectors. A set of vec-

tors {ai}m
i=1 = {a1, a2, . . . ,am}, m ≥ 1, in a vector space X is said to be linearly

dependent if there exist numbers x1, x2,. . . , xm, not all zero, such that

x1a1 + x2a2 + · · ·+ xmam = 0. (2.1)

For instance, the set of vectors

a1 =




5

2

1


 , a2 =




−1

3

3


 , a3 =




9

7

5


 , a4 =




3

8

7




56 2 Vector Spaces

in the space R3 is linearly dependent, since for x1 = 4, x2 =−1, x3 =−3, x4 = 2 we

have

x1a1 + x2a2 + x3a3 + x4a4 = 4




5

2

1


−




−1

3

3


−3




9

7

5


+2




3

8

7


=




0

0

0


= 0.

It is useful to note that there are many other sets of coefficients x1, x2, x3, x4 such

that the linear combination x1a1 + x2a2 + x3a3 + x4a4 is equal to zero. For example,

2a1 +a2 −a3 = 2




5

2

1


+




−1

3

3


−




9

7

5


= 0,

3a2 +a3 −2a4 = 3




−1

3

3


+




9

7

5


−2




3

8

7


= 0.

It is useful to write the definition of linear dependence of vectors in a matrix

form. We use the following notation. Let Am = {a1,a2, . . . ,am} be a finite ordered

list of vectors in the space X. For x ∈ Cm, by definition, we put

Amx = x1a1 + x2a2 + · · ·+ xmam.

Then we can say that the vectors a1, a2,. . . , am are linearly dependent if there exists

a nonzero vector x ∈ Cm such that

Amx = 0.

A vector a ∈ X is a linear combination of vectors b1, b2, . . . , bp, p ≥ 1, if there

exists a vector x ∈ Cp such that

a = x1b1 + x2b2 + · · ·+ xpbp. (2.2)

The same we can write in matrix form:

a = Bpx.

A linear combination of vectors is called nontrivial if at least one of the numbers x1,

x2, . . . xp in (2.2) is not equal to zero.

The proof of the two following theorems is left to the reader.

Theorem 2.1. A set of vectors is linearly dependent if it contains a linear dependent

subset, particularly, if it contains the zero vector.

Theorem 2.2. A set of vectors {ai}m
i=1 is linearly dependent if and only if it con-

tains a vector ak that can be represented as a linear combination of other vectors of

the set {ai}m
i=1.

2.2 Abstract Vector Spaces 57

Suppose that each vector of the set {ai}m
i=1 is a linear combination of the vec-

tors {bi}p
i=1, i.e.,

ak =
p

∑
j=1

x jkb j, k = 1,2, . . . ,m. (2.3)

We can write (2.3) in matrix form:

Am = BpX(p,m), (2.4)

where the k-th column of the matrix X consists of the coefficients x jk of the k-th

linear combination in (2.3).

The following property of transitivity holds. If each vector of the set {ai}m
i=1 is a

linear combination of the vectors {bi}p
i=1, and each vector of {bi}p

i=1 is a linear com-

bination of the vectors {ci}q
i=1, then each vector of {ai}m

i=1 is a linear combination

of {ci}q
i=1. Indeed, using the matrix notation, we can write

Am = BpX(p,m), Bp = CqY (q, p).

Substituting CqY (q, p) for Bp in the first equality, we get

Am = CqZ(q,m),

where

Z(q,m) = Y (q, p)X(p,m).

We say that the two sets of vectors {ai}m
i=1 and {bi}p

i=1 are equivalent if there

exist matrices X(p,m) and Y (m, p) such that

Am = BpX(p,m), Bp =AmY (m, p), (2.5)

i.e., each vector of the set Am is a linear combination of the vectors of the set Bp

and conversely.

Using the property of transitivity, the reader can easily prove the next statement.

Suppose that the sets {ai}m
i=1 and {bi}p

i=1 are equivalent and the vector x ∈ X is

a linear combination of the vectors {ai}m
i=1. Then x can be represented as a linear

combination of the vectors {bi}p
i=1.

2.2.3 Linearly Independent Sets of Vectors

A set of vectors Am= {ai}m
i=1 in a vector space X is said to be linearly independent

when Amx = 0 implies x = 0.

Linearly independent sets exist. Let us give some simple examples.

1. Each vector a 6= 0 forms a linearly independent set, which consists of one vector.

58 2 Vector Spaces

2. If m ≤ n, then the standard unit vectors i1, i2, . . . , im ∈ Cn are linearly indepen-

dent. Indeed, for any x ∈ Cm the vector

x1i1 + x2i2 + · · ·+ xmim ∈ Cn

has the form (x1,x2, . . . ,xm,0, . . . ,0) and is equal to zero if and only if x = 0.

3. The set of vectors ϕ0(z) ≡ 1, ϕ1(z) = z, . . . , ϕk(z) = zk, where z is a complex

number, k ≥ 0 is a given integer, is linearly independent in the vector space of

polynomials (see p. 55). This statement immediately follows from the fact that if

a polynomial is equal to zero, then all its coefficients are equal to zero (see p. 29).

The next theorem is an evident consequence of Theorem 2.1.

Theorem 2.3. Any subset of a linearly independent set {ai}m
i=1 is linearly indepen-

dent.

Theorem 2.4. Any set of n+ 1 vectors a1, a2, . . . , an, b in the space Cn is linearly

dependent.

Proof. If the set of vectors {ai}n
i=1 is linearly dependent, then the assertion is true.

Suppose that the set of vectors {ai}n
i=1 is linearly independent. Denote by A the

matrix whose columns are the vectors ai, i = 1,2, . . . ,n. Clearly, detA 6= 0, and the

system of linear equations Ax = b has a solution x. Therefore,

x1a1 + · · ·+ xnan = b,

i.e., the set of vectors a1, a2, . . . , an, b is linearly dependent. ⊓⊔

It follows immediately from Theorem 2.4 that any set {ai}m
i=1 ∈ Cn, m > n, is

linearly dependent.

Theorem 2.5. Suppose that the set of vectors Am = {ai}m
i=1 in the space X is lin-

early independent and each vector of the set Am is a linear combination of the

vectors Bp = {bi}p
i=1. Then m ≤ p.

Proof. Assume the contrary, i.e., let m > p. By definition, there exists a p-by-m

matrix X such that Am = BpX . Therefore for any y ∈ Cm we have Amy = BpXy.

The columns of the matrix X forms the set of vectors in the space Cp. The number

of vectors in this set is m > p, hence it is linearly dependent. Thus there exists

a vector y ∈ Cm that is not equal to zero and Xy = 0, but then Amy = 0, which

means contrary to the assumption that the set of vectors a1, a2, . . . , am is linearly

dependent. ⊓⊔

Corollary 2.1. Any two linearly independent equivalent sets of vectors have the

same number of vectors.

The next theorem the reader can prove by himself (hint: use the reasoning of the

proof of Theorem 2.5).

2.2 Abstract Vector Spaces 59

Theorem 2.6. Suppose that the set {ak}m
k=1 is linearly independent and each vector

of the set {bk}m
k=1 is a linear combination of the vectors {ak}m

k=1, i.e., there exists a

square m-order matrix X such that Bm =AmX. The set {bk}m
k=1 is linearly indepen-

dent if and only if the matrix X is nonsingular.

It is important to note that in Theorem 2.6 the matrix X is uniquely determined

by the sets Am and Bm. Indeed, if we assume that there exists one more matrix X̃

such that Bm =AmX̃ , then Am(X̃ −X) = 0, and X̃ = X , since the set Am is linearly

independent.

2.2.4 The Rank of a Set of Vectors

Let {ai}m
i=1 be a given set of vectors in the space X. Suppose that not all vec-

tors {ai}m
i=1 are equal to zero. Then this set necessarily contains a linearly indepen-

dent subset of vectors. Particularly, the set {ai}m
i=1 itself can be linearly independent.

A linearly independent subset {aik}r
k=1 ⊂ {ai}m

i=1 is called maximal if including

any other vector of the set {ai}m
i=1 would make it linearly dependent.

For example, let us consider the following set of vectors:

a1 =




2

−2

−4


 , a2 =




1

9

3


 , a3 =




−2

−4

1


 , a4 =




3

7

−1


 (2.6)

in the space R3. Evidently, the vectors a1, a2 are linearly independent and form a

maximal linearly independent subset, since the determinants

∣∣∣∣∣∣

2 1 −2

−2 9 −4

−4 3 1

∣∣∣∣∣∣
,

∣∣∣∣∣∣

2 1 3

−2 9 7

−4 3 −1

∣∣∣∣∣∣
,

which consist of the components of the vectors a1,a2,a3 and a1,a2,a4, respectively,

are equal to zero. Therefore the sets of vectors a1,a2,a3 and a1,a2,a4 are linearly

dependent.

Generally speaking, the set {ai}m
i=1 can contain several maximal linearly inde-

pendent subsets, but the following result is true.

Theorem 2.7. Any two maximal linearly independent subsets of the set {ai}m
i=1 con-

tain the same number of vectors.

Proof. It follows from the definition of a maximal linearly independent subset that

each vector of the set {ai}m
i=1 is a linear combination of vectors of a maximal linearly

independent subset {aik}r
k=1. Obviously,

aik = aik +
m

∑
i=1,i 6=ik

0ai,

60 2 Vector Spaces

hence the converse is also true. Therefore the set {ai}m
i=1 and any of its maximal

linearly independent subsets are equivalent. Thus, using Corollary 2.1, we claim

that any two maximal linearly independent subsets of the set {ai}m
i=1 contain the

same number of vectors. ⊓⊔

The obtained result allows us to introduce the following concept. The rank of a

set of vectors in the space X is the number of vectors in any of its maximal linearly

independent subsets.

For example, the rank of the set of vectors (2.6) is equal to two.

The number of linearly independent vectors in the space Cn is no more than n.

Therefore the rank of any set of vectors in Cn is less than or equal to n.

Clearly, a set of vectors {ai}m
i=1 in any vector space X is linearly independent if

and only if its rank is equal to m.

2.3 Finite-Dimensional Vector Spaces. Bases

2.3.1 Bases in the Space Cn

Any linearly independent set {ek}n
k=1 (which consists of n vectors) is called a basis

in the space Cn. The standard unit vectors {ik}n
k=1 form the standard (or the natural)

basis in the space Cn.

It follows from Property 8, p. 22, of determinants that a set {ek}n
k=1 ⊂ Cn is a

basis if and only if the matrix En, the columns of which are formed by the vec-

tors e1, e2, . . . , en, is nonsingular.

In the proof of Theorem 2.4, p. 58, we have established that if {ek}n
k=1 is a basis

in the space Cn, then each vector x∈Cn can be represented as the linear combination

x = ξ1e1 +ξ2e2 + · · ·+ξnen. (2.7)

The coefficients in linear combination (2.7) are uniquely determined by the vector x

and satisfy the following system of linear algebraic equations with the nonsingular

matrix En:

Enξ = x. (2.8)

Here ξ = (ξ1,ξ2, . . . ,ξn) is the column of coefficients of the expansion of x with

respect to the basis {ek}n
k=1.

2.3.2 Finite-Dimensional Spaces. Examples

A vector space X is called finite-dimensional if there exist vectors

En = {e1,e2, . . . ,en}, (2.9)

2.3 Finite-Dimensional Vector Spaces. Bases 61

which form a linearly independent set in the space X and such that each vector x ∈X

can be represented as a linear combination

x =
n

∑
k=1

ξkek = Enξ , ξ ∈ Cn. (2.10)

The vectors {ek}n
k=1 are called a basis in the space X. The number n is called the

dimension of X, and we denote by Xn this n-dimensional vector space. The coeffi-

cients ξ1, ξ2, . . . , ξn in expansion (2.10) are called the coordinates of x with respect

to the basis {ek}n
k=1.

The coordinates of each vector x ∈ Xn are uniquely determined by the ba-

sis {ek}n
k=1. Indeed, suppose that in addition to (2.10) there exists an expansion

x = Enξ̃ , then En(ξ − ξ̃) = 0. Therefore, ξ = ξ̃ , since the set of vectors {ek}n
k=1 is

linearly independent.

Theorem 2.8. In an n-dimensional vector space Xn each system Ẽn = {ẽk}n
k=1,

which consists of n linearly independent vectors, is a basis.

Proof. It is enough to show that each vector x ∈ Xn can be represented as a linear

combination

x = Ẽnξ̃ . (2.11)

By the definition of an n-dimensional vector space, a basis En exists in Xn. Therefore

each vector of the set Ẽn can be represented as a linear combination of the vectors of

En, in other words, there exists a square n-order matrix T such that Ẽn = EnT . The

matrix T is nonsingular (see p. 59). Since En is a basis, there exists a vector ξ ∈ Cn

such that x = Enξ . Since the matrix T is nonsingular, there exists a vector ξ̃ ∈ Cn

such that ξ = T ξ̃ . Thus we get the relationship x = EnT ξ̃ = Ẽnξ̃ of form (2.11). ⊓⊔

If a vector space is not finite-dimensional, then this space is called infinite-

dimensional.

Let us give some examples of finite-dimensional and infinite-dimensional vector

spaces.

1. Three arbitrary non-coplanar vectors form a basis in the space V3. The space V3

is three-dimensional.

2. Evidently, the spaces Cn, Rn are n-dimensional.

3. The set Qn of all polynomials of order no more than n is finite-dimensional. Its

dimension is equal to n+1. For example, the set of vectors {1,z, . . . ,zn}, where z

is a complex variable, is a basis in Qn.

4. The vector space of all polynomials is infinite-dimensional. Indeed, for an arbi-

trarily large integer k the set of vectors {1,z, . . . ,zk} is linearly independent in

this space.

5. The space C[a,b] is infinite-dimensional, since it contains polynomials with real

coefficients of arbitrary order.

62 2 Vector Spaces

2.3.3 Change of Basis

Let En ={ek}n
k=1, Ẽn = {ẽk}n

k=1 be bases in a vector space Xn. As we have shown the

sets En and Ẽn are equivalent, and there exist square n-order matrices T and T̃ such

that

En = ẼnT̃ , Ẽn = EnT. (2.12)

The matrix T is called the change of basis matrix from En to Ẽn. The matrices T

and T̃ are mutually inverse. Indeed, substituting EnT for Ẽn in the first equality

in (2.12), we obtain En = EnT T̃ . Thus we get

T T̃ = I, (2.13)

since the vectors of the basis En are linearly independent (see the remark after The-

orem 2.6, p. 59).

Suppose that we know the vector ξ of coordinates of an element x ∈ Xn with

respect to the basis En, and we also know the change of basis matrix T from En to

the basis Ẽn. Let us construct a formula for calculation of the vector ξ̃ of coordinates

of the same element x with respect to the basis Ẽn. Using (2.10), we see that x = Enξ ,

but En = ẼnT̃ = ẼnT−1 (see (2.12), (2.13)), therefore, x= ẼnT−1ξ , which means that

ξ̃ = T−1ξ . (2.14)

For example, suppose that vectors e1,e2,e3 form a basis in a three-dimensional

space X3. Let us consider the vectors

ẽ1 = 5e1 − e2 −2e3,

ẽ2 = 2e1 +3e2,

ẽ3 =−2e1 + e2 + e3.

Writing these equalities in matrix form, we get Ẽ = ET , where

Ẽ = {ẽ1, ẽ2, ẽ3}, E = {e1,e2,e3}, T =




5 2 −2

−1 3 1

−2 0 1


 .

It is easy to see that detT = 1, hence the matrix T is nonsingular. Therefore the

vectors ẽ1, ẽ2, ẽ3 also form a basis in the space X3. Let us consider the vector

a = e1 + 4e2 − e3. The coordinates of the vector a with respect to the basis E are

the numbers ξ1 = 1,ξ2 = 4,ξ3 = −1, i.e., a = Eξ , where ξ = (ξ1,ξ2,ξ3). Now we

calculate the coordinates of the same vector, but with respect to the basis Ẽ . Calcu-

lating the matrix T−1, we get

T−1 =




3 −2 8

−1 1 −3

6 −4 17


 ,

2.3 Finite-Dimensional Vector Spaces. Bases 63

and therefore,

ξ̃ = T−1ξ =




3 −2 8

−1 1 −3

6 −4 17






1

4

−1


=



−13

6

−27


 ,

i.e., a =−13ẽ1+6ẽ2−27ẽ3. Thus we have calculated the coordinate representation

of the vector a with respect to the basis Ẽ .

Note that infinitely many bases exist in the space Xn. Indeed, if En is a basis, then

the set of vectors Ẽn = EnT , where T is an arbitrary nonsingular matrix, also is a

basis (see Theorem 2.6, p. 59).

Below are some examples of bases in the space of polynomials of order no more

than n with complex coefficients, which are often used in applications.

1. The natural basis for this space is the set of vectors {1,z, . . . ,zn}, where z is a

complex variable.

2. The polynomials

Φ j(z) =
(z− z0)(z− z1) · · ·(z− z j−1)(z− z j+1) · · ·(z− zn)

(z j − z0)(z j − z1) · · ·(z j − z j−1)(z j − z j+1) · · ·(z j − zn)
,

j = 0,1,2, . . . ,n, where z0, z1, . . . , zn are arbitrary distinct complex numbers,

also form a basis in the space of polynomials (see p. 28). This basis is called the

Lagrange basis.

3. Let us prove that the polynomials

ϕ0(z)≡ 1, ϕ1(z) = (z− z0), ϕ2(z) = (z− z0)(z− z1), . . . ,

ϕn(z) = (z− z0)(z− z1) · · ·(z− zn−1), (2.15)

where z0, z1, . . . , zn−1 are arbitrary distinct complex numbers, form a basis. As in

the case of Lagrange basis it is enough to check that for the numbers z0, z1, . . . ,

zn−1, and a number zn that does not coincide with any of the numbers z0, z1, . . . ,

zn−1 the system of equations

c0ϕ0(z j)+ c1ϕ1(z j)+ · · ·+ cnϕn(z j) = h j, j = 0,1,2, . . . ,n, (2.16)

has a unique solution for any h0, h1, . . . hn. This fact is evident, since sys-

tem (2.16) is triangular:

c0 = h0,

c0 + c1(z1 − z0) = h1,

c0 + c1(z2 − z0)+ c2(z2 − z0)(z2 − z1) = h2, (2.17)

· ·
c0 + c1(zn − z0)+ · · ·+ cn(zn − z0)(zn − z1) · · ·(zn − zn−1) = hn,

64 2 Vector Spaces

and all diagonal coefficients are different from zero. The basis defined in (2.15)

is called the Newton basis.1

1 Sir Isaac Newton (1642–1727) was an English physicist and mathematician.

Chapter 3

Inner Product Spaces

As we told in the previous chapter, vector spaces are analogous to three-dimensional

Euclidean space V3 of geometrical vectors (directed line segments). However, such

important concepts as the length of a vector and the angle between two vectors were

not introduced for abstract spaces. In three-dimensional Euclidean space, using the

lengths of two vectors and the angle between them, we can calculate the inner prod-

uct (the dot product) of these vectors. Many geometrical problems in the space V3

are solved with help of the dot product.

The concept of an inner product on an abstract space will be introduced axiomat-

ically in this chapter. After that the concepts of the length of a vector and the angle

between two vectors will be introduced based on the concept of the inner product.

Then we will investigate the concept of orthogonal bases. Some important examples

of orthogonal bases in finite-dimensional spaces, particularly, in polynomial spaces

will be constructed. The basic properties of subspaces of unitary spaces will be de-

scribed. We start our considerations with inner products on the spaces Rn and Cn.

3.1 Inner products on Rn and Cn

An inner product on the space Rn is a function that assigns to each pair of vec-

tors x,y ∈ Rn a real number (x,y) and satisfies the following axioms (which cor-

respond to the properties of the inner product of vectors in three-dimensional Eu-

clidean space):

1. (x,x)≥ 0 for all x ∈ Rn; (x,x) = 0 if and only if x = 0;

2. (x,y) = (y,x) for all x,y ∈ Rn;

3. (αx+βy,z) = α(x,z)+β (y,z) for all x,y,z ∈ Rn and for all α,β ∈ R.

Clearly, the next property follows from Axioms 2 and 3:

4. (x,αy+β z) = α(x,y)+β (x,z) for all x,y,z ∈ Rn and for all α,β ∈ R.

The inner product on the space Rn can be specified in infinitely many ways. For

example, we can put

65

66 3 Inner Product Spaces

(x,y) =
n

∑
k=1

xkyk.

This inner product on the space Rn is called standard. We can construct a variety of

inner products if we put

(x,y) =
n

∑
k=1

ρkxkyk, (3.1)

where ρ1,ρ2, . . . ,ρn are positive numbers. Varying these numbers, we get different

inner products. The verification of Axioms 1–3 is trivial for both examples.

By the length of a vector x ∈Rn we mean the nonnegative number |x|=
√

(x,x).
It can be shown that the length of vectors in Rn satisfies the following properties1

(which correspond to the properties of the length of vectors in three-dimensional

Euclidean space):

1. |x| ≥ 0 for all x ∈ Rn; |x|= 0 if and only if x = 0;

2. |αx|= |α||x| for all x ∈ Rn and for all α ∈ R;

3. |x+ y| ≤ |x|+ |y| for all x,y ∈ Rn.

Inequality 3 is called the triangle inequality (or Minkowski 2 inequality).

The vector space Rn, together with a specified inner product on it, is often called

the Euclidean space Rn. It is important to note that, specifying the inner product

on the space Rn by different ways, we get different Euclidean spaces. The space

Rn together with the standard inner product is called the real coordinate space. This

space plays an important role in many areas of mathematics and its applications. For

instance, it is systematically used in calculus for the study of functions of several

real variables.

An inner product on the space Cn is a function that assigns to each pair of vec-

tors x,y ∈Cn a (generally speaking) complex number (x,y) and satisfies the follow-

ing axioms:

1. (x,x)≥ 0 for all x ∈ Cn; (x,x) = 0 if and only if x = 0;

2. (x,y) = (y,x) for all x,y ∈ Cn, recall that the over-line means the complex con-

jugate, and the inner product on the complex vector space is not commutative,

unlike the inner product on the real space;

3. (αx+βy,z) = α(x,z)+β (y,z) for all x,y,z ∈ Cn and for all α,β ∈ C.

Clearly, the next property follows from Axioms 2 and 3:

4. (x,αy+β z) = α(x,y)+β (x,z) for all x,y,z ∈ Cn and for all α,β ∈ C.

The vector space Cn, together with a specified inner product on it, is often called

the unitary space Cn.

The inner product on the space Cn can be specified in infinitely many ways. For

example, we can put

1 The verification of inequality 3 will be done in Subsect. 3.2.2, p. 69.
2 Hermann Minkowski (1864–1909) was a German mathematician.

3.2 Abstract Inner Product Spaces 67

(x,y) =
n

∑
k=1

xkyk.

This inner product on the space Cn is called standard. The verification of Axioms

1–3 is trivial. Inner products on Cn can also be specified similarly to (3.1).

The length of a vector x ∈ Cn is defined by the relationship |x| =
√

(x,x). The

properties of form 1–3, p. 66, hold.

3.2 Abstract Inner Product Spaces

3.2.1 Definitions and Examples

An inner product on the abstract real vector space X is a function that assigns to

each pair of vectors x,y ∈ X a real number (x,y) and satisfies the axioms of form

1–3, p. 65 (which are called the inner product axioms for a real vector space). An

inner product space is a vector space, together with a specified inner product on that

space. A real inner product space is often called a Euclidean space.

An inner product on the complex vector space X is a function that assigns to each

pair of vectors x,y ∈ X a (generally speaking) complex number (x,y) and satisfies

the axioms of form 1–3, p. 66 (which are called the inner product axioms for a

complex vector space). A complex inner product space is often referred to as a

unitary space.

The reader can verify the inner product axioms for the following examples.

1. The space V3 together with the usual inner product (the dot product) is a real

inner product space.

2. Let p be an integrable and positive function on an interval (a,b) of the real axis.

Let us specify an inner product on the space C[a,b] by the formula

(f ,g) =

b∫

a

p(x) f (x)g(x)dx, f , g ∈C[a,b]. (3.2)

The space C[a,b] together with inner product (3.2) is a Euclidean space.

3. Let us specify an inner product on the space Qn. We assign to each pair of ele-

ments

Pn(z) = a0 +a1z+ · · ·+anzn, Qn(z) = b0 +b1z+ · · ·+bnzn

of the space Qn the complex number

(Pn,Qn) =
n

∑
j=0

ρ ja jb j,

68 3 Inner Product Spaces

where ρ0, ρ1, . . . , ρn are given positive numbers. Together with this inner product

the space Qn is a unitary space.

An inner product can be specified on each finite-dimensional vector space Xn.

Indeed, let {ek}n
k=1 be a basis in Xn and x =

n

∑
k=1

ξkek, y =
n

∑
k=1

ηkek be elements of

the space Xn. We can take as an inner product on Xn the function

(x,y) =
n

∑
k=1

ξkη̄k, x, y ∈ Xn. (3.3)

It is easy to see that function (3.3) satisfies the inner product axioms.

3.2.2 The Cauchy-Schwarz Inequality

Suppose that a and b are vectors in three-dimensional Euclidean space V3, and the

vectors a−b and b are orthogonal, i.e., (a−b,b) = 0.1 Then, by the Pythagorean2

theorem,

|a|2 = |a−b|2 + |b|2. (3.4)

Now suppose that a and b are vectors in an abstract inner product space X such

that (a−b,b) = 0. If we put |v|=
√

(v,v) for all vectors v ∈ X, then the Pythagorean

identity of form (3.4) holds for vectors in X. Indeed, using elementary calculations,

we get

|a|2 = (a,a) = (a−b+b,a−b+b)

= (a−b,a−b)+(b,b)+(a−b,b)+(b,a−b)

= (a−b,a−b)+(b,b)+(a−b,b)+(a−b,b)

= (a−b,a−b)+(b,b) = |a−b|2 + |b|2.

Theorem 3.1 (Cauchy-Schwarz3 inequality). Let X be an inner product space.

For all vectors x,y ∈ X the next inequality holds:

|(x,y)|2 ≤ (x,x)(y,y). (3.5)

The two sides in (3.5) are equal if and only if x and y are proportional.

Proof. If y = 0, then inequality (3.5) transforms to a trivial equality, and for each

vector x ∈ X the vectors x and y are proportional, since 0x+ y = 0. For this reason,

1 We can say, that the vector b is the projection of the vector a on the line that is parallel to the

vector b.
2 Pythagoras of Samos (570–495 BC) was an Ionian Greek philosopher and mathematician.
3 Augustin-Louis Cauchy (1789–1857) was a French mathematician, Karl Hermann Amandus

Schwarz (1843–1921) was a German mathematician.

3.2 Abstract Inner Product Spaces 69

we suppose that y 6= 0, and put e = |y|−1y. Clearly, (e,e) = 1 and

(x− (x,e)e,(x,e)e) = 0,

hence in identity (3.4) we can take a = x, b = (x,e)e and get

|x|2 = |x− (x,e)e|2 + |(x,e)|2.

Therefore, |x|2 ≥ |(x,e)|2. The last inequality is equivalent to (3.5). Now, we suppose

that |x|2 = |(x,e)|2, i.e., the two sides in (3.5) are equal. Then |x− (x,e)e|2 = 0,

therefore, x=(x,e)e, i.e., x=((x,y)/|y|2)y, thus the vectors x and y are proportional.

Conversely, if the vectors x and y are proportional, then it is easy to see that the two

sides in (3.5) are equal. ⊓⊔

The number |x|=
√

(x,x) is called the length of a vector x ∈ X. Inequality (3.5)

often is written in the form

|(x,y)| ≤ |x||y| for all x,y ∈ X. (3.6)

The length of vectors in an abstract inner space satisfies properties, which are

analogous to the properties of the length of vectors in three-dimensional Euclidean

space, namely:

1. |x| ≥ 0 for all x ∈ X; |x|= 0 if and only if x = 0;

2. |αx|= |α||x| for all x ∈ X and for all α ∈ C;

3. |x+ y| ≤ |x|+ |y| for all x,y ∈ X.

Inequality 3 is called the triangle inequality (or the Minkowski inequality).

It is evident that Properties 1 and 2 hold. Let us prove that the triangle inequality

follows from the Cauchy-Schwarz inequality. Indeed,

|x+ y|2 = (x+ y,x+ y) = |x|2 +2Re(x,y)+ |y|2.

Using (3.6), we see that |Re(x,y)| ≤ |x||y|, therefore,

|x+ y|2 ≤ |x|2 +2|x||y|+ |y|2 = (|x|+ |y|)2.

The last inequality is equivalent to inequality 3.

By analogy with three-dimensional Euclidean space V3, we say that two vec-

tors x, y ∈ X are orthogonal if (x,y) = 0.

For example, if k 6= l, then the vectors ik and il ∈ Cn are orthogonal with respect

to the standard inner product.

It follows from inequality (3.6) that if X is a real inner product space, then

(x,y)/|x||y| ∈ [−1,1]

for all nonzero vectors x,y ∈ X. This fact leads us to introduce the concept of angle

between two vectors in X. Namely, we assume that the cosine of the angle between

x,y ∈ X is equal to (x,y)/|x||y|.

70 3 Inner Product Spaces

3.2.3 The Gram Matrix

Let {ai}m
i=1 be a set of vectors in an inner product space X. The Gram1 matrix of the

set {ai}m
i=1 is the m-order square matrix of the form

G =




(a1,a1) (a2,a1) . . . (am,a1)
(a1,a2) (a2,a2) . . . (am,a2)
. .
(a1,am) (a2,am) . . . (am,am)


 . (3.7)

Note that since (ak,al) = (al ,ak), the Gram matrix of any set of vectors is Hermitian

(see p. 46).

Theorem 3.2. A set of vectors {ai}m
i=1 is linearly independent if and only if its Gram

matrix is nonsingular.

Proof. Suppose that the Gram matrix G of a set of vectors {ai}m
i=1 is nonsingular.

Then the set {ai}m
i=1 is linearly independent. Indeed, if

x1a1 + x2a2 + · · ·+ xmam = 0,

then

(x1a1 + x2a2 + · · ·+ xmam,ak) = 0, k = 1,2, . . . ,m.

Hence,

x1(a1,ak)+ x2(a2,ak)+ · · ·+ xm(am,ak) = 0, k = 1,2, . . . ,m. (3.8)

System (3.8) is a homogeneous system of linear algebraic equations for the un-

knowns x1, x2, . . . , xm with the matrix G. Since the Gram matrix G is nonsingular,

system (3.8) has the trivial solution only. Thus, x1 = · · ·= xm = 0. Conversely, sup-

pose that a set of vectors {ai}m
i=1 is linearly independent. Let us construct a linear

combination of the columns of the matrix G with some coefficients x1, x2, . . . , xm.

Equating this linear combination to zero, we get

x1(a1,ak)+ x2(a2,ak)+ · · ·+ xm(am,ak) = 0, k = 1, . . . ,m. (3.9)

Multiplying both sides of the k-th equality in (3.9) by xk, and after that adding term

by term all obtained equalities, we get

(
m

∑
k=1

xkak,
m

∑
k=1

xkak

)
= 0,

therefore,

x1a1 + x2a2 + · · ·+ xmam = 0. (3.10)

1 Jørgen Pedersen Gram (1850–1916) was a Danish mathematician.

3.2 Abstract Inner Product Spaces 71

Since the set of vectors {ai}m
i=1 is linearly independent, it follows from (3.10)

that x1 = · · · = xm = 0. Thus we see that if a linear combination of the columns

of the matrix G is equal to zero, then all the coefficients in this linear combination

are equal to zero. This means that the columns of the matrix G are linearly indepen-

dent, i.e., the matrix G is nonsingular. ⊓⊔

Let us examine for linear dependence the vectors

x1 = (1,3,3,1,−2), x2 = (3,3,1,−3,2), x3 = (1,3,−1,1,3)

in the space R5. For this purpose we introduce the standard inner product on R5 and

calculate the third-order Gram matrix G = {(xi,x j)}3
i, j=1. By elementary calcula-

tions we get

G =




24 8 2

8 32 14

2 14 21


 , det(G) = 24 650,

i.e., the vectors x1,x2,x3 are linearly independent.

3.2.4 Orthogonal Sets of Vectors. Gram-Schmidt

Orthogonalization Process

A set of vectors {ai}m
i=1 is called orthogonal if all the vectors ai, i = 1,2, . . . ,m,

are nonzero and (ai,ak) = 0 for i 6= k. The Gram matrix of every orthogonal set is

diagonal and nonsingular. Evidently, each orthogonal set is linearly independent. A

set of vectors {ai}m
i=1 is called orthonormal if (ai,ak) = δik for i,k = 1,2, . . . ,m.

The Gram matrix of every orthonormal set is the identity matrix. The length of each

vector in any orthonormal set is equal to one.

The change of basis matrix from one orthonormal basis {ek}n
k=1 to another or-

thonormal basis {ẽk}n
k=1 in an inner product space is unitary. Indeed, writing the

equality

Ẽn = EnT (3.11)

in detail, we get ẽk =
n

∑
j=1

t jke j, k = 1,2, . . . ,n. Therefore,

(
n

∑
j=1

t jke j,
n

∑
j=1

t jle j

)
= (ẽk, ẽl) = δkl , k, l = 1,2, . . . ,n,

since the basis Ẽn is orthonormal. Now we transform the left hand side of the last

equality using the orthonormality of the set En and obtain

n

∑
j=1

t jkt jl = δkl , k, l = 1,2, . . . ,n.

72 3 Inner Product Spaces

This means that the matrix T is unitary (see p. 47).

It is important to note that, arguing as above, we see that the inverse statement

is also true. Namely, if the basis En is orthonormal and the matrix T is unitary, then

the basis Ẽn = EnT is also orthonormal.

Theorem 3.3 (Gram-Schmidt1 orthogonalization). Each linearly independent

set {ai}m
i=1 is equivalent to an orthonormal set {bi}m

i=1, and the vector b1 may be

chosen proportional to the vector a1.

Proof. Put h1 = a1 and h2 = x2,1h1+a2. The vector h1 is not equal to zero, since the

vector a1 is not equal to zero, as an element of a linearly independent set. For any

coefficient x2,1 the vector h2 is not equal to zero, since h2 is a linear combination of

linearly independent vectors, and one of the coefficients in this linear combination

is not equal to zero (it is equal to one). Now we define the number x2,1 such that

the vector h2 is orthogonal to the vector h1. Writing this condition, we get 0 =
x2,1(h1,h1)+ (a2,h1), hence, x2,1 = −(a2,h1)/(h1,h1). Thus we have constructed

the vectors h1 and h2 such that (h1,h2) = 0 and h1, h2 6= 0. Suppose that we have

constructed the vectors h1, h2, . . . , hk such that h1, h2, . . . , hk 6= 0 and (hi,h j) = 0

for i 6= j, i, j = 1, . . . ,k. We are looking for a vector hk+1 in the form

hk+1 = xk+1,1h1 + xk+1,2h2 + · · ·+ xk+1,khk +ak+1. (3.12)

For any coefficients xk+1,1, . . . , xk+1,k the vector hk+1 is not equal to zero. Indeed,

by construction, each vector h1, h2, . . . , hk is the linear combination of the vec-

tors {ai}m
i=1, and the linear combination h j consists of the vectors of the set {ai}m

i=1

whose indices i are less than or equal to j. Therefore the vector hk+1 is the linear

combination of the linearly independent vectors a1, a2, . . . , ak+1, and the vector

ak+1 is included in this linear combination with the coefficient that is equal to one.

We define the numbers xk+1,1, xk+1,2, . . . , xk+1,k such that the vector hk+1 is

orthogonal to the vectors h1, h2, . . . , hk. Consistently fulfilling these conditions, we

get

xk+1,1 =−(ak+1,h1)/(h1,h1),

xk+1,2 =−(ak+1,h2)/(h2,h2), . . . ,

xk+1,k =−(ak+1,hk)/(hk,hk).

Continuing this process, we construct the orthogonal set of nonzero vectors {hi}m
i=1.

If we take

bi = (|hi|)−1hi, i = 1, . . . ,m, (3.13)

then we get the orthonormal set of vectors {bi}m
i=1.

As we have established, each vector of the set {hi}m
i=1 is the linear combination

of the vectors {ai}m
i=1. Formula (3.12) shows that each vector of the set {ai}m

i=1 is the

linear combination of the vectors {hi}m
i=1. Formula (3.13) shows that the sets {bi}m

i=1

and {hi}m
i=1 are equivalent. Thus all three considered sets are pairwise equivalent.

1 Erhard Schmidt (1876–1959) was a German mathematician.

3.2 Abstract Inner Product Spaces 73

Finally, we note that the vectors a1 and b1 are proportional, since, by construc-

tion, b1 = (|a1|)−1a1. ⊓⊔

Remark 3.1. The proof of Theorem 3.3 is constructive. It includes the description

of the algorithm for construction of the orthonormal set of vectors that is equivalent

to a given linearly independent set of vectors. This algorithm is called the Gram-

Schmidt orthogonalization process. Note that for numerical realizations the Gram-

Schmidt orthogonalization process is used very rarely, since it is strongly influenced

by roundoff errors.

We assume, for example, that the polynomials Q0(x)≡ 1, Q1(x) = x, Q2(x) = x2

of a real variable x are given. Using the Gram-Schmidt orthogonalization process,

we construct polynomials P0, P1, P2 of zero order, first order, and second order,

respectively, that is orthonormal with respect to the inner product that is defined by

the formula

(f ,g) =

1∫

−1

f (x)g(x)dx.

Calculating according to the Gram-Schmidt orthogonalization process, we get

P̃0 = Q0 ≡ 1,

P̃1(x) = Q1(x)− P̃0(x)

1∫

−1

Q1(x)P̃0(x)dx




1∫

−1

P̃2
0 (x)dx




−1

= x,

P̃2(x) = Q2(x)− P̃0(x)

1∫

−1

Q2(x)P̃0(x)dx




1∫

−1

P̃2
0 (x)dx




−1

− P̃1(x)

1∫

−1

Q2(x)P̃1(x)dx




1∫

−1

P̃2
1 (x)dx




−1

= x2 −1/3,

P0(x) = P̃0(x)




1∫

−1

P̃2
0 (x)dx




−1/2

= 1/
√

2, P1(x) = P̃1(x)




1∫

−1

P̃2
1 (x)dx




−1/2

= x
√

3/2,

P2(x) = P̃2(x)




1∫

−1

P̃2
2 (x)dx




−1/2

=
1

2

√
5

2
(3x2 −1).

74 3 Inner Product Spaces

In the same way, we can construct the polynomials P3(x), . . . , Pn(x) of order

greater than two, applying the Gram-Schmidt orthogonalization process to the poly-

nomials 1,x,x2, . . . ,xn for a given positive integer n. The polynomials

P0(x), P1(x), . . . ,Pn(x), . . .

are called the Legendre1 polynomials. The following so-called Rodrigues’s formula2

is true:

Pk(x) =

√
2k+1

2

1

k!2k

dk

dxk
(x2 −1)k, k = 0,1, . . . (3.14)

Using Rodrigues’ formula and the formula of integration by parts, the reader can

prove that
1∫

−1

Pk(x)Pl(x)dx = 0 k 6= l, k, l = 0,1,2, . . . (3.15)

Remark 3.2. Let f1 be a given nonzero vector in an inner product space Xn, n > 1.

Clearly, there exists a vector f2 that is not proportional to f1, then we can take a

vector f3 such that the vectors f1, f2, f3 are linearly independent. Continuing this

process, we get a basis in the space Xn that includes the vector f1. Applying after

that the Gram-Schmidt orthogonalization process, we can construct an orthonormal

basis that includes a vector that is proportional to the vector f1.

3.2.5 The Expansion of a Vector with Respect to the Basis in an

Inner Product Space

Let Xn be an inner product space and {ek}n
k=1 be a basis in Xn. The coefficients of

the expansion of a vector x ∈ Xn with respect to the basis {ek}n
k=1 can be computed

as the solution of a system of linear equations with a Hermitian nonsingular matrix.

Indeed, successively calculating the inner product of both sides of the equality

ξ1e1 +ξ2e2 + · · ·+ξnen = x

with the vectors e1, e2, . . . , en, we get the system of linear equations:

(e1,e1)ξ1 +(e2,e1)ξ2 + · · ·+(en,e1)ξn = (x,e1),

(e1,e2)ξ1 +(e2,e2)ξ2 + · · ·+(en,e2)ξn = (x,e2),

· ·
(e1,en)ξ1 +(e2,en)ξ2 + · · ·+(en,en)ξn = (x,en).

1 Adrien-Marie Legendre (1752–1833) was a French mathematician.
2 Benjamin Olinde Rodrigues (1794–1851) was a French mathematician.

3.2 Abstract Inner Product Spaces 75

The matrix of this system is the Gram matrix of the basis {ek}n
k=1. If the basis is

orthogonal, then the matrix is diagonal, and the solution of the system can be easily

calculated:

ξk =
(x,ek)

(ek,ek)
, k = 1,2, . . . ,n. (3.16)

Coefficients (3.16) are called the Fourier 1 coefficients of the vector x with respect to

the orthogonal set of vectors {ek}n
k=1. Note that if the basis {ek}n

k=1 is orthonormal,

then for any vector x ∈ Xn we have the following expansion:

x =
n

∑
k=1

(x,ek)ek. (3.17)

3.2.6 The Calculation of an Inner Product

Let x and y be vectors in an inner product space Xn. Suppose that we know the

vectors ξ ,η ∈ Cn of the coefficients of the expansions of x and y with respect to a

basis En, i.e., x = Enξ and y = Enη . Then

(x,y) =
(n

∑
k=1

ξkek,
n

∑
k=1

ηkek

)
=

n

∑
k,l=1

ξkη l(ek,el) = (Gξ ,η), (3.18)

where G is the Gram matrix of the basis En, and the brackets on the right hand side

of equality (3.18) denote the standard inner product on the space Cn. Therefore for

the calculation of the inner product (x,y) it is enough to know the coefficients of the

expansions of the vectors x and y with respect to a basis and the Gram matrix of this

basis.

If the basis is orthonormal, then

(x,y) =
n

∑
k=1

ξkηk. (3.19)

Thus the inner product of vectors can be computed as the standard inner product of

the coefficients of the expansions of these vectors with respect to any orthonormal

basis.

3.2.7 Reciprocal Basis Vectors

Let En={ek}n
k=1 be a basis in an inner product space Xn. It is easy to see that the

equations

1 Jean Baptiste Joseph Fourier (1768–1830) was a French mathematician and physicist.

76 3 Inner Product Spaces

(ei,e j) = δi j, i, j = 1,2, . . . ,n, (3.20)

uniquely define the linearly independent vectors e1, e2, . . . , en. The basis En={ek}n
k=1

is reciprocal to the original one. Clearly, the original and the reciprocal bases co-

incide if and only if the basis En is orthonormal. Let G be the Gram matrix of the

basis En, and G̃ be the Gram matrix of the basis En. Using elementary calculations,

we get En = EnG, En = EnG̃, therefore, G̃ = G−1. The coefficients of the expan-

sions x = Enξ , y = Enη are the following: ξ k = (x,ek), ηk = (y,ek), k = 1,2, . . . ,n,

and

(x,y) =
n

∑
k=1

ξ kη̄k.

The numbers ξ 1, ξ 2, . . . , ξ n are called the contravariant components of the vector x,

the numbers η1, η2, . . . , ηn are called the covariant components of the vector y.

3.2.8 Examples of Orthogonal Bases

Let us start with examples of orthogonal bases in the space Cn.

1. The standard basis {ik}n
k=1 is orthonormal with respect to the standard inner

product on Cn (prove it!).

2. The Fourier basis. It is convenient now to number the basis vectors and their

components from 0 to n−1. Recall that the complex numbers

qk = cos
2πk

n
+ i sin

2πk

n
, k = 0,1, . . . ,n−1,

are the n-th roots of unity (see p. 7). As usual, by i is denoted the imaginary unit.

Let us introduce the set of vectors {ϕk}n−1
k=0 whose components are calculated by the

following formula:

(ϕk) j = q
j
k, j = 0,1, . . . ,n−1, k = 0,1, . . . ,n−1. (3.21)

The set of vectors {ϕk}n−1
k=0 is orthogonal with respect to the standard inner product

on the space Cn. Indeed, first of all we note that qk = qk
1, qk = q−k

1 . Therefore,

calculating the inner product (ϕk,ϕl), we get

(ϕk,ϕl) =
n−1

∑
j=0

q
(k−l) j

1 = 1+(qp
1)+(qp

1)
2 + · · ·+(qp

1)
n−1, (3.22)

where p = k− l. For k = l, i.e., for p = 0, we have (ϕk,ϕk) = n. If p 6= 0, then the

sum on the right hand side of (3.22) is the geometric progression with ratio q
p
1 , and

since |p| = |k − l| < n, we see that q
p
1 6= 1. Using the formula for the sum of the

first n terms of a geometric progression, we obtain

3.2 Abstract Inner Product Spaces 77

n−1

∑
j=0

(qp
1)

j =
(qp

1)
n −1

q
p
1 −1

, (3.23)

but (qn
1)

p = q
pn
1 = 1, hence, (ϕk,ϕl) = 0 for k 6= l.

Using (3.16), we see that the Fourier coefficients ξ of any vector x ∈ Cn with

respect to basis (3.21) are calculated by the formulas

ξk =
(x,ϕk)

(ϕk,ϕk)
=

1

n

n−1

∑
j=0

x jq
− j
k , k = 0,1, . . . ,n−1. (3.24)

The components of the vector x are calculated as follows:

x j =
n−1

∑
k=0

ξkq
j
k, j = 0,1, . . . ,n−1. (3.25)

The basis {ϕk}n−1
k=0 is usually called the Fourier basis. It is widely used in digital

(audio and video) signal processing.

In real-life applications the number n (the length of the processed signal) is very

large, therefore special algorithms for calculation of sums of form (3.25) and (3.24)

are used, they are called the fast Fourier transform (FFT).

Below are examples of orthogonal bases in the space Pn of polynomials with real

coefficients. Let us consider the set of all polynomials of the form

Pn(x) = anxn +an−1xn−1 + · · ·+a0,

where the coefficients a0, a1, . . . , an are real numbers, x is a real variable, n ≥ 0 is a

given integer. Evidently, this set joined with the zero polynomial is the real vector

space with the usual definitions of the operations of the addition of two polynomials

and the multiplication of a polynomial by a real number.

1. The Legendre polynomials. If we specify the inner product on the space Pn by

the formula

(f ,g) =

1∫

−1

f (x)g(x)dx for all f ,g ∈ Pn, (3.26)

then the Legendre polynomials P0, P1, . . . , Pn (see (3.14), (3.15), p. 74) form the

orthogonal basis in the space Pn.

2. The Chebyshev1 polynomials. Now we specify the inner product on the

space Pn using the relationship

(f ,g) =

1∫

−1

f (x)g(x)
1√

1− x2
dx for all f ,g ∈ Pn. (3.27)

1 Pafnuty Lvovich Chebyshev (1821–1894) was a Russian mathematician.

78 3 Inner Product Spaces

The Chebyshev polynomials are defined by the recurrence relation

T0(x)≡ 1, T1(x) = x, (3.28)

Tk+1(x) = 2xTk(x)−Tk−1(x), k = 1,2, . . . (3.29)

Here k is the degree of the polynomial Tk(x).
Let us construct an explicit formula for the Chebyshev polynomials. We look for

the value of the polynomial Tk(x) in the form Tk(x) = λ k. Substituting λ k for Tk(x)
in recurrence relation (3.29), we get

λ k+1 = 2xλ k −λ k−1,

therefore, if λ 6= 0, then λ satisfies the quadratic equation

λ 2 −2xλ +1 = 0.

This equation has the following roots: λ1,2 = x±
√

x2 −1. Hence the functions

T
(1)

k (x) = (x+
√

x2 −1)k, T
(2)

k (x) = (x−
√

x2 −1)k,

and, as a consequence, the functions

Tk(x) = c1T
(1)

k (x)+ c2T
(2)

k (x), k = 0,1, . . . ,

satisfy (3.29). Here c1 and c2 are arbitrary real numbers. The numbers c1 and c2 are

defined by conditions (3.28):

c1 + c2 = 1,

(c1 + c2)x+(c1 − c2)
√

x2 −1 = x.

Therefore, c1 = c2 = 1/2, i.e., the polynomials

Tk(x) =
1

2

(
x+
√

x2 −1
)k

+
1

2

(
x−
√

x2 −1
)k

, k = 0,1,2, . . .

satisfy (3.29) and (3.28). For |x| ≤ 1 the Chebyshev polynomials can be written in a

more compact form. In this case we can put x = cosϕ . Then

Tk(x) =
1

2
(cosϕ + i sinϕ)k +

1

2
(cosϕ − i sinϕ)k ,

and, using de Moivre’s formula (see (1.23), p. 6), we get Tk(x) = coskϕ , and hence,

Tk(x) = cos(k arccosx). (3.30)

The Chebyshev polynomials are orthogonal with respect to inner product (3.27).

Indeed, using (3.30), we can write

3.3 Subspaces 79

(Tk,Tl) =

1∫

−1

cos(k arccosx)cos(l arccosx)√
1− x2

dx.

If we put x = cosϕ , then using elementary calculations, we get

(Tk,Tl) =

π∫

0

coskϕ cos lϕ dϕ = 0, k 6= l.

Thus the Chebyshev polynomials T0, T1, . . . , Tn form the orthogonal basis with

respect to inner product (3.27) on the space Pn of polynomials with real coefficients.

3.3 Subspaces

3.3.1 The Sum and the Intersection of Subspaces

A set L of elements in a vector space X is a subspace of X if αx+βy ∈ L for all

x,y ∈ L and for all complex numbers α , β . Trivial examples of subspaces are the

following: the space X itself is a subspace, the set consisting only of the zero vector

is a subspace. Each subspace L includes the zero vector, since, by definition, for

any x ∈ L the vector 0x belongs to L.

The proof of the two following theorems is left to the reader.

Theorem 3.4. Let a1, a2, . . . , am, m ≥ 1, be given vectors in a vector space X. The

set of all linear combinations x1a1 + x2a2 + · · ·+ xmam is the subspace of X. This

subspace is called the span of a1, a2, . . . , am and is denoted by span{a1,a2, . . . ,am}.

Theorem 3.5. Let a1, a2 be given vectors in a vector space X, and a2 6= 0. The set L

of all vectors of the form a1 +αa2, where α ∈ C, is called the line passing through

the point a1 and parallel to the vector a2. The set L is the subspace if and only if the

vectors a1, a2 are linearly dependent.

Let L1, L2 be subspaces of a vector space X. The set L of all vectors of the

form a1 +a2, where a1 ∈ L1, a2 ∈ L2, is called the sum of the subspaces L1 and L2,

and is denoted by L = L1 +L2. The set L is a subspace. Indeed, let x, y ∈ L. This

means that there exist vectors a1, b1 ∈ L1, a2, b2 ∈ L2 such that x = a1 +a2 and y =
b1 +b2. Let α , β be arbitrary complex numbers. Then

αx+βy = α(a1 +a2)+β (b1 +b2) = (αa1 +βb1)+(αa2 +βb2).

Since L1 is a subspace, the vector αa1 + βb1 belongs to L1. Similarly, the vec-

tor αa2 +βb2 belongs to L2. Therefore the vector αx+βy belongs to L.

The intersection of the subspaces L1 and L2, i.e., the set L1∩L2 of all vectors that

are elements of both L1 and L2, is also a subspace of X. Indeed, let vectors x,y ∈

80 3 Inner Product Spaces

L1 ∩L2. For any complex number α the vector αx belongs to both L1 and L2, i.e.,

αx ∈ L1 ∩L2. Similarly, for any β the vector βy ∈ L1 ∩L2, hence, evidently, αx+
βy ∈ L1 ∩ L2. A set of vectors {ek}m

k=1 ⊂ L is a basis of a subspace L, if these

vectors are linearly independent and each vector x ∈ L can be represented as a linear

combination of the vectors {ek}m
k=1. The number m is called the dimension of the

subspace L and is denoted by dimL.

The subspace consisting only of the zero vector is called the zero subspace and

is denoted by {0}. As usual, we assume that dim{0}= 0.

Now the reader can describe by himself all possible subspaces of the space V3.

A subspace L of a finite-dimensional space Xn coincides with Xn if and only

if dimL = n. This statement immediately follows from the fact that any n linearly

independent vectors in the space Xn form a basis in this space (see Theorem 2.8,

p. 61).

Evidently, any given basis {ek}m
k=1 of any subspace L ⊂ Xn can be joined with

some vectors to complete a basis {ek}n
k=1 of the space Xn. Similarly, if L1 and L2

are subspaces, and L1 ⊂ L2, then dimL1 ≤ dimL2, and any basis of L1 can be joined

with some elements of L2 to complete the basis in the subspace L2.

The sum of the subspaces L1 and L2 is called direct if the components x1 ∈ L1

and x2 ∈ L2 of each vector x = x1 + x2 ∈ (L1 + L2) are uniquely determined. The

direct sum of subspaces L1 and L2 is denoted by L1 ⊕L2.

Theorem 3.6. The sum of two subspaces L1 and L2 is direct if and only if it follows

from the equality

x1 + x2 = 0, x1 ∈ L1, x2 ∈ L2, (3.31)

that x1 = 0, x2 = 0.

Proof. Suppose that x1 = 0, x2 = 0 follow from (3.31). Let us prove that the com-

ponents x1 ∈ L1 and x2 ∈ L2 of each vector x = x1 + x2 ∈ (L1 + L2) are uniquely

determined. Suppose that there exists one more expansion of the vector x, i.e.,

we have x = x̃1 + x̃2, x̃1 ∈ L1, x̃2 ∈ L2. Then, evidently, (x1 − x̃1)+ (x2 − x̃2) = 0.

Since x1 − x̃1 ∈ L1, x2 − x̃2 ∈ L2, we see that x1 − x̃1 = 0, x2 − x̃2 = 0, there-

fore, x1 = x̃1, x2 = x̃2. Conversely, suppose that the components x1 ∈ L1 and x2 ∈ L2

of each vector x = x1 + x2 ∈ (L1 +L2) are uniquely determined, and let x1 + x2 = 0

for some x1 ∈ L1, x2 ∈ L2. Since 0+0 = 0, we have x1 = x2 = 0. ⊓⊔

Theorem 3.7. The sum of two subspaces L1 and L2 is direct if and only if

L1 ∩L2 = {0}.

Proof. Let L1 ∩L2 = {0}, x1 + x2 = 0, x1 ∈ L1, x2 ∈ L2. Since x1 = −x2, we have

x1 ∈ L2. Hence, x1 ∈ L1 ∩L2. Therefore, x1 = 0, and, evidently, x2 = 0. Conversely,

let x ∈ L1∩L2. Then x ∈ L1, x ∈ L2, besides that, obviously, x+(−x) = 0. Since the

sum of L1 and L2 is direct, using Theorem 3.6, we get x = 0, thus, L1 ∩L2 = {0}.

⊓⊔

The reader can prove by himself the next theorem.

3.3 Subspaces 81

Theorem 3.8. Let L be a subspace of a finite-dimensional vector space Xn. Then

there exists a subspace M ⊂ Xn such that Xn = L⊕M.

Let L1 and L2 be subspaces in an inner product space. If (x,y) = 0 for all

x ∈ L1 and y ∈ L2, then we say that the subspaces L1 and L2 are orthogonal and

write L1⊥L2. The sum of the orthogonal subspaces is called orthogonal.

Each orthogonal sum is direct. Indeed, let L1⊥L2, x1 ∈ L1, x2 ∈ L2, x1 + x2 = 0.

Since the vectors x1 and x2 are orthogonal, using the Pythagorean identity, we see

that |x1 + x2|2 = |x1|2 + |x2|2. Hence, |x1|2 + |x2|2 = 0, and x1 = x2 = 0.

The concepts of the direct sum and the orthogonal sum are applied in a natu-

ral way to the case of any finite number of subspaces. Namely, the sum of sub-

spaces L1, L2, . . . , Lk in an inner product space is called orthogonal if it is the set

of all elements of the form x = x1 + x2 + · · ·+ xk, x j ∈ L j, j = 1,2, . . . ,k, and Li⊥L j

for i 6= j, i, j = 1,2, . . . ,k. Theorem 3.6 is easily generalized to the case of any finite

number of subspaces.

The reader can prove that each orthogonal sum of any finite number of subspaces

is direct, i.e., the components x j ∈ L j, j = 1,2, . . . ,k, are uniquely determined by

each vector x.

The reader can also answer by himself the next question. Is this statement true:

the sum of subspaces L1 +L2 + · · ·+Lk, k > 2, is direct if their intersection is the

zero subspace?

3.3.2 The Dimension of the Sum of Subspaces

Theorem 3.9. If L=L1 ⊕ L2 ⊕ ·· · ⊕ Lk is the direct sum of finite-dimensional sub-

spaces L1, L2,. . . , Lk of a vector space X, then

dimL = dimL1 +dimL2 + · · ·+dimLk. (3.32)

Proof. Let us prove the theorem for the case k = 2. For an arbitrary k the proof is

analogous. Let

f1, f2, . . . , fp; g1,g2, . . . ,gq (3.33)

be bases in the subspaces L1 and L2, respectively. Then the union of these two sets

is a basis of the subspace L1 ⊕L2. Indeed, for any x ∈ L1 ⊕L2 we have x = x1 + x2,

where

x1 = α1 f1 +α2 f2 + · · ·+αp fp ∈ L1, x2 = β1g1 +β2g2 + · · ·+βqgq ∈ L2,

and if x = 0, then x1 = x2 = 0, since the sum L1 ⊕ L2 is direct. Hence all the

numbers α1,α2, . . . ,αp, β1,β2, . . . ,βq are equal to zero, since { fk}p
k=1, {gk}q

k=1 are

bases. Thus the set of vectors (3.33) is linearly independent. It is clear now that

dim(L1 ⊕L2) = p+q. ⊓⊔

82 3 Inner Product Spaces

Theorem 3.10. If L1 and L2 are arbitrary finite-dimensional subspaces of a vector

space X, then

dim(L1 +L2) = dimL1 +dimL2 −dim(L1 ∩L2). (3.34)

Proof. Obviously, the space G = L1 ∩ L2 is finite-dimensional. Suppose that a

set Gl = {gi}l
i=1 is a basis in G, the union of Gl and vectors Fk = { fi}k

i=1 is a basis

in the subspace L1, and the union of Gl and vectors Hm = {hi}m
i=1 is a basis in the

subspace L2. Let F be the span of Fk and let H be the span of Hm. We shall prove

that

L1 +L2 = F +G+H. (3.35)

Indeed, if x ∈ L1+L2, then x = x1+x2, where x1 ∈ L1, x2 ∈ L2. Clearly, x1 = f +g−,

x2 = h + g+, where f ∈ F , h ∈ H, g+,g− ∈ G, therefore, x = f + g + h, where

g = g++g− ∈ G. Thus, x ∈ F +G+H. It is easier to prove that if x ∈ F +G+H,

then x ∈ L1 +L2. The sum on the right hand side of (3.35) is direct. In fact, suppose

that f +g+h = 0, where f ∈ F , g ∈ G, h ∈ H. Let us show that f ,g,h = 0. We have

f + g = −h. Clearly, −h ∈ L2, and f + g ∈ L1, therefore, f + g ∈ G, h ∈ G. If we

put h+g = g̃, then f + g̃ = 0, and g̃ ∈ G. Since the set of vectors Fk ∪Gl is linearly

independent, we obtain f = 0, g̃= 0. Similarly, h= 0, g= 0. Using Theorem 3.9, we

get dim(L1+L2) = dim(F ⊕G⊕H) = k+ l+m, but dimL1 = k+ l, dimL2 = l+m,

and dim(L1 ∩L2) = l. Finally, let us note that k+ l +m = (k+ l)+(l+m)− l. ⊓⊔

Corollary 3.1. Suppose that L1, L2 are subspaces of an n-dimensional space Xn,

and dimL1 +dimL2 > n. Then L1 ∩L2 6= {0}.

Proof. Since L1+L2 is a subspace of Xn, we get dim(L1+L2)≤ n, and using (3.34),

we see that dim(L1 ∩L2) = dimL1 +dimL2 −dim(L1 +L2)≥ 1. ⊓⊔

3.3.3 The Orthogonal Projection of a Vector onto a Subspace

Let L be a subspace of an inner product space X and let x be a vector in X. A vec-

tor y ∈ L is the best approximation of x if

|x− y| ≤ |x− z| for all z ∈ L. (3.36)

Theorem 3.11. Let L be a finite-dimensional subspace of X. Then for every x ∈ X

there exists a unique best approximation of x in L.

Proof. If L = {0}, then the unique best approximation of x is the zero vector. There-

fore we assume that L 6= {0}. Let y,z ∈ L. If we write z in the form z = y+h, where

h ∈ L, then

(x− z,x− z) = (x− y−h,x− y−h)

= (x− y,x− y)− (x− y,h)− (h,x− y)+(h,h).

3.3 Subspaces 83

Hence if (x−y,h) = 0 for all h∈ L, then condition (3.36) holds. Conversely, if (3.36)

holds, then

−(x− y,h)− (h,x− y)+(h,h)≥ 0 for all h ∈ L.

Substituting h1 = ((x − y,h)/|h|2)h for h, we get −|(x − y,h)|2/|h|2 ≥ 0, there-

fore, (x− y,h) = 0. Thus, y ∈ L is the best approximation of x ∈ X if and only if

(x− y,h) = 0 for all h ∈ L. (3.37)

In other words, the vector x − y is orthogonal to the subspace L. Geometrically,

this conclusion is quite obvious (make a drawing!). If a vector y satisfying condi-

tion (3.37) exists, then it is uniquely determined by the vector x. Indeed, let there

exist one more vector ỹ ∈ L such that (x− ỹ,h) = 0 for all h ∈ L. Then (y− ỹ,h) = 0

for all h ∈ L. If we take h = y− ỹ, then we get y = ỹ.

We shall prove now that a vector y ∈ L satisfying condition (3.37) exists.

Let {ek}m
k=1 be a basis in the subspace L. Condition (3.37) is equivalent to the fol-

lowing one:

(x− y,ek) = 0, k = 1,2, . . . ,m. (3.38)

We seek the vector y in the form y =
m

∑
i=1

ηiei. It follows from (3.38) that

(m

∑
i=1

ηiei,ek

)
= (x,ek), k = 1,2, . . . ,m.

The last condition gives the system of linear equations with unknowns η1,η2, . . . ,ηm:

m

∑
i=1

ηi(ei,ek) = (x,ek), k = 1,2, . . . ,m. (3.39)

The matrix of this system is the Gram matrix of the basis {ek}m
k=1. This matrix is

nonsingular (see Theorem 3.2, p. 70). Therefore system (3.39) has a unique solution

for each x ∈ X, i.e., condition (3.37) uniquely determines the vector y. ⊓⊔

Remark 3.3. If the basis {ek}m
k=1 of the subspace L is orthonormal, then the vector y

can be easily calculated, namely, in this case we get y =
m

∑
k=1

(x,ek)ek.

It is natural that the vector y satisfying condition (3.37) is called the orthogonal

projection of the vector x onto the subspace L and the vector z = x− y is called the

perpendicular dropped from the point x to the subspace L.

Note that (x−y,y) = 0, since y ∈ L, therefore the Pythagorean identity (see Sub-

sect. 3.2.2, p. 68) is true:

|x|2 = |x− y|2 + |y|2. (3.40)

84 3 Inner Product Spaces

It follows from (3.40) that |y|2 ≤ |x|2. This is the so-called Bessel’s1 inequality,

which shows that the length of the projection of a vector is less than or equal to the

length of the vector.

If the set of vectors {ek}m
k=1 is orthonormal, then Bessel’s inequality has the form

m

∑
k=1

|(x,ek)|2 ≤ |x|2 for all x ∈ X. (3.41)

The two sides in (3.41) are equal if and only if x ∈ L, i.e., if x =
m

∑
k=1

(x,ek)ek.

Note that Cauchy-Schwarz inequality (3.5), p. 68, can be interpreted as a special

case of Bessel’s inequality (3.41) where the orthonormal set of vectors consists of

only one vector e1 = |y|−1y, y 6= 0.

For example, let L be the subspace of the space R4 spanned by the vectors

a1 = (−3,0,7,6), a2 = (1,4,3,2), and a3 = (2,2,−2,−2). Let us calculate the or-

thogonal projection of the vector x = (14,−3,−6,−7) onto the subspace L and the

perpendicular dropped from the point x to the subspace L.

The vectors a1 and a2 are linearly independent, the vector a3 is the linear com-

bination of a1 and a2, namely, a3 = (−1/2)a1 +(1/2)a2. Hence the vectors a1, a2

form a basis in the subspace L. The components η1, η2 of the vector y (which is

the projection of x onto L) with respect to the basis a1, a2 can be computed as the

solution of the system of equations

η1(a1,a1)+η2(a2,a1) = (x,a1), (3.42)

η1(a1,a2)+η2(a2,a2) = (x,a2). (3.43)

Computing the inner products, we get (a1,a1) = 9+ 49+ 36 = 94, (a2,a1) = 30,

(a2,a2) = 30, (x,a1) =−126, (x,a2) =−30. Solving system (3.42), (3.43), we ob-

tain η1 =−3/2, η2 = 1/2, i.e., y = (−3/2)a1 +(1/2)a2 = (5,2,−9,−8) is the or-

thogonal projection of the vector x onto the subspace L and z = x− y = (9,−5,3,1)
is the perpendicular dropped from the point x to the subspace L.

A bad choice of the basis in the subspace L can cause great computational diffi-

culties in the practical calculation of the element of best approximation. Here is an

appropriate example. Let us specify the inner product in the space C[0,1] of contin-

uous functions, using the formula

(f ,g) =

1∫

0

f (x)g(x)dx, f , g ∈C[0,1]. (3.44)

We shall consider the five-dimensional subspace of C[0,1] spanned by the basis that

consists of the functions ϕ0(x) ≡ 1, ϕ1(x) = x, ϕ2(x) = x2, ϕ3(x) = x3, ϕ4(x) = x4

and calculate the best approximation of the function ϕ(x) = x5.

The Gram matrix in this case is easily calculated:

1 Friedrich Wilhelm Bessel (1784–1846) was a German mathematician and astronomer.

3.3 Subspaces 85

Fig. 3.1 For the example of the almost linearly dependent basis. The plot of the function ϕ is indi-

cated by the solid line, the plots of the approximating polynomial are indicated by the symbols “+”

(for ε = 5 ·10−4) and “∗” (for ε = 2 ·10−4)

1∫

0

ϕk(x)ϕl(x)dx = 1/(k+ l +1), k, l = 0, 1, . . . , 4. (3.45)

Evidently, the right-hand side column of system of linear equations (3.39) is equal

to (1/6, 1/7, 1/8, 1/9, 1/10)T . We assume that the last element of the right-hand

side column was calculated with a computational error, and substitute the num-

ber (1/10)+ ε for 1/10.

Fig. 3.1 shows the plot of the function ϕ(x) and the plots of the approximating

polynomial P4(x) = η0 +η1x+η2x2 +η3x3 +η4x4 for different ε . We see that sig-

nificant errors of the approximation of the function ϕ correspond to small errors of

the computation of the right-hand side (which are inevitable in practice). The reason

for this effect is that the selected basis is almost linearly dependent. To verify this,

just look at the plots of the functions xp, p = 1,2, . . . , on the interval [0,1]. These

plots are similar even if the numbers p are not very large. Therefore the matrix of

system (3.39) is almost singular (it is also said to be ill-conditioned).

The matrix with the elements (3.45), i.e., the matrix of the form

Hn =

{
1

i+ j−1

}n

i, j=1

(3.46)

is called the Hilbert1 matrix. It is often applied in various areas of mathematics.

Even for n > 10 this matrix is so ill-conditioned that the corresponding system prac-

tically is not solvable by a computer.

Remark 3.4. Usually, orthogonal bases (for example, the Legendre polynomials or

the Chebyshev polynomials, see pp. 74, 77) are used for approximations of functions

by polynomials. In this case system (3.39) is diagonal.

1 David Hilbert (1862–1943) was a German mathematician.

86 3 Inner Product Spaces

3.3.4 The Orthogonal Decomposition of an Inner Product Space

Let L be a subspace of an inner product space X. The set of all vectors in X that

are orthogonal to L is called the orthogonal complement of the subspace L and is

denoted by L⊥. The reader can easily prove that L⊥ is a subspace of the space X.

Theorem 3.12 (orthogonal decomposition). Let L be a finite-dimensional sub-

space of an inner-product space X and let L⊥ be the orthogonal complement of the

subspace L. Then the space X is the orthogonal sum of the subspaces L and L⊥, i.e.,

X = L⊕L⊥. (3.47)

Proof. Using Theorem 3.11, we see that for each x ∈ X there exists y ∈ L such

that (x−y,h) = 0 for all h ∈ L, therefore, z = x−y ∈ L⊥ and x = y+z, which means

(see Subsect. 3.3.1, p. 81) that decomposition (3.47) is true. ⊓⊔

Let e ∈ X, e 6= 0. Denote by πe the set of all vectors in the space X that are

orthogonal to e. It is easy to see that πe is the subspace of X. This subspace is called

the hyperplane orthogonal to the vector e.

Theorem 3.13. Let x be an arbitrary vector and e be a nonzero vector in an inner

product space Xn. Then there exist a vector y ∈ πe and a number µ such that

x = µe+ y. (3.48)

The number µ and the vector y are uniquely determined by the vector x. Moreover,

|x− y| ≤ |x− z| for all z ∈ πe, (3.49)

i.e., y is the element of best approximation of x in the subspace πe.

The reader can prove Theorem 3.13 by himself (hint: use the idea of the proof of

Theorem 3.12).

Chapter 4

Linear Operators

In this chapter we introduce the concept of a linear operator defined on a linear

space. We study basic properties of linear operators acting in finite-dimensional

linear spaces. We give a detailed investigation of their spectral properties. Special

attention is paid to the study of the structure of the main classes of linear operators

in finite-dimensional Euclidean and unitary spaces.

4.1 Linear Operators and their Basic Properties

4.1.1 Basic Definitions. Operations with Operators

Let X, Y be linear spaces. We say that ϕ is a map from X to Y and write ϕ : X→Y if

for any x ∈ X there exists a unique vector ϕ(x) ∈ Y. We also say in this case that the

function ϕ with values in the space Y is defined on the space X and write x → ϕ(x).
We note that at the same time not every vector in Y should be the result of the

mapping ϕ of some vector x ∈ X.

We say that a map ϕ is linear if for any x, y ∈ X and for any scalars α , β we have

ϕ(αx+βy) = αϕ(x)+βϕ(y). (4.1)

In linear algebra almost all mappings are linear and they are called linear operators,

or in some contexts operators. Usually operators are denoted by capital letters. For

example, relationship (4.1) for a linear operator A will be written as

A(αx+βy) = αAx+βAy.

Using the definition of a linear mapping, we see that A0 = 0 for any operator A.

If an operator maps a space X into the same space X, then we say that it acts in

the space X or this operator is a transformation of the space X.

87

88 4 Linear Operators

If some basis {e j}n
j=1 is fixed in a finite-dimensional space Xn, then to define a

linear operator A on Xn it is enough to describe the action of this operator on all the

basis vectors, since for any vector x =
n

∑
j=1

ξ je j we have Ax =
n

∑
j=1

ξ jAe j.

Operations with operators.

We define the linear combination of two operators A : X → Y and B : X → Y as

the mapping αA+βB : X → Y given by

(αA+βB)x = α(Ax)+β (Bx) for all x ∈ X, (4.2)

where α and β are scalars. We define the product of two operators A : X → Y

and B : Y → Z as the mapping BA : X → Z given by

BAx = B(Ax) for all x ∈ X. (4.3)

The reader can easily prove that αA+βB and BA are linear operators.

The product of a finite number of operators is defined in the same way. The reader

will have no difficulty in showing that if the product of operators C, B, A is defined,

then CBA= C(BA) = (CB)A.

Examples of linear operators.

1. The null operator 0 : X → Y is defined by 0x = 0 for all x ∈ X. This operator

transforms every vector of the space X into the zero vector of the space Y.

2. The identity operator I : X→X is defined by Ix= x for all x∈X. This operator

transforms every vector of the space X into itself.

3. The projection operator. Let the linear space X be a direct sum of subspaces L

and M. Then every vector x ∈ X can be written in the form x = x1+x2, where x1 ∈ L,

x2 ∈ M, and the vectors x1, x2 are uniquely defined by the vector x. Let us define

the operator P : X → L such that Px = x1. The operator P is called the projection

operator onto the subspace L (in parallel with the subspace M). If X is an inner

product space and can be represented as an orthogonal sum of subspaces L and M,

then the operator P is called the operator of the orthogonal projection.

Let us prove that the operator P is linear. Suppose x = Px+ x2 and y = Py+ y2,

where x, y ∈ X, x2, y2 ∈ M. Then for all scalars α , β we have

αx+βy = αPx+βPy+αx2 +βy2.

Since L and M are subspaces, we have αPx + βPy ∈ L, αx2 + βy2 ∈ M, and

thus, P(αx+βy) = αPx+βPy.

In the same manner we can introduce the linear operator Q that projects the

space X onto the subspace M. We can easily get the following equalities: P+Q= I,

PQ = 0, QP = 0, P2 = P , Q2 = Q. Generally, if the space X is a direct sum of

several subspaces

X = L1 ⊕L2 ⊕·· ·⊕Lk,

and Pi is the projection operator onto the subspace Li, i = 1, 2,. . . , k, then

4.1 Linear Operators and their Basic Properties 89

P1 +P2 + · · ·+Pk = I, P2
i = Pi, PiP j = 0 for i 6= j, (4.4)

where i, j = 1, 2,. . . , k.

4. The matrix–vector multiplication. Let A(m,n) be a rectangular matrix. Define

the map A : Cn → Cm by the rule

y = Ax. (4.5)

The matrix–vector multiplication is the linear operation (see Subsect. 1.2.4, p. 32).

Therefore the operator A : Cn → Cm defined by (4.5) is linear.

4.1.2 The Inverse Operator

A linear operator A :X→Y is called invertible if there exists a map B : Y→X such

that

BAx = x for all x ∈ X, (4.6)

ABy = y for all y ∈ Y. (4.7)

A map B : Y → X satisfying (4.6) and (4.7) is called an inverse of the map A.

Let us check that if an inverse B of the map A exists, then B is a linear opera-

tor. Let y1, y2 ∈ Y, α , β ∈ C. Take x1 = By1, x2 = By2. Then Ax1 = ABy1 = y1

and Ax2 =ABy2 = y2. Therefore,

B(αy1 +βy2) = B(αAx1 +βAx2)

= BA(αx1 +βx2) = αx1 +βx2 = αBy1 +βBy2.

We claim that if a linear operator A : X → Y is invertible, then this operator is

a bijective map acting from the space X to the space Y. In fact, first let x1,x2 be

two vectors in X such that x1 6= x2. Then Ax1 6= Ax2. Indeed, if we assume that

Ax1 =Ax2, then BAx1 = BAx2, hence, x1 = x2. Second, if y ∈ Y, then for x = By

we have Ax = ABy = y, i.e., any vector y ∈ Y is the result of the mapping A of

some vector x ∈ X.

It is easy to see that if a linear operator A is invertible, then it has a unique

inverse (check it!). The inverse operator to the operator A is denoted by A−1. By

definition, if the operator A−1 exists, then (A−1)−1 =A.

Examples.

1. The identity operator is invertible with I−1= I.

2. Obviously, the null operator is the noninvertible operator.

3. If L 6= X, then the projection operator P : X → L is the noninvertible operator.

4. Any square matrix A of order n defines the linear operator acting in the space Cn.

If the matrix A is nonsingular, then this operator is invertible. The inverse opera-

tor is defined by the inverse matrix A−1 (see p. 38).

90 4 Linear Operators

Let A : X → Y, B : Y → Z be invertible operators. The reader can easily show

that the operator BA is invertible and (BA)−1 =A−1B−1.

4.1.3 The Coordinate Representation Operator

Let Xn be an n-dimensional linear space, and let En = {ek}n
k=1 be a basis for Xn.

Define an operator that maps the space Cn onto the space Xn by the rule

x = Enξ , ξ ∈ Cn. (4.8)

Evidently, this operator is linear and we denote it by E .

If x∈Xn is a given vector, then there exists the unique representation x=
n

∑
k=1

ξkek

because En is the basis. The scalars ξk, k = 1, 2, . . . , n, are the coordinates of x with

respect to the basis En, and the vector ξ ∈Cn is the unique coordinate representation

of x. Given the basis En, the linear mapping from Xn to Cn is well defined:

x → ξ , where x = Enξ .

We call this map the coordinate representation operator and denote it by E−1.

Using the definitions of the operators E and E−1, we get

E−1Eξ = ξ for all ξ ∈ Cn, EE−1x = x for all x ∈ Xn,

i.e., the operators E and E−1 are mutually inverse.

Usually to calculate a coordinate representation of x it is necessary to solve a

system of linear algebraic equations with a square nonsingular matrix (see pp. 60,

63, 74). If Xn is an inner product space and En is an orthonormal basis, then the

coordinate representation of x can be calculated more easily (see (3.17), p. 75, and

the examples on pp. 76, 77).

4.1.4 Isomorphism of Finite-Dimensional Linear Spaces

We say that two linear spaces X, Y are isomorphic if there exists an invertible linear

operator such that A : X → Y. In other words, linear spaces X and Y are isomorphic

if a linear bijective correspondence between X and Y can be set up. We also say

in this case that the mapping A of X onto Y is called the isomorphism between X

and Y.

Obviously, isomorphisms between linear spaces have the property of transitivity,

i.e., if X, Z are isomorphic and Y, Z are isomorphic, then X, Y are also isomorphic.

Theorem 4.1. Any two finite-dimensional complex linear spaces of the same dimen-

sion are isomorphic.

4.1 Linear Operators and their Basic Properties 91

Proof. Due to the transitivity it is sufficient to prove that every n-dimensional com-

plex linear space Xn is isomorphic to the space Cn. Let En be any basis of Xn. Then

the coordinate representation operator E−1 realizes an isomorphism between Xn

and Cn (see Subsect. 4.1.3). ⊓⊔

For the same reason all n-dimensional real linear spaces are isomorphic to the

space Rn.

Theorem 4.2. If two finite-dimensional linear spaces X, Y are isomorphic, then they

have the same dimension.

Proof. Let {ek}n
k=1 be a basis of X. Suppose that a linear operator A is a bi-

jective map from the space X to the space Y. Writing
n

∑
k=1

αkAek = 0, we ob-

tain A
n

∑
k=1

αkek = 0. Acting on both sides of the last equality by the operator A−1,

we get
n

∑
k=1

αkek = 0. Therefore, α1,α2, . . . ,αn = 0, i.e., the vectors {Aek}n
k=1 are the

linearly independent elements of the space Y. Hence the dimension of the space X

is more than or equal to n. Exchanging the roles of the spaces X and Y, we get that

they have the same dimension. ⊓⊔

Consequently we have the following result.

Theorem 4.3. Two finite-dimensional complex (or real) linear spaces are isomor-

phic if and only if they have the same dimension.

If linear spaces X, Y are isomorphic, then there exists a biunique correspondence

between the linear operations with elements in X and the linear operations with ele-

ments in Y. Particularly, if a complex (or real) linear space X is finite-dimensional,

then by introducing a basis for X the linear operations with elements in X can be

replaced by the linear operations with vectors in the space Cn (or Rn).

4.1.5 The Matrix of a Linear Operator

Let A : Xn →Ym be a linear operator. Suppose that En = {ek}n
k=1 is a basis of Xn and

Qm = {qk}m
k=1 is a basis of Ym. For each i = 1, 2, . . . , n the vector Aei is uniquely

expanded in terms of the basis Qm:

Aei =
m

∑
j=1

a
(eq)
ji q j, i = 1, 2, . . . , n. (4.9)

Consider the matrix

92 4 Linear Operators

Aeq =




a
(eq)
11 a

(eq)
12 . . . a

(eq)
1n

a
(eq)
21 a

(eq)
22 . . . a

(eq)
2n

.

a
(eq)
m1 a

(eq)
m2 . . . a

(eq)
mn


 (4.10)

(the i-th column of Aeq consists of the coordinates of Aei with respect to the ba-

sis Qm). The matrix Aeq is called the matrix of the operator A. This matrix is

uniquely determined by the operator A and by the bases En, Qm. We denote an

operator and the corresponding matrix by the same letter in different typefaces.

Subscripts in the notation of the matrix of an operator indicate which bases were

used to construct the matrix.

Note that we can write relations (4.9) more concisely:

AEn =QmAeq. (4.11)

Suppose that x = Enξ ∈ Xn, ξ ∈Cn. We can expand the vector Ax in terms of the

basis Qm: Ax =Qmη , η ∈ Cm. Then, using (4.11), we get

Qmη =Ax =AEnξ =QmAeqξ ,

therefore,

η = Aeqξ . (4.12)

Relationship (4.12) shows the dependence between the coordinates of the vectors x

and Ax with respect to the bases of the linear spaces Xn and Ym, respectively.

It follows from (4.12) that if the matrix Aeq of the operator A is known, then we

can construct the vector Ax∈Ym corresponding to the vector x∈Xn in the following

way.

1. Calculate the coordinates ξ ∈ Cn of x with respect to the basis En. Using the

coordinate representation operator E−1, we can write ξ = E−1x (see Subsect. 4.1.3).

2. Using (4.12) calculate the coordinates η ∈Cm of y =Ax ∈ Ym with respect to

the basis Qm.

3. Calculate the vector y by the formula y =Qη . Here Q is the operator defined

by the rule analogous to (4.8).

The above implies that, using the operators E and Q constructed by the bases En

and Qm, we can write (4.11) in the following equivalent forms:

Aeq =Q−1AE or A=QAeqE−1. (4.13)

To be precise, equalities (4.13) mean that

Aeqξ =Q−1AEξ for all ξ ∈ Cn, Ax =QAeqE−1x for all x ∈ Xn.
(4.14)

Equalities (4.13), (4.14) are illustrated by the following diagrams:

4.1 Linear Operators and their Basic Properties 93

Xn
A−−−−→ Ym

E
x

yQ−1

Cn −−−−→
Aeq

Cm

Xn
A−−−−→ Ym

E−1

y
xQ

Cn −−−−→
Aeq

Cm

Therefore, if some bases En and Qm were chosen for the spaces Xn and Ym,

then to each linear operator A : Xn → Ym uniquely corresponds the linear opera-

tor Aeq : Cn → Cm. This is the matrix–vector multiplication operator defined by the

rule (4.12), where Aeq is the matrix of the operator A with respect to the bases En

and Qm. Conversely, the linear operator A : Xn → Ym that is defined by the equal-

ity A=QAE−1 uniquely corresponds to each m-by-n matrix A.

If A : Xn → Xn, then

AEn = EnAe (4.15)

or

Ae = E−1AE , (4.16)

where Ae is the matrix of the operator A with respect to the basis En.

We note that there are two obvious cases when the matrix of the linear opera-

tor A : Xn → Ym does not depend on the choice of the bases for Xn and Ym.

1. The matrix of the null operator for any choice of the bases for Xn and Ym is

the null matrix.

2. The matrix of the identity operator with respect to any basis of the space Xn is

the identity matrix.

By definition of the matrix of a linear operator we have

(αA+βB)eq = αAeq +βBeq (4.17)

for any linear operators A,B : Xn → Ym and for any α , β ∈ C, i.e., the linear oper-

ations with their matrices correspond to the linear operations with operators.

A similar statement under certain conditions is true for the product of two op-

erators. Let A : Xn → Ym, B : Ym → Zp be linear operators. Suppose that {ek}n
k=1,

{qk}m
k=1, and {rk}p

k=1 are the bases for the spaces Xn, Ym, and Zp, respectively. Let

Aeq be the matrix of the operator A, Bqr be the matrix of the operator B, (BA)er be

the matrix of the operator BA : Xn → Zp. Let us show that

(BA)er = BqrAeq, (4.18)

i.e., the matrix of the product of two operators is equal to the product of the matrices

of these operators. Indeed, using (4.13), we get

(BA)er =R−1BAE =R−1RBqrQ−1QAeqE−1E = BqrAeq.

It is important to note that the same basis {qk}m
k=1 ⊂ Ym was used for the definition

of the matrices of the operators A and B. Usually we assume that the matching

condition for these bases is satisfied.

94 4 Linear Operators

Let us consider two examples.

1. We define the linear operator A :C4 →C4 by the rule Ax= (x2,x1,x3+x4,x4),
where x = (x1,x2,x3,x4) ∈ C4. Our goal is to calculate the matrix of the oper-

ator A with respect to the natural basis (see p. 60) of the space C4. It is easy

to see that Ai1 = (0,1,0,0) = i2, Ai2 = (1,0,0,0) = i1, Ai3 = (0,0,1,0) = i3,
and Ai4 = (0,0,1,1) = i3 + i4, hence the matrix of the operator A looks as




0 1 0 0

1 0 0 0

0 0 1 1

0 0 0 1


 .

2. Let us denote by Q2 the linear space of all polynomials with complex coef-

ficients and with degree at most 2. Let us define the linear operator T : Q2 → Q2

by the rule T q2(z) = q2(z+ h), where q2 ∈ Q2. Here h is a fixed complex number

(a shift). Our goal is to calculate the matrix of the operator T with respect to the

basis of the space Q2 that consists of the polynomials ϕ0(z) ≡ 1, ϕ1(z) = z, and

ϕ2(z) = z2. We see that T ϕ0 = ϕ0, T ϕ1 = hϕ0 + ϕ1, T ϕ2 = h2ϕ0 + 2hϕ1 + ϕ2,

hence the matrix of the operator T is equal to




1 h h2

0 1 2h

0 0 1


 .

Therefore, if q2(z) = a0 +a1z+a2z2, then T q2(z) = b0 +b1z+b2z2, where




b0

b1

b2


=




1 h h2

0 1 2h

0 0 1






a0

a1

a2


=




a0 +ha1 +h2a2

a1 +2ha2

a2


 .

The matrix Aeq of the linear operator A : Xn → Ym is determined by the

bases {ek}n
k=1 and {qk}m

k=1 of the spaces Xn and Ym. Suppose now that we take

new bases {ẽk}n
k=1 and {q̃k}m

k=1 in Xn and Ym. The linear operator A will be rep-

resented by a new matrix with respect to these bases. Let us check what relations

exist between different matrices representing the same operator. Denote by Aẽq̃ the

matrix of the operator A with respect to the bases {ẽk}n
k=1 and {q̃k}m

k=1. Suppose

that we know the matrices of the bases change (see Subsect. 2.3.3, p. 62), i.e.,

Ẽn = EnT, Q̃m =QmR. (4.19)

Using (4.13), we obtain A=QAeqE−1, Aẽq̃ = Q̃−1AẼ , therefore,

Aẽq̃ = Q̃−1QAeqE−1Ẽ .

Taking into account (4.19), we get Ẽnξ = EnT ξ for any ξ ∈ Cn. Hence, Ẽ = ET .

This implies that E−1Ẽ = T . Likewise, Q̃−1Q= R−1. Consequently,

4.1 Linear Operators and their Basic Properties 95

Aẽq̃ = R−1AeqT. (4.20)

Two matrices A and B are called equivalent if A = CBD for some nonsingular ma-

trices C and D.

Consider an important special case. If the linear operator A maps the space Xn

into the same space Xn, then

Aẽ = T−1AeT. (4.21)

Square matrices B and C are called similar matrices if there exists a nonsingular

matrix D such that

B = D−1CD. (4.22)

We also say that the matrix C is transformed into the matrix B by a similarity trans-

formation. Relation (4.21) shows that the matrices of the same operator A : Xn →Xn

are similar with respect to the different bases.

4.1.6 The Matrix of the Inverse Operator

For any nonsingular matrix D we have det(D−1) = 1/det(D), hence the similar

matrices have the same determinant. Because of that we say that the determinant of

the matrix of a linear operator A : Xn → Xn is the determinant of this operator and

write det(A). The determinant is an invariant of the linear operator, i.e., it is the

same for any basis in Xn.

We say that a linear operator A : Xn → Xn is nonsingular if det(A) 6= 0. Any

nonsingular operator A is invertible. Indeed, let {ek}n
k=1 be a basis in Xn. Define an

operator B by the relationship

B = EA−1
e E−1.

Since A = EAeE−1, we have BA =AB = EIE−1 = I. Therefore the operator B is

the inverse operator to the operator A.

The above implies that for any basis of the space Xn the matrix of the inverse

operator A−1 is the inverse matrix to the matrix of the operator A.

Theorem 4.4. If a linear operator A : Xn → Xn is invertible, then it is nonsingular.

Theorem 4.5. A linear operator A : Xn → Xn is invertible if and only if the equa-

tion Ax = 0 has the trivial solution x = 0 only.

The proof of Theorems 4.4 and 4.5 is left to the reader.

96 4 Linear Operators

4.1.7 The Linear Space of Linear Operators

Consider the set of all linear operators from Xn to Ym. The definitions of the ad-

dition of linear operators and they multiplication by scalars were introduced in

Subsect. 4.1.1. It is easy to prove that these operations satisfy the linear space ax-

ioms. Thus the set of all linear operators from Xn to Ym is a linear space.

Using results of Subsect. 4.1.5, we can conclude that this linear space is isomor-

phic to the linear space of all m-by-n matrices. The isomorphism can be defined by

relationship (4.11). The dimension of the linear space of all linear operators from Xn

to Ym is equal to mn.

We obtain the real linear space of operators if the linear spaces Xn and Ym are

real and linear operators can be multiplied only by real scalars.

4.1.8 The Image and the Kernel of a Linear Operator

Let A be a linear operator acting from a linear space X into a linear space Y. The

image of A denoted by Im(A) is the subset of Y consisting of all those vectors that

can be represented in the form y =Ax for some x ∈ X. The kernel of A denoted by

Ker(A) is the subset of X consisting of all vectors x such that Ax = 0.

Theorem 4.6. The set Im(A) is a linear subspace of the space Y.

Proof. If y1,y2∈ Im(A), then there exist vectors x1,x2 ∈ X such that y1 = Ax1

and y2 = Ax2. Therefore for any α,β ∈ C we have αy1 + βy2 = αAx1 + βAx2.

Since the operator A is linear, we have αy1+βy2 =A(αx1+βx2). This means that

αy1 +βy2 ∈ Im(A). ⊓⊔

The proof of the following theorem is left to the reader.

Theorem 4.7. The set Ker(A) is a linear subspace of the space X.

The dimension of the subspace Im(A)⊂ Ym is called the rank of the operator A
and is denoted by rank(A). The dimension of the kernel of A is called the defect of

the operator A and is denoted by def(A).

Theorem 4.8. For any linear operator A : Xn → Ym the following equality holds:

rank(A)+def(A) = n. (4.23)

Proof. Denote by M the subspace of Xn such that Xn = Ker(A)⊕M (see. Theo-

rem 3.8, p. 81). Using Theorem 3.9, p. 81, we get n = def(A)+ dim(M). Taking

into account theorem 4.3, p. 91, it is enough to prove that the spaces M and Im(A)
are isomorphic. Let us check for this purpose that the operator A is a bijective map

acting from M to Im(A). In fact, any x ∈ Xn can be written in the form x = x0 + x1,

where x0 ∈ Ker(A), x1 ∈ M. Hence, Ax = Ax1. Therefore any element of Im(A)

4.1 Linear Operators and their Basic Properties 97

is the image of some element of M. It remains to prove that if Ax1 = Ax2 for

x1, x2 ∈ M, then x1 = x2. Equality A(x1 − x2) = 0 means that x1 − x2 ∈Ker(A).
From other side, M is a linear subspace, and thus, x1 − x2 ∈M. By theorem 3.7,

p. 80, this implies that x1 − x2 = 0. ⊓⊔

4.1.9 The Rank of a Matrix

Let A(m,n) be an m-by-n matrix. Let us interpret the set of the matrix columns as a

subset of the space Cm. We say that the rank of this set (see Subsect. 2.2.4, p. 59) is

the rank of the matrix A(m,n) and denote it by rank(A).

Theorem 4.9. Suppose A : Xn → Ym is a linear operator, En is a basis for Xn, Qm

is a basis for Ym, Aeq is the matrix of the operator A with respect to these bases.

Then rank(Aeq) = rank(A).

Proof. Let x = Enξ ∈ Xn. Then Ax =Qmη , where η = Aeqξ (see Subsect. 4.1.5).

Obviously, the vector η belongs to the span of the set of the matrix Aeq columns.

The rank of this span is equal to rank(Aeq). Since the linear operator Q is invertible,

this span is isomorphic to Im(A), therefore, by theorem 4.3, p. 91, the dimension of

Im(A) is equal to rank(Aeq). ⊓⊔

Consequently the rank of the matrix of the linear operator A : Xn → Ym is an

invariant of this operator, i.e., it is the same for any bases in Xn and Yn. Hence we

could equivalently define the rank of the linear operator as the rank of its matrix.

We can interpret the set of raws of the matrix A(m,n) as a subset of the space Cn.

Denote the rank of this set by rs. The following result, which is unexpected at first

glance, holds.

Theorem 4.10. For any matrix A(m,n) the equality rs = rank(A(m,n)) is true.

Proof. We can assume without loss of generality that the first rs rows of the matrix

A(m,n) are linearly independent, and each of all other rows is a linear combination

of these rows. Denote by A(rs,n) the matrix that consists of the first rs rows of

the matrix A(m,n). Let us transform the matrix A(rs,n) by an algorithm, which is

coincide in fact with Gaussian elimination.

Take a nonzero entry in the first row of the matrix A(rs,n). It is possible because

none row of the matrix A(rs,n) can not be equal to zero. Interchange the columns

of the matrix A(rs,n) such that the column that contains this nonzero entry takes the

first place. Denote this transformed matrix in the same way. Multiply the first row

by −a21/a11 and add to the second row. Then do the analogous transformations of

all other rows of the matrix A(rs,n). As a result we obtain a matrix with zeros in the

first column below a11 6= 0.

The second row of the transformed matrix is the nontrivial linear combination

of the first two rows, therefore, it is not equal to zero. Interchanging the second

column of the transformed matrix with one of the following columns as needed, we

98 4 Linear Operators

obtain a matrix that has the entry a22 6= 0. Multiply the second row by −a32/a22

and add to the third row. Do the analogous transformations of all following rows of

the matrix A(rs,n). Continuing these transformations, finally we get a matrix of the

block form:

(Ã(rs,rs),B(rs,n− rs)), (4.24)

where Ã(rs,rs) is an upper triangular matrix that has nonzero main diagonal entries.

At each step of the described transformation process we get the row that is a non-

trivial linear combination of the previous rows of the matrix A(rs,n). Therefore this

row is not equal to zero, and the transformations are valid. Clearly, we can assume

without loss of generality that the original matrix A(rs,n) has such first rs columns

that doing the described transformations without interchanging of any columns, we

get a matrix of the form (4.24).

Evidently, det(Ã(rs,rs)) 6= 0, hence the first rs columns of the original ma-

trix A(rs,n) are linearly independent. Thus the first rs columns of the matrix A(m,n)
are linearly independent too. Let us check that by uniting this set of columns with

any other column of the matrix A(m,n), we get a linearly dependent set.

Let ∆rs be a leading principal minor1 of degree rs of the matrix A(m,n). By the

previous argumentation, ∆rs 6= 0, therefore, the system of linear equations

rs

∑
j=1

ai jx j = aik, i = 1,2, . . . ,rs, (4.25)

has the solution for any k = 1,2, . . . ,n. Since each row of the matrix A(m,n) with

a number grater than rs is a linear combination of the first rs rows of this matrix,

we see that, if a vector (x1,x2, . . . ,xrs) is the solution of linear system (4.25), then it

satisfies the following relations:

rs

∑
j=1

ai jx j = aik, i = rs +1, . . . ,m.

Consequently, each column of the matrix A(m,n) is a linear combination of the

first rs columns, hence rank(A(m,n)) = rs. ⊓⊔

It follows immediately from the definition that rank(A)≤ min(m,n) for any ma-

trix A(m,n). A matrix A(m,n) is said to have full rank if rank(A) = min(m,n).
An n-by-n matrix is nonsingular if and only if its rank is equal to n. Any inter-

changing of the matrix rows or columns, evidently, does not change the rank of the

matrix. Moreover, the following result is true.

Theorem 4.11. Let A(m,n) be an m-by-n matrix. Let B(m,m) and C(n,n) be square

nonsingular matrices, then

rank(A) = rank(BA), (4.26)

1 The leading principal minor of degree r is the determinant of the submatrix lying in the same set

of the first r rows and columns.

4.1 Linear Operators and their Basic Properties 99

rank(A) = rank(AC). (4.27)

Proof. For the justification of equality (4.26) it is enough to check the following

statement. If the matrix B is nonsingular, then a necessary and sufficient condition

for the linear independence of the columns Ba1, . . . , Bap is the linear independence

of the columns a1, . . . , ap (check it!). If equality (4.26) holds, then equality (4.27)

is proved by taking the matrix transpose. ⊓⊔
The reader can easily prove that for any matrices A and B that permit the matrix

multiplication the following inequality holds: rank(AB)≤ min{rank(A), rank(B)}.
Let us consider two examples.

1. The following matrix

A =




3 4 1

−2 −3 1

5 7 0




has rank 2. Indeed, since the first two rows are linearly independent, the rank is at

least 2. However, all three rows are linearly dependent, since the first is equal to the

sum of the second and third. Thus the rank must be less than 3.

2. The matrix

A =

[
3 3 0 2

−3 −3 0 −2

]

has rank 1: there are nonzero columns, so the rank is positive, but any pair of

columns are linearly dependent. Similarly, the transpose of a matrix A

AT =




3 −3

3 −3

0 0

2 −2




has rank 1. As we have proved above, the rank of a matrix is equal to the rank of its

transpose, i.e., rank(A) = rank(AT).

4.1.10 Calculating the Rank of a Matrix Using Determinants

It follows from the proof of Theorem 4.10 that if rank(A) = r, then we can inter-

change the rows and the columns of the matrix A such that the leading principal

minor ∆r of the transformed matrix will not vanish. This minor is called basic.

Let us formulate and prove the converse statement. Namely, let A be a rectangular

matrix. The leading principal minor ∆r of order r < min(m,n) of the matrix A is

bordered by the leading principal minor ∆r+1. We can construct different minors

bordering ∆r by interchanging the rows and the columns of the matrix A whose

numbers are greater than r.

Lemma 4.1. If the leading principal minor ∆r is nonzero and all minors of order

r+1 that border ∆r are equal to zero, then rank(A) = r.

100 4 Linear Operators

Proof. Since ∆r 6= 0, the first r columns of the matrix A are linearly independent.

Let us show that each column of A whose number is greater than r is a linear combi-

nation of the first r its columns. This means that rank(A) = r. Assume the contrary.

Then there exists a column of A such that the rank of the matrix that consists of this

column and the first r columns of A is equal to r+1. Therefore this matrix has r+1

linearly independent rows. The first r rows of this matrix are linearly independent,

since ∆r 6= 0. Hence there exists a row whose number is greater than r that is not

a linear combination of the first r rows. If we turn this row into the (r+ 1)-th row

of the matrix A, then we get ∆r+1 6= 0, but this contradicts the assumption of the

lemma. ⊓⊔

Lemma 4.1 gives the next method of calculation of the rank of a matrix A.1

1. We check all elements of A. If all elements are zero, then rank(A) = 0.

2. If an element of A is not equal to zero, then we interchange the rows and the

columns of the matrix A to put this element in the place of a11.

3. We calculate all minors of order two that border ∆1 = |a11|. If all these minors

are equal to zero, then rank(A) = 1.

4. If a minor of order two is not equal to zero, then we interchange the rows and

the columns to put this minor in the place of ∆2, i.e., to put it in the top left corner

of the matrix A.

5. We calculate all minors of order three that border ∆2 until we find a nonzero

minor, and so on. If at a step of this algorithm we see that the leading principal

minor ∆r is nonzero and all minors of order r+ 1 that border ∆r are equal to zero,

then rank(A) = r.

Clearly, it is not necessary to interchange the rows and the columns of the matrix

at each step of this algorithm. It is enough to calculate all minors of order r+1 that

border an arbitrary nonzero minor of order r.

For example, let us calculate the rank of the matrix

A =




2 −4 3 1 0

1 −2 1 −4 2

0 1 −1 3 1

4 −7 4 −4 5


 .

Note that A includes the nonzero minor

d =

∣∣∣∣
−4 3

−2 1

∣∣∣∣ .

The minor of order three

d ′ =

∣∣∣∣∣∣

2 −4 3

1 −2 1

0 1 −1

∣∣∣∣∣∣

borders d and is not equal to zero, but both of the forth-order minors

1 Usually, the algorithm, which is described in Subsect. 5.1.1, p. 155, is used for numerical real-

izations.

4.1 Linear Operators and their Basic Properties 101

∣∣∣∣∣∣∣∣

2 −4 3 1

1 −2 1 −4

0 1 −1 3

4 −7 4 −4

∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣

2 −4 3 0

1 −2 1 2

0 1 −1 1

4 −7 4 5

∣∣∣∣∣∣∣∣
,

bordering d ′, evidently, vanish. Thus, rank(A) = 3.

4.1.11 The General Solution of a Linear Equation

Let A be a linear operator mapping a linear space Xn into a linear space Ym. Con-

sider the linear equation

Ax = y, (4.28)

where y is a given element of Ym and x ∈ Xn is an unknown. In this section we

suppose that equation (4.28) is solvable and describe the form of all its possible

solutions. In other words we describe the form of the general solution of equa-

tion (4.28).

Suppose x1 and x2 are two solutions of equation (4.28) for the same right-hand

side y. Then, evidently, A(x1−x2) = 0, i.e., x1−x2 ∈Ker(A). This yields that if sys-

tem (4.28) possesses a solution x0 (it is called the particular solution of the inhomo-

geneous equation), then any other solution of equation (4.28) has the form x= x0+ x̃,

where x̃ ∈ Ker(A).
Let ϕ1, ϕ2, . . . , ϕp be a basis for Ker(A). Then

x = x0 +
p

∑
k=1

ckϕk. (4.29)

Therefore the general solution of equation (4.28) has the form (4.29). We can obtain

any solution of equation (4.28) by changing the coefficients in (4.29). The vec-

tors ϕ1, ϕ2, . . . , ϕp are called the fundamental set of solutions of the homogeneous

equation

Ax = 0, (4.30)

the vector

x̃ =
p

∑
k=1

ckϕk

is called the general solution of the homogeneous equation. Thus the general solu-

tion of equation (4.28) is the sum of any particular solution of (4.28) and the general

solution of homogeneous equation (4.30).

102 4 Linear Operators

4.1.12 Systems of Linear Algebraic Equations. Solvability

Conditions

For practical construction of the solution of linear equation (4.28) it is needed to

introduce some bases En = {ek}n
k=1, Qm = {qk}m

k=1 for the spaces Xn, Ym and to

reduce equation (4.28) to the system of linear algebraic equations

Aeqξ = η . (4.31)

The unknown vector ξ ∈Cn is the coordinate representation of x with respect to the

basis En. The vector η ∈Cm is the coordinate representation of y with respect to the

basis Qm. The matrix Aeq is the matrix of the linear operator A (see Subsect. 4.1.5).

Let us write system (4.31) in the components of ξ and η :

n

∑
j=1

a
(eq)
i j ξ j = ηi, i = 1,2, . . . ,m. (4.32)

Here a
(eq)
i j (the entries of the matrix Aeq of the linear operator A) and ηi are given

numbers, ξ j are unknowns.

In contrast to the systems of linear algebraic equations, which were discussed in

Subsect. 1.2.3, p. 26, system (4.32) has, generally speaking, different numbers of

equations and unknowns.

Problems (4.28) and (4.31) are equivalent to each other in the sense that if ξ is

a solution of (4.31), then x = Enξ is the solution of equation (4.28) with y =Qmη ;

conversely, if x is a solution of equation (4.28), then the coordinate representa-

tions of x and y with respect to the corresponding bases are connected by relation-

ship (4.31).

Let us obtain the necessary and sufficient conditions for solvability of the system

of linear algebraic equations

Ax = b, (4.33)

where A is a given m-by-n matrix with complex (generally speaking) entries, b∈Cm

is a given vector. Let us attach the column b to the matrix A and denote this resulting

m-by-(n+ 1) matrix by (A,b). The matrix (A,b) is called the augmented matrix of

system (4.33).

Theorem 4.12 (Kronecker-Capelli1 theorem). A system of linear algebraic equa-

tions has a solution if and only if the matrix A has the same rank as the matrix (A,b).

Proof. Evidently, the rank of the augmented matrix (A,b) is more than or equal

to the rank of the matrix A, and rank(A) = rank(A,b) if and only if b is a linear

combination of the columns of the matrix A. The last condition is equivalent to the

statement that there exists a vector x∈Cn that is a solution of (4.33). ⊓⊔

1 Leopold Kronecker (1823–1891) was a German mathematician. Alfredo Capelli (1858–1916)

was an Italian mathematician.

4.1 Linear Operators and their Basic Properties 103

Theorem 4.13 (matrix Fredholm1 theorem). A system of linear algebraic equa-

tions has a solution if and only if for each solution of the homogeneous system of

equations zA = 0 the equality zb = 0 holds.

Note here that b is a column and z is a row.

Proof. Sufficiency. Let r= rank(A). We can assume without loss of generality that

the first r rows of the matrix A are linearly independent. Clearly, this implies that the

first r rows of the matrix (A,b) are linearly independent too. If the k-th row of the

matrix A is a linear combination of the first r rows of A, then there exists a nonzero

vector z such that zA = 0. Under hypothesis of theorem zb = 0. This implies that

the k-th row of the matrix (A,b) is a linear combination of the first r rows of (A,b).
Thus, rank(A) = rank(A,b), and by Kronecker-Capelli theorem system (4.33) has a

solution.

Necessity. Suppose that system (4.33) has a solution, i.e., there exists x ∈Cn such

that Ax = b. Then for any z ∈ Cm the equality zAx = zb is true. Clearly, if zA = 0,

then zb = 0. ⊓⊔
Let us give an example how to apply the matrix Fredholm theorem. Consider the

symmetric n-by-n matrix

A =




1 −1 0 · · · · · · · · · 0

−1 2 −1 0 · · · · · · 0

· ·
0 · · · −1 2 −1 · · · 0

· ·
0 · · · · · · 0 −1 2 −1

0 0 · · · · · · 0 −1 1




.

We have to calculate rank(A) and describe necessary and sufficient solvability con-

ditions for the system of linear algebraic equations

Ax = b. (4.34)

Let us interpret the matrix A as the linear operator acting in the space Rn and de-

scribe its kernel. Consider the homogeneous system of linear algebraic equations

Ax = 0. (4.35)

The i-th equation of this system for i = 2,3, . . . ,n−1 can be written in the following

form: −xi−1 + 2xi − xi+1 = 0, or xi − xi−1 = xi+1 − xi. Therefore, if x is a solution

of system (4.35), then

x1 = x2 = · · ·= xn,

i.e., the kernel of the operator A is the one-dimensional subspace of the space Rn;

each vector x of this subspace has the form x = c(1, . . . ,1), where c is a real number.

Hence, using theorem 4.8, p. 96, we see that rank(A) = n−1.

1 Erik Ivar Fredholm (1866–1927) was a Swedish mathematician.

104 4 Linear Operators

Further, since the matrix A is symmetric, using matrix Fredholm theorem, we see

that the necessary and sufficient solvability condition for system (4.34) is zT b = 0,

where z is any solution of equation (4.35). Consequently, a solution of system (4.34)

exists if and only if b1 +b2 + · · ·+bn = 0.

4.1.13 The General Solution of a System of Linear Algebraic

Equations

Let us describe an elementary method of calculation of the general solution of the

system of linear algebraic equations1

Ax = b. (4.36)

Our consideration is based on the results of Sect. 4.1.11. Now we suppose that sys-

tem (4.36) has a solution, and denote by r the rank of the augmented matrix of

system (4.36).

Let us start with calculation of a particular solution of system (4.36). Using the

method of calculation of the rank of a matrix described in Subsect. 4.1.10, we trans-

form the matrix (A,b) such that the leading principal minor of order r of the trans-

formed matrix is not equal to zero and each row starting from the (r+1)-th row is

a linear combination of the first r rows.

Clearly, the transformed system of linear equations is equivalent to the original

one, i.e., each solution of system (4.36) is the solution of the transformed system,

and conversely, each solution of the transformed system is the solution of (4.36).

Since the last m− r equations of the transformed system follow from the first r

equations of this system, we delete the last m − r equations. In the first r equa-

tions we move to the right hand side all summands with the variables starting from

the (r+1)-th variable. These variables are called free.

After that we assign some values to the free variables (usually, there is no reason

why we cannot take xr+1 = · · ·= xn = 0). As a result we get a system of r linear equa-

tions for r unknowns. The matrix of this system is nonsingular, and we find the val-

ues of the variables x1, x2, . . . , xr, as the unique solution of this system. Thus we have

the solution of original system (4.36) of the form x = (x1,x2, . . . ,xr,xr+1, . . . ,xn).

For example, let us calculate a particular solution of the following system:

x1 − x2 + x3 − x4 = 4, (4.37)

x1 + x2 +2x3 +3x4 = 8, (4.38)

2x1 +4x2 +5x3 +10x4 = 20. (4.39)

The determinant

1 Usually, methods based on the singular value decomposition (see Subsect. 5.1.1, p. 155) are used

for numerical approximations of general solutions of systems of linear algebraic equations.

4.1 Linear Operators and their Basic Properties 105

∆2 =

∣∣∣∣
1 −1

1 1

∣∣∣∣ ,

which is located in the top left corner of the matrix A of this system, is nonzero. All

determinants, bordering ∆2, are equal to zero:

∣∣∣∣∣∣

1 −1 1

1 1 2

2 4 5

∣∣∣∣∣∣
= 0.

Hence, rank(A) = 2, and the rank of the augmented matrix is also two. System

(4.37)–(4.39) is solvable, and the last equation follows from the first two equations

of this system. Thus, to find a particular solution of system (4.37)–(4.39) it is enough

to solve the system of two equations (4.37), (4.38), equating x3, x4 to some numbers.

If we take x3 = x4 = 0 in (4.37), (4.38), then we get x1 = 6, x2 = 2. Therefore the

vector x = (6,2,0,0) is the particular solution of (4.37)–(4.39).

Now we construct the fundamental set of solutions of the homogenous system of

linear equations

Ax = 0 (4.40)

with an m-by-n matrix. Let rank(A) = r. Using Theorem 4.8, we see that it is

enough to construct n− r arbitrary linearly independent solutions of system (4.40).

Of course, we assume that n > r.

Arguing as in the first part of this subsection, we transform system (4.40) to the

following form:

A(r,r)x(r,1)+B(r,n− r)y(n− r,1) = 0. (4.41)

Here A(r,r) is the nonsingular matrix, the column y((n− r),1) corresponds to the

free variables. We take the vectors

y1((n− r),1), y2((n− r),1), . . . ,yn−r((n− r),1) (4.42)

such that they are linearly independent (the simplest way is to equal them to the

vectors of the standard basis in the space Cn−r). Using vectors (4.42), we calculate

vectors

x1(r,1), x2(r,1), . . . , xn−r(r,1)

as the solutions of the following systems:

A(r,r)xk(r,1)+B(r,(n− r))yk((n− r),1) = 0, k = 1,2, . . . ,n− r.

Writing together the components of the vectors xk(r,1) and yk((n− r),1), we con-

struct the following vectors:

zk(n,1) = (xk(r,1),yk((n− r),1)), k = 1,2, . . . ,n− r.

By construction, Azk = 0 for k = 1, . . . , n−r. Clearly, the vectors zk, k = 1, . . . , n−r,
are linearly independent, since vectors (4.42) are linearly independent. Thus the vec-

106 4 Linear Operators

tors zk, k = 1,2, . . . , n− r, form the fundamental set of solutions of the homogenous

system of linear equations (4.40).

For example, let us calculate the fundamental set of solutions of the system of

linear equations

x1 − x2 + x3 − x4 = 0, (4.43)

x1 + x2 +2x3 +3x4 = 0, (4.44)

2x1 +4x2 +5x3 +10x4 = 0, (4.45)

which corresponds to system (4.37)–(4.39). As we know from the previous example,

the rank of the matrix of this system is equal to two. Therefore we have to calculate

two linearly independent solutions of system (4.43)–(4.45). As we have seen, the

last equation in this system follows from the first two equations. If we put x3 = 1

and x4 = 0 in equations (4.43), (4.44), we get

x1 − x2 +1 = 0, (4.46)

x1 + x2 +2 = 0, (4.47)

hence, x1 = −3/2, x2 = −1/2. If we put x3 = 0, x4 = 1 in (4.43), (4.44), then we

obtain x1 = −1, x2 = −2. Hence, x1 = (−3/2,−1/2,1,0) and x2 = (−1,−2,0,1)
form the fundamental set of solutions of the homogenous system of linear equa-

tions (4.43)–(4.45). Each vector of the form

x = c1(−3/2,−1/2,1,0)+ c2(−1,−2,0,1), (4.48)

where c1,c2 are arbitrary numbers, is the solution of system (4.43)–(4.45), and con-

versely, each solution of system (4.43)–(4.45) can be represented in form (4.48) for

some c1,c2. Thus the general solution of system (4.37)–(4.39) can be represented in

the form x = (6,2,0,0)+ c1(−3/2,−1/2,1,0)+ c2(−1,−2,0,1), where c1,c2 are

arbitrary numbers.

4.2 Eigenvalues and Eigenvectors of a Linear Operator

4.2.1 Invariant Subspaces

Let A : X→X be a linear operator. A subspace L⊂X is said to be invariant under A
if Ax ∈ L for all x ∈ L. The subspaces L = {0} and L = X are invariant for every

A : X → X. We refer to these as trivial invariant subspaces.

Let the linear space X be a direct sum of subspaces L and M. Let P : X → L

be the projection operator onto the subspace L in parallel with the subspace M.

Then Px = x for any x ∈ L and Px = 0 for any x ∈ M, i.e., the subspaces L and M

are invariant under P .

4.2 Eigenvalues and Eigenvectors of a Linear Operator 107

Let us give an example of operator that does not have any nontrivial invari-

ant subspaces. Let X2 be a two-dimensional real Euclidean space. It is easy to

see that if L ⊂ X2 is a nontrivial subspace, then L is the set of all vectors hav-

ing the form x = αe, where e 6= 0 is a given vector, α ∈ R. In other words L is

a straight line containing the origin on the plane. Denote by e1, e2 an orthonor-

mal basis of the space X2. Let Q : X2 → X2 be the linear operator that maps each

vector x = ξ1e1 + ξ2e2 into the vector y = −ξ2e1 + ξ1e2. The vectors x and y are

orthogonal. Hence if L is a nontrivial subspace of X2, then Qx ∈ L⊥ for any x ∈ L.

Therefore, Qx /∈ L for any x 6= 0, i.e., the operator Q does not have any nontrivial

invariant subspaces.

If a basis of the invariant subspace is known, then the form of the matrix of

the linear operator becomes simpler. Namely, let {ek}n
k=1 be a basis of the linear

space Xn, and let L ⊂ Xn be an m-dimensional invariant subspace under the opera-

tor A : Xn → Xn. Suppose that the vectors {ek}m
k=1 belong to L. Then {ek}m

k=1 is a

basis for L (prove it!) and

Aek =
m

∑
j=1

a
(e)
jk e j, k = 1, . . . ,m, Aek =

n

∑
j=1

a
(e)
jk e j, k = m+1, . . . ,n.

These equalities show that the entries of the matrix Ae that are located in the inter-

section of the first m columns and the last (n−m) rows are equal to zero. Therefore

the matrix Ae can be written as the 2-by-2 block triangular matrix

Ae =

(
A11 A12

0 A22

)
, (4.49)

where A11 is a square m-by-m matrix, A22 is a square (n−m)-by-(n−m) matrix, 0

is the null (n−m)-by-m matrix, and A12 is an m-by-(n−m) matrix.

We get a more simpler matrix Ae if the space Xn is decomposed into a direct sum

of invariant subspaces L and M of the operator A, i.e., Xn = L⊕M and the basis

{ek}n
k=1 of the space Xn is chosen in such way that the vectors {ek}m

k=1 form the

basis of the subspace L. Then, as it is easy to see, the matrix A12 in (4.49) is the null

matrix, i.e., the matrix Ae has block diagonal form:

Ae =

(
A11 0

0 A22

)
. (4.50)

Obviously, the inverse statement is also true. Exactly, if the matrix of an operator

with respect to a basis {ek}n
k=1 has the form (4.50), then the space Xn is the direct

sum of two subspaces. The vectors of the set {ek}n
k=1 whose numbers are equal to the

numbers of the rows of the corresponding blocks form the bases of these subspaces.

If the subspaces L and M are decomposed into direct sums of invariant subspaces

of smaller dimensions, then the number of diagonal blocks of the matrix Ae increase

and their dimensions decrease.

108 4 Linear Operators

The most simplest is the case when the space Xn can be represented as a direct

sum of n one-dimensional invariant subspaces of the operator A. Then the matrix Ae

is diagonal. However, it is possible only for some special classes of operators.

Lemma 4.2. Let A : Xn →Xn be a nonsingular operator. Let L⊂Xn be an invariant

subspace of the operator A. Then for any x ∈ L there exists a unique vector y ∈ L

such that Ay = x.1

Proof. The subspace L is invariant under the operator A. So we can introduce the

operator AL : L → L assuming ALx =Ax for x ∈ L. The operator AL is nonsingular,

because if ALx = Ax = 0, then x = 0, since A is nonsingular (see Theorem 4.5,

p. 95). This implies that the equation ALy = x has a unique solution y ∈ L for any

vector x ∈ L. ⊓⊔

The operator AL defined in the proof of Lemma 4.2 is called the restriction of

the operator A on its invariant subspace L.

4.2.2 Basic Properties of Eigenvalues and Eigenvectors

A special role of one-dimensional invariant subspaces of operators was shown in

the previous section. The concept of one-dimensional invariant subspaces is closely

related to the concept of eigenvectors of operators.

A vector x ∈ X is called an eigenvector of the operator A : X → X if x is nonzero

and there exists a number λ such that

Ax = λx. (4.51)

The number λ is called the eigenvalue of the operator A. We say that the vector x

corresponds to (is associated with) the eigenvalue λ . The pair of the eigenvalue and

the eigenvector associated with it is also called the eigenpair of the operator A.

Let (x,λ) be an eigenpair of the operator A. Then Aαx=λαx for each α ∈ C,

i.e., the one-dimensional subspace of the space X spanned by a single eigenvector

of the operator A is invariant under A.

Let λ be an eigenvalue of the operator A. The kernel of the operator A−λ I is

called the eigenspace of A corresponding to the eigenvalue λ and is denoted by Lλ .

It is clear that Lλ 6= {0}. Every nonzero element of Lλ is an eigenvector of the

operator A corresponding to the eigenvalue λ .

Let us give some examples of operators that have eigenvectors.

1. Every nonzero element of the space Xn is an eigenvector corresponding to the

eigenvalue λ = 0 of the null operator.

1 Therefore we can say that a nonsingular operator generates the one-to-one mapping of any of its

invariant subspaces onto this subspace.

4.2 Eigenvalues and Eigenvectors of a Linear Operator 109

2. Consider the operator αI, where α ∈C. Every nonzero element of Xn is an eigen-

vector of this operator corresponding to the eigenvalue λ = α .

3. Let the space X be a direct sum of subspaces L and M. As usual we denote

by P : X → L the projection operator onto the subspace L in parallel with the

subspace M. Then the following relations hold: Px = x for any x ∈ L and Px = 0

for any x ∈ M, i.e., all nonzero elements of L are eigenvectors of the operator P
corresponding to the eigenvalue λ = 1, and all nonzero elements of M are eigen-

vectors of P corresponding to the eigenvalue λ = 0.

If the linear space Xn is real, then there exist linear operators A :Xn→Xn that do

not have any eigenvectors. For example, the linear operator Q (see Subsect. 4.2.1)

does not have any eigenvectors in the real space X2. It follows immediately from

the fact that the operator Q does not have any nontrivial invariant subspaces.

Theorem 4.14. Each operator A acting in the complex space Xn has eigenvectors.

Proof. It is enough to prove that there exists a complex number λ such that the

linear equation

(A−λ I)x = 0 (4.52)

has a nontrivial solution. Let Ae be the matrix of the operator A with respect to a

basis En in the space Xn. Consider the equation

det(Ae −λ I) = 0. (4.53)

It is easy to see that det(Ae − λ I) is a polynomial of λ of order n. Thus equa-

tion (4.53) has n roots. Any root λ of equation (4.53) is an eigenvalue of the opera-

tor A. Indeed,

(Ae −λ I)ξ = 0 (4.54)

is the homogeneous system of linear equations with the singular matrix. Hence this

system has a nontrivial solution ξ . Then the vector x = Enξ is evidently nonzero and

it is a solution of equation (4.52). ⊓⊔

The proof of the next corollary is left to the reader.

Corollary 4.1. Suppose that a linear operator A acts in the complex space Xn

and L 6= {0} is an invariant subspace of A. Then the operator A has an eigen-

vector x ∈ L.

The linear operators A and B acting in the linear space X, are called permutable

if AB = BA.

Lemma 4.3. Suppose that A, B are permutable transformations of the linear space X

and Lλ ⊂ X is an eigenspace of the operator A. Then Lλ is an invariant subspace

of the operator B.

Proof. Suppose that x ∈ Lλ , then Ax = λx. Hence, BAx = λBx. By assumption, we

have BA=AB, therefore, ABx = λBx. It means that Bx ∈ Lλ . ⊓⊔

110 4 Linear Operators

The polynomial det(A− λ I) is called the characteristic polynomial of the ma-

trix A. The equation det(A−λ I) = 0 is called the characteristic equation of the ma-

trix A. The roots of the characteristic polynomial are called the characteristic values

(eigenvalues) of the matrix A. The set of all characteristic values of the matrix A is

called the spectrum of this matrix and is denoted by σ(A).
As it was established in the proof of Theorem 4.14 for any λ ∈ σ(A) there exists

a nonzero vector x ∈ Cn such that

Ax = λx.

The vector x is called the eigenvector of the matrix A corresponding to the charac-

teristic value λ of this matrix.

Theorem 4.15. Similar matrices have the same characteristic polynomials and

therefore the same characteristic values.

Proof. Let T be a nonsingular matrix. By definition of a matrix similarity, the ma-

trix B = T−1AT is similar to a matrix A. Then for any λ ∈ C we have

B−λ I = T−1AT −λ I = T−1(A−λ I)T.

Since det(T−1) = 1/det(T), we see that det(B−λ I) = det(A−λ I). ⊓⊔

The matrices of the same operator A : Xn → Xn are similar with respect to the

different bases (see Subsect. 4.1.5, p. 95), hence the characteristic polynomial and

its roots do not depend on the choice of the basis in Xn. Thus the characteristic

polynomial of the matrix of a linear operator is called the characteristic polynomi-

al of the operator and equation (4.53) is called the characteristic equation of the

operator A.

The characteristic values of the matrix of the operator is called the characteristic

values of the operator. Therefore they are the invariants of the operator. The set of

all characteristic values of the operator A is called the spectrum of this operator and

is denoted by σ(A).
As it follows from the proof of Theorem 4.14 for any operator acting in the

complex space Xn the concepts of characteristic values and eigenvalues, in fact, are

not different, and for such operators corresponding terms are used as synonyms.

Any operator acting in the space Xn has no more than n distinct eigenvalues.

Theorem 4.16 (Cayley-Hamilton1 theorem). Let

Pn(λ) = λ n +an−1λ n−1 + · · ·+a0 (4.55)

be the characteristic polynomial of an operator A acting in the space Xn. Then

Pn(A) =An +an−1An−1 + · · ·+a0I = 0. (4.56)

1 Arthur Cayley (1821–1895) was a British mathematician, William Rowan Hamilton (1805–1865)

was an Irish physicist and mathematician.

4.2 Eigenvalues and Eigenvectors of a Linear Operator 111

Proof. Let A be the matrix of the operator A with respect to a basis. Using formula

(1.104), p. 38, we get (A− λ I) ˜(A−λ I) = Pn(λ)I for all λ ∈ C. Obviously, each

element of the matrix ˜(A−λ I) is a polynomial of λ of order no more than n− 1.

Therefore we can write

˜(A−λ I) = λ n−1Cn−1 +λ n−2Cn−2 + · · ·+C0,

where C0, C1, . . . , Cn−1 are some square matrices of order n, i.e.,

Pn(λ)I = (A−λ I)(λ n−1Cn−1 +λ n−2Cn−2 + · · ·+C0) for all λ ∈ C. (4.57)

Equating all coefficients with the same power of λ in both sides of equality (4.57),

we obtain

AC0 = a0I,

AC1 −C0 = a1I,

AC2 −C1 = a2I,

· ·
ACn−1 −Cn−2 = an−1I,

−Cn−1 = I.

(4.58)

Now we multiply the first equality in (4.58) by I, premultiply the second equality

by A, premultiply the third equality by A2, and so on. The last equality in (4.58)

we premultiply by An. After that we add together all obtained equalities and get

Pn(A) = 0, which is equivalent to Pn(A) = 0. ⊓⊔

The next corollary follows from the Cayley-Hamilton theorem. This corollary

plays an important role in applications, for instance, in mechanics.

Corollary 4.2. If the operator A : Xn → Xn is invertible, then there exists a polyno-

mial Qn−1 of order no more than n−1 such that A−1 = Qn−1(A).

The proof of Corollary 4.2 is left to the reader.

Theorem 4.17. Let λ1, λ2, . . . , λp be eigenvalues of the operator A : Xn → Xn.

Suppose that they all are pairwise different. Denote by x1, x2, . . . , xp the eigen-

vectors of the operator A such that Axk = λkxk, k = 1,2, . . . , p. Then the vec-

tors x1, x2, . . . , xp are linearly independent.

Proof. Suppose contrary to the assertion of the theorem that the set of the vec-

tors x1, x2, . . . , xp is linearly dependent. Without loss of generality it can be assumed

that the vectors x1, x2, . . . , xr, r < p, form the maximal linearly independent subset of

this set. Denote by Lr the subspace of the linear space Xn spanned by x1, x2, . . . , xr.

The subspace Lr is invariant under A and has dimension r. Let ALr be the restriction

of the operator A on Lr. Then λ1, λ2,. . . , λr are the eigenvalues of the operator ALr .

They all are pairwise different. The nonzero vector xr+1 belongs to Lr and we see

112 4 Linear Operators

also that ALr xr+1 = Axr+1 = λr+1xr+1, i.e., λr+1 is the eigenvalue of the opera-

tor ALr , but the operator ALr acts in the space of dimension r. Therefore it can not

have more than r distinct eigenvalues. ⊓⊔

It follows from above that if all eigenvalues of the operator A are distinct, then

corresponding eigenvectors xk, k = 1, 2, . . . , n, are the basis of the space Xn. We

have

Axk = λkxk, k = 1, 2, . . . , n,

hence the matrix of the operator A with respect to the basis {xk}n
k=1 is diagonal. The

eigenvalues λk, k = 1, 2, . . . , n, form the diagonal of this matrix.

For example, let us calculate all eigenvalues and all eigenvectors of the matrix

A =




4 −5 7

1 −4 9

−4 0 5


 .

The characteristic equation has the form

∣∣∣∣∣∣

4−λ −5 7

1 −4−λ 9

−4 0 5−λ

∣∣∣∣∣∣
= 0.

Calculating this determinant, we get

λ 3 −5λ 2 +17λ −13 = 0. (4.59)

Evidently, λ = 1 is the root of equation (4.59). It is easy to see that

λ 3 −5λ 2 +17λ −13 = (λ −1)(λ 2 −4λ +13).

The equation λ 2 −4λ +13 = 0 has two roots: λ = 2±3i. Therefore,

λ1 = 1, λ2 = 2+3i, λ3 = 2−3i

are all the eigenvalues of the matrix A. The coordinates of the eigenvector corre-

sponding to λ1 are the solution of the homogeneous system of linear equations

3x1 −5x2 +7x3 = 0, (4.60)

x1 −5x2 +9x3 = 0, (4.61)

−4x1 +4x3 = 0. (4.62)

We have

∣∣∣∣
3 −5

1 −5

∣∣∣∣ 6= 0. Hence the rank of the matrix of system (4.60)–(4.62) is equal

to two, and this system has only one linearly independent solution. Take x3 = 1 and

find x1, x2 as a solution of system (4.60), (4.61). We get x1 = 1, x2 = 2. Thus the

vector (1,2,1) is a solution of the system of equations (4.60)– (4.62). Therefore the

4.2 Eigenvalues and Eigenvectors of a Linear Operator 113

set of all eigenvectors corresponding to the eigenvalue λ1 = 1 is the set of vectors

having the form c(1,2,1), where c is an arbitrary nonzero complex number.

The coordinates of the eigenvector corresponding to λ2 are the solution of the

homogeneous system of linear equations

(2−3i)x1 −5x2 +7x3 = 0, (4.63)

x1 − (6+3i)x2 +9x3 = 0, (4.64)

−4x1 +(3−3i)x3 = 0. (4.65)

We have

∣∣∣∣
2−3i −5

1 −(6+3i)

∣∣∣∣ 6= 0. Hence the coordinates of an eigenvector are the

solution of system (4.63), (4.64) for x3 = 1. We get x1 = (3−3i)/4, x2 = (5−3i)/4.

Therefore the set of all eigenvectors corresponding to the eigenvalue λ2 is the set of

vectors having the form c(3−3i,5−3i,4), where c is an arbitrary nonzero complex

number. Analogous calculations show that the set of all eigenvectors corresponding

to the eigenvalue λ3 is the set of vectors having the form c(3+3i,5+3i,4), where c

is an arbitrary nonzero complex number.

In this example all the eigenvalues are distinct and the corresponding eigenvec-

tors form the basis of the space C3. This can be seen also from the fact that the

determinant ∣∣∣∣∣∣

1 2 1

3−3i 5−3i 4

3+3i 5+3i 4

∣∣∣∣∣∣
,

which is composed of the coordinates of the eigenvectors, is not equal to zero.

If the characteristic polynomial of the operator A has multiple roots, then the

number of corresponding linearly independent eigenvectors can be less than n, and

these eigenvectors are not a basis of the space Xn.

Now let us calculate all eigenvalues and all eigenvectors of the matrix

A =




2 −1 2

5 −3 3

−1 0 −2


 .

The characteristic equation has the form λ 3 + 3λ 2 + 3λ + 1 = 0, and the numbers

λ1 = λ2 = λ3 =−1 are the roots of this equation. Therefore we have the following

system for the calculation of the coordinates of eigenvectors:

3x1 − x2 +2x3 = 0, (4.66)

5x1 −2x2 +3x3 = 0, (4.67)

−x1 − x3 = 0. (4.68)

The determinant

∣∣∣∣
3 −1

5 −2

∣∣∣∣ is not equal to zero. Hence the rank of the matrix of this

system is equal to two, and the linear space of all solutions of system (4.66)–(4.68)

114 4 Linear Operators

is one-dimensional. It is easy to see that the vector x = (1,1,−1) is a solution of

system (4.66)–(4.68). Thus the set of all eigenvectors of the matrix is the set of

vectors having the form c(1,1,−1), where c is an arbitrary nonzero complex num-

ber. Clearly, in this example the eigenvectors of the matrix are not a basis in the

space C3.

The dimension of the eigenspace of the operator A corresponding to the eigen-

value λ of this operator is called the geometric multiplicity of the eigenvalue λ .

The multiplicity of λ as a root of the characteristic polynomial of the operator A
is called the algebraic multiplicity of the eigenvalue λ . In general, these two con-

cepts are different. If the term multiplicity is used without qualification in reference

to an eigenvalue, it usually means the algebraic multiplicity. We shall follow this

convention.

Theorem 4.18. For any operator A acting in the finite-dimensional space Xn the

geometric multiplicity of each eigenvalue is less than or equal to the algebraic mul-

tiplicity of this eigenvalue.

Proof. Let Lλ0
be the eigenspace of the operator A corresponding to an eigen-

value λ0 of this operator and dim(Lλ0
)=m. Denote by f1, f2, . . . , fm a basis of the

eigenspace Lλ0
. Extend this basis to a basis of the space Xn by some additional vec-

tors gm+1, gm+2, . . . , gn. Since A fk = λ0 fk, k = 1, 2, . . . , m, it follows that the matrix

of the operator A with respect to this basis of Xn can be written as the block matrix

(see Subsect. 4.2.1): (
Λ0 A12

0 A22

)
, (4.69)

where Λ0 is the diagonal m-by-m matrix, all its diagonal entries are equal to λ0.

Hence the characteristic polynomial of the operator A can be written as

det(A−λ I) = (λ −λ0)
mQn−m(λ),

where Qn−m(λ) is a polynomial of order n−m. Evidently, m can not be greater than

multiplicity of the root λ0 of the polynomial det(A−λ I). ⊓⊔

4.2.3 Diagonalizable Operators

We say that a linear operator A : Xn → Xn is diagonalizable if there is a basis En

of the space Xn consisting entirely of the eigenvectors of A. The matrix of the

operator A with respect to the basis En can be written in the form

Ae = diag(λ1, . . . ,λ1,λ2, . . . ,λ2, . . . ,λk, . . . ,λk),

where each eigenvalue of the operator A is repeated according to its geometrical

multiplicity.

4.2 Eigenvalues and Eigenvectors of a Linear Operator 115

If A : Xn → Xn is a diagonalizable operator, λ1, λ2, . . . , λk, k ≤ n, are all distinct

eigenvalues of this operator, and Lλi
, i = 1,2, . . . ,k, are corresponding eigenspaces

of A, then

Xn = Lλ1
⊕Lλ2

⊕·· ·⊕Lλk
.

For i = 1, 2, . . . , k denote by Pi the operator that projects the space Xn onto the

subspace Lλi
. Then it is easy to see that

Ax = λ1P1x+λ2P2x+ · · ·+λkPkx for all x ∈ Xn,

i.e.,

A= λ1P1 +λ2P2 + · · ·+λkPk. (4.70)

Equality (4.70) is referred to as a spectral resolution of the operator A .

Using (4.70) and (4.4), p. 89, we get A j = λ j
1P1 + λ j

2P2 + · · ·+ λ j
k Pk for any

integer j ≥ 0. Therefore, if Qm is a polynomial of order m ≥ 0, then

Qm(A) = Qm(λ1)P1 +Qm(λ2)P2 + · · ·+Qm(λk)Pk. (4.71)

Since all numbers λ1, λ2, . . . , λk are distinct, we can define Lagrange basis func-

tions (see p. 28)

Φ j(λ)=
(λ −λ1)(λ −λ2) · · ·(λ −λ j−1)(λ −λ j+1) · · ·(λ −λk)

(λ j −λ1)(λ j −λ2) · · ·(λ j −λ j−1)(λ j −λ j+1) · · ·(λ j −λk)
, j = 1,2, . . . ,k.

Then, taking into account (4.71), we obtain

P j = Φ j(A), j = 1,2, . . . ,k. (4.72)

Equation (4.72) is called Sylvester’s formula.1 It shows that for each j = 1,2, . . . ,k
the projection operator P j is a polynomial of order k−1, and the coefficients of this

polynomial depend only on the eigenvalues of the operator A.

Theorem 4.19. A linear operator A is diagonalizable if and only if the geometrical

multiplicity of each eigenvalue λ of the operator A is equal to the algebraic multi-

plicity of λ .

The proof of Theorem 4.19 is left to the reader.

Suppose that operators A, B acting in the finite-dimensional space Xn are diag-

onalizable and they have the same characteristic polynomial. The reader can easily

prove that there exists a nonsingular operator Q : Xn → Xn such that B =QAQ−1.

4.2.4 Invariants of an Operator

In this section we use essentially the following lemma.

1 James Joseph Sylvester (1814–1897) was an English mathematician.

116 4 Linear Operators

Lemma 4.4. For any x ∈ C the following expansion holds:

d(x) =

∣∣∣∣∣∣∣∣

a11 + x a12 . . . a1n

a21 a22 + x . . . a2n

.
an1 an2 . . . ann + x

∣∣∣∣∣∣∣∣

= xn + c1xn−1 + c2xn−2 + · · ·+ cn−1x+ cn, (4.73)

where

ck = ∑
1≤p1<p2<···<pk≤n

∣∣∣∣∣∣∣∣

ap1,p1
ap1,p2

. . . ap1,pk

ap2,p1
ap2,p2

. . . ap2,pk

.
apk,p1

apk,p2
. . . apk,pk

∣∣∣∣∣∣∣∣
, k = 1, 2, . . . , n. (4.74)

For each k the right hand side of (4.74) is the sum of all Ck
n determinants of the

indicated form. These determinants are called the principal minors of order k of the

matrix

A =




a11 a12 . . . a1n

a21 a22 . . . a2n

.
an1 an2 . . . ann


 .

Note that c1 = a11 +a22 + · · ·+ann, cn = detA.

Proof of Lemma 4.4. Denote by a1, a2, . . . , an the columns of the matrix A. Let us

interpret the determinant of the matrix A as a function of its columns, i.e.,

detA = ∆(a1,a2, . . . ,an).

Then the function d(x) in (4.73) can be represented in the form

d(x) = ∆(a1 + xi1,a2 + xi2, . . . ,an + xin),

where by i1, i2, . . . , in we denote as usual the standard unit vectors in the space Cn.

Since the determinant is a linear function of its columns, it follows easily that

d(x) = ∆(a1,a2, . . . ,an)

+ x(∆(i1,a2, . . . ,an)+∆(a1, i2, . . . ,an)+ · · ·+∆(a1,a2, . . . ,an−1, in))

+ x2(∆(i1, i2,a3 . . . ,an)+ · · ·+∆(a1,a2, . . . ,an−2, in−1, in))

+ · · ·+ xn∆(i1, i2, . . . , in). (4.75)

The multiplier of each xk in (4.75) is the sum of Ck
n determinants, each of them

is obtained from the determinant ∆(a1,a2, . . . ,an) by replacing k columns of ∆ to

the corresponding standard unit vectors. To complete the proof it is enough to note

4.2 Eigenvalues and Eigenvectors of a Linear Operator 117

that ∆(i1, i2, . . . , in) = 1 and that each principal minor of order n− k of the matrix A

is obtained from ∆(a1,a2, . . . ,an) by replacing k corresponding columns to the stan-

dard unit vectors with the same numbers. ⊓⊔
The characteristic polynomial of the matrix Ae of the linear operator A is equal

to det(λ I −Ae) up to sign. Let us expand this determinant as the polynomial of λ :

det(λ I −Ae) = Pn(λ) = λ n −I1λ n−1 +I2λ n−2 + · · ·+(−1)nIn. (4.76)

As we have noted in Subsect. 4.2.2 the coefficients of the polynomial Pn are the in-

variants of the operator A. All of them are functions of entries of the matrix Ae, but

they are invariant under any transformation of the basis. In this connection the fol-

lowing notation is used: Ik = Ik(A), k = 1,2, . . . ,n. Using (4.73) and (4.74) we get

the following representations for the invariants Ik(A) of the operator A by entries

of the matrix Ae:

Ik(A) = ∑
1≤i1<i2<···<ik≤n

∣∣∣∣∣∣∣∣

ae
i1,i1

ae
i1,i2

. . . ae
i1,ik

ae
i2,i1

ae
i2,i2

. . . ae
i2,ik

.
ae

ik,i1
ae

ik,i2
. . . ae

ik,ik

∣∣∣∣∣∣∣∣
, k = 1, 2, . . . , n, (4.77)

particularly,

I1(A) = ae
11 +ae

22 + · · ·+ae
nn, In(A) = detAe. (4.78)

Using Vieta’s formulas (see Subsect. 1.1.4, p. 13), we have

ae
11 +ae

22 + · · ·+ae
nn = λ1 +λ2 + · · ·+λn, detAe = λ1λ2 · · ·λn, (4.79)

where λ1,λ2, . . . ,λn are the characteristic values of the operator A. Generally, Ik(A)
is the sum of all kinds of products of k distinct characteristic values of the opera-

tor A.

Each square matrix A = {ai j}n
i, j=1 generates the linear operator in Cn defined by

the matrix-vector multiplication rule (4.5), p. 89. Hence it is possible to assign the

numbers Ik(A), k = 1, 2, . . . , n, (calculated by formulas (4.77), where ae
i j are re-

placed with ai j) to each square matrix. Evidently, these numbers are invariant under

similarity transformations, therefore they are called the invariants of the matrix A.

Theorem 4.20. Let A be an operator acting in a finite-dimensional space Xn. Then

there exists a positive number ε0 such that if |ε | < ε0 and ε 6= 0, then the opera-

tor A+ εI is invertible.

The proof of Theorem 4.20 is left to the reader.

The number I1(A) = ae
11+ae

22+ · · ·+ae
nn = λ1+λ2+ · · ·+λn is called the trace

of the operator A and is denoted by tr(A).
The following equality holds:

tr(αA+βB) = αtr(A)+β tr(B). (4.80)

118 4 Linear Operators

Here A, B are linear operators in a finite dimensional linear space, α , β are complex

numbers. Let A : Xn → Xm, B : Xm → Xn. Then

tr(AB) = tr(BA). (4.81)

Equality (4.80) follows immediately from the definition of the trace of a linear op-

erator. Equality (4.81) is verified by direct calculations of the sums of diagonal el-

ements of the matrices of operators defined on the left hand side and on the right

hand side of (4.81).

Let A,B be arbitrary linear operators, acting in a finite-dimensional vector

space. The reader can prove that the characteristic polynomials of the operators AB
and BA coincide. Hint: if the operator A is nonsingular, it follows from the similar-

ity of the matrices of the operators AB and BA. In the general case it is useful to

apply Theorem 4.20.

4.2.5 Invariant Subspaces of an Operator in the Real Space

Let A be a linear operator acting in the real space Xn. Then the matrix Ae of the

operator A is real with respect to each basis En. The characteristic equation (4.53)

for the matrix Ae is algebraic equation with real coefficients. This equation has,

generally speaking, both real and complex roots.

If λ is a real rot of equation (4.53), then the system of equations

(Ae −λ I)ξ = 0 (4.82)

has a nontrivial real solution ξ , and for x = Enξ the equality Ax = λx holds, i.e.,

x is the eigenvector of the operator A. Therefore all real characteristic values of the

matrix Ae are the eigenvalues of the operator A.

If the number λ is equal to neither real root of equation (4.53), then the system of

equations (4.82) does not have nontrivial real solutions. Hence if all roots of equa-

tion (4.53) are complex, then the operator A does not have eigenvectors. Therefore

can exist linear operators acting in a real space that do not have any one-dimensional

invariant subspaces.

A two-dimensional invariant subspace of the operator A corresponds to every

complex characteristic value of the matrix Ae. In fact, if λ = α + iβ is a complex

characteristic value of the matrix Ae, then det(Ae−λ I) = 0, and the system of equa-

tions

(Ae −λ I)ξ = 0 (4.83)

has a nontrivial complex solution ξ = ζ + iη . Here ζ and η belong to Rn. The

matrix Ae is real, thus writing system (4.83) in terms of the complex solution, we

get

Aeζ + iAeη = (α + iβ)(ζ + iη) = αζ −βη + i(βζ +αη).

Equating the real and imaginary parts of the last equation, we obtain

4.2 Eigenvalues and Eigenvectors of a Linear Operator 119

Aeζ = αζ −βη ,

Aeη = βζ +αη .

If x = Enζ and y = Enη , then

Ax = αx−βy, (4.84)

Ay = βx+αy. (4.85)

Denote by L the subspace of the linear space Xn spanned by x, y. Suppose that z ∈ L,

it means that z = γx+δy for some γ ,δ ∈ R. Then Az ∈ L. Indeed,

Az = γAx+δAy = γ(αx−βy)+δ (βx+αy) =

= (αγ +βδ)x+(αδ −βγ)y ∈ L.

Therefore L is an invariant subspace of the operator A.

To complete the proof the reader can show that the vectors x and y that satisfy

relationships (4.84), (4.85) are linearly independent, i.e., the subspace L is two-

dimensional.

The reader can easily prove that if a linear operator A acts in the real space Xn

and a subspace Lm ⊂ Xn is invariant under A and has dimension m ≥ 2, then the

operator A has either an one-dimensional or a two-dimensional invariant subspace

in the subspace Lm.

4.2.6 Nilpotent Operators

A linear operator A acting in a finite-dimensional space Xn is called nilpotent

if Aq = 0 for some integer q ≥ 1. The smallest such q is called the index of nilpo-

tence of the operator A. The definition of a square nilpotent matrix is similar.

Using (4.16), p. 93, we see that A
q
e = E−1AqE , therefore, if an operator A is

nilpotent, then its matrix with respect to any basis is nilpotent of the same index,

conversely, if the matrix of an operator is nilpotent, then the operator is nilpotent of

the same index.

Theorem 4.21. An operator A is nilpotent if and only if all its eigenvalues are equal

to zero.

Proof. Let A be a nilpotent operator of index q and let (λ ,x) be an eigenpair of the

operator A. Then Ax = λx, therefore, Aqx = λ qx. We have assumed that Aq = 0,

hence, λ qx = 0, but x 6= 0, thus, λ = 0. Conversely, suppose that all eigenvalues of

the operator A are equal to zero. Then the characteristic equation of the operator A
has the form λ n = 0, and by Theorem 4.16, p. 110, we get An = 0. ⊓⊔

The following corollary is obvious.

Corollary 4.3. The index of nilpotence of any nilpotent operator acting in an n-

dimensional space is less than or equal to n.

120 4 Linear Operators

Let A : Xn → Xn be a nilpotent operator of index q. Then, evidently, there ex-

ists a vector x0 ∈ Xn such that Aq−1x0 6= 0. The reader can easily prove that the

vectors x0, Ax0, . . . , Aq−1x0 are linearly independent.

4.2.7 The Triangular Form of the Matrix of an Operator

Theorem 4.22. For each operator A acting in the complex space Xn there exists a

basis such that the matrix of A with respect to this basis is triangular, all eigenvalues

of A form the diagonal of this matrix.

The proof of Theorem 4.22 is based on the following result.

Theorem 4.23 (Schur1 theorem). Let A be an n-by-n matrix. Let λ1, λ2, . . . , λn

be its characteristic values numbered in arbitrary order. Then there exists a unitary

matrix U such that

U∗AU = T, (4.86)

where T is an upper triangular matrix of the form

T =




λ1 t12 . . . t1n

0 λ2 . . . t2n

. tn−1,n

0 0 . . . λn


 . (4.87)

Proof. Denote by u1 an eigenvector of the matrix A corresponding to the eigen-

value λ1. Any eigenvector is defined except for a scalar multiplier. Hence we can

assume that |u1|= 1.2 Let us construct an orthonormal basis {uk}n
k=1 in the space Cn

containing u1 (see Sect. 3.2, p. 74). Denote by U1 the matrix with columns con-

sisting of the elements of vectors {uk}n
k=1. Taking into account that Au1 = λ1u1

and (uk,u1) = 0 for k = 2,3, . . . ,n, we get

U∗
1 AU1 =

(
λ1 ∗
0 A1

)
. (4.88)

The right hand side of this equality is a block 2-by-2 matrix. The first diagonal

block of this matrix consists of the number λ1 only. The second diagonal block is a

square matrix of order n−1. The block in location (2,1) is zero (n−1)-dimensional

column. The block in location (1,2) is an (n− 1)-dimensional row with nonzero,

generally speaking, elements. Analogous notations will be used in this proof below.

The matrix U∗
1 AU1 is similar to A, hence (see Theorem 4.15, p. 110),

σ(U∗
1 AU1) = σ(A).

1 Issai Schur (1875–1941) was a German mathematician.
2 In this subsection we use only the standard inner product on Cn.

4.2 Eigenvalues and Eigenvectors of a Linear Operator 121

Using (4.88) and expanding the determinant det(λ I −U∗
1 AU1) in terms of the first

column, we get σ(U∗
1 AU1) = λ1 ∪σ(A1). Therefore,

σ(A1) = {λ2, . . . ,λn}.

By analogy with U1 we can construct a unitary matrix U2 such that

U∗
2 A1U2 =

(
λ2 ∗
0 A2

)
. (4.89)

Let

V2 =

(
1 0

0 U2

)
,

then V2 is a unitary matrix of order n. By elementary calculations,

V∗
2 U∗

1 AU1V2 =




λ1 ∗ ∗
0 λ2 ∗
0 0 A2


 .

Continuing this process, we can construct unitary matrices V3, . . . , Vn−1 such that

the matrix

V∗
n−1 · · ·V∗

2 U∗
1 AU1V2 · · ·Vn−1

is an upper triangular matrix with the numbers λ1, λ2, . . . , λn on the leading diag-

onal. Let U = U1V2 · · ·Vn−1, then U is a unitary matrix, since it is represented as

a product of unitary matrices (see Subsect. 1.2.7, p. 47), and U∗ = V∗
n−1 · · ·V∗

2 U∗
1 .

Therefore the matrix T =U∗AU has form (4.87). ⊓⊔

Arguing as above, we see that there exists a unitary matrix V such that

V∗AV = L,

where L is a lower triangular matrix, and all characteristic values of A form the

leading diagonal of L.

Remark 4.1. From the proof of Schur Theorem we see that if the matrix A is real and

all its characteristic values (and hence all eigenvectors) are real, then the matrix U

in (4.86) can be chosen as a real unitary matrix, in other words, as an orthogonal

matrix.

Proof of Theorem 4.22. Let A be a linear operator acting in the space Xn, and let

Fn = { fk}n
k=1 be an arbitrarily chosen basis in Xn. Then AFn = FnA f , where A f

is the matrix of the operator A with respect to this basis (see (4.11), p. 92). Using

Schur Theorem, we see that there exists a unitary matrix U such that A f = UTU∗,

where T is a matrix of the form (4.87), λ1,λ2, . . . ,λn are characteristic values of A f

(i.e., eigenvalues of A). Hence, AFn =FnUTU∗, therefore we get AFnU =FnUT .

Let En =FnU , then AEn = EnT . Thus T is the matrix of the operator A with respect

to the basis En. ⊓⊔

122 4 Linear Operators

Remark 4.2. If the space Xn is unitary and the basis Fn is orthonormal, then the

basis En is also orthonormal.

The matrix T , which appears in Theorem 4.22, is called usually the Schur form of

the matrix of the operator. The following simplification of the matrix of an operator

is often useful.

Theorem 4.24. Let A be a square matrix of order n, let λ1, λ2, . . . , λk be dis-

tinct characteristic values of A having multiplicities n1, n2, . . . , nk, respectively,

where n1 +n2 + · · ·+nk = n. There exists a nonsingular matrix S such that

S−1AS =




T1 0

T2

. . .

0 Tk




(4.90)

is a block-diagonal matrix, each diagonal block Ti is an upper triangular matrix

of order ni, i = 1,2, . . . ,k. All diagonal elements of each block Ti are identical and

equal to λi.

Proof. At the first stage, using Schur Theorem, we transform the matrix A to an

upper triangular matrix T by an unitary similarity transformation. We can order

the characteristic values on the diagonal of the triangular matrix T according to

the statement of the theorem, i.e., the first n1 numbers of the diagonal are equal

to λ1, the next n2 numbers are equal to λ2 and so on. To complete the proof it is

enough to transform the matrix T to form (4.90) by a similarity transformation.

We construct this transformation as a result of a sequence of elementary similarity

transformations. Let us write the mentioned above upper triangular matrix T in the

block form

T =

(
T11 T12

0 T22

)
.

Here T11 is an upper triangular matrix of order n1, all diagonal elements of this ma-

trix are equal to λ1, T22 is an upper triangular matrix of order n−n1, each diagonal

element of this matrix is not equal to λ1. We consider the upper triangular matrices

of the form (
In1

P

0 In−n1

)
,

(
In1

−P

0 In−n1

)
, (4.91)

where In1
, In−n1

are the identity matrices of orders n1, n− n1, respectively. Using

elementary calculations, we see that matrices (4.91) are mutually inverse. Now we

find the matrix P such that the following equality holds:

(
In1

P

0 In−n1

)(
T11 T12

0 T22

)(
In1

−P

0 In−n1

)
=

(
T11 0

0 T22

)
. (4.92)

4.2 Eigenvalues and Eigenvectors of a Linear Operator 123

Clearly, the equality (4.92) is true if the matrix P is a solution of the following

equation:1

PT22 −T11P =−T12. (4.93)

Equation (4.93) is the system of linear algebraic equations for the elements of the

matrix P. Let us check that the corresponding homogeneous system

PT22 −T11P = 0 (4.94)

has the trivial solution only. Indeed, we can rewrite equation (4.94) in the equiva-

lent form P(T22 −λ1In−n1
) = (T11 −λ1In1

)P. Obviously, the matrix T22 −λ1In−n1
is

nonsingular. Hence, P = (T11 −λ1In1
)P(T22 −λ1In−n1

)−1. Therefore,

P = (T11 −λ1In1
)qP((T22 −λ1In−n1

)−1)q

for all integer q ≥ 1. By construction, the matrix T11 −λ1In1
is nilpotent, and there

exists an integer q ≥ 1 such that (T11 −λ1In1
)q = 0, hence, P = 0. Thus the trans-

formation of form (4.92) exists. At the following steps of the proof we construct

analogous transformations, which successively reduce the orders of the blocks of

the transformed matrix. Arguing as in the proof of Theorem 4.23, as a result we get

relationship (4.90). ⊓⊔

Using Theorem 4.24, the reader can easily get the following result.

Theorem 4.25. For each operator A acting in the space Xn there exist invariant

subspaces M and N such that Xn = M ⊕N, the restriction of the operator A on

the subspace M is a nilpotent operator, the restriction of the operator A on the

subspace N is an invertible operator.

Below is an useful example of applications of the Schur theorem.

Theorem 4.26. Let A = {ai j}n
i, j=1 be an arbitrary square matrix. For any ε > 0

there exists an invertible diagonalizable matrix Am = {a
(m)
i j }n

i, j=1 such that

max
1≤i, j≤n

|ai j −a
(m)
i j | ≤ ε . (4.95)

Proof. Using Theorem 4.23, we represent the matrix A in the form A = UTU∗,

where U is the unitary matrix, T is the upper triangular matrix. Without loss of

generality we can assume that the diagonal elements of the matrix T are ordered in

the following way:

λ1,λ1, . . . ,λ1,λ2,λ2, . . . ,λ2, . . . ,λk,λk, . . . ,λk.

Here each characteristic value of the matrix A is repeated accordingly to his multi-

plicity. Denote by Tm the upper triangular matrix that differs from the matrix T only

by the diagonal elements, which are equal to the following numbers

1 Equation (4.93) is a Sylvester equation, see, for example, [23, p. 170], [59], [66].

124 4 Linear Operators

λ1 +1/m, λ1 +1/2m, . . . , λ1 +1/n1m,

λ2 +1/m, λ2 +1/2m, . . . , λ2 +1/n2m, . . . ,

λk +1/m, λk +1/2m, . . . , λk +1/nkm

where ni is the multiplicity of λi, i = 1,2, . . . ,k, m ≥ 1. Let Am =UTmU∗. It is easy

to see that all diagonal elements of the matrix Tm for big enough m are nonzero and

pairwise different. Therefore all characteristic values of the matrix Am are nonzero

and pairwise different. This means that for all big enough m the matrices Am are

invertible and diagonalizable. Further, A−Am =U(T −Tm)U
∗, hence,

max
1≤i, j≤n

|ai j −a
(m)
i j | ≤ c/m,

where c is a constant depending only on n and on the elements of the matrix U . Thus

for any given ε > 0 we get (4.95) for big enough m. ⊓⊔

We can say that the sequence of the matrices {Am}∞m=1 converges to the matrix A.

4.2.8 The Real Schur Form

Theorem 4.27. Let A be a real square matrix of order n ≥ 1. There exists an orthog-

onal matrix Q such that A=QT T Q, where T is a block upper triangular matrix. The

diagonal blocks of the matrix T are square matrices of order one or two. The set of

all characteristic values of the second-order blocks coincide with the set of all com-

plex characteristic values of the matrix A.

Proof. If all characteristic values of the matrix A are real, then this theorem im-

mediately follows from Theorem 4.23 (see Remark 4.1). Therefore we assume

that among the characteristic values of the matrix A there exists a complex num-

ber λ = α + iβ . As we have seen in Subsect. 4.2.5, p. 118, a two-dimensional in-

variant subspace of the matrix A in the space Rn corresponds to this number. Let q1,

q2 be a basis of this subspace. Suppose that this basis is orthonormal with respect to

the standard inner product on the space Rn. Then

Aq1 = α11q1 +α21q2, Aq2 = α12q1 +α22q2. (4.96)

Matrices (
α β
−β α

)
and T11 =

(
α11 α12

α21 α22

)

are similar as the matrices of the same operator with respect to the different bases.

Therefore they have the same characteristic values λ and λ̄ . The vectors q1, q2 we

can join with some vectors to complete the basis {qk}n
k=1 of the space Rn. Denote

by Q the matrix whose columns are the vectors of this basis. Using equalities (4.96)

and the orthonormality of the vectors q1 and q2, we get

4.3 Operators on Unitary Spaces 125

QT AQ =

(
T11 T12

0 T22

)
.

The completion of the proof is similar to the corresponding argumentation in the

Schur theorem. ⊓⊔

4.3 Operators on Unitary Spaces

4.3.1 Linear Functionals

Let X be a complex linear space. A linear map l from X into the one-dimensional

space Y=C is called a linear functional (linear form) on X. We point out that a

complex number l(x) uniquely corresponds to each vector x ∈ X.

Theorem 4.28 (Riesz1). Let Xn be a finite-dimensional unitary space, and l be a

linear functional on Xn. Then there exists a unique vector u ∈ Xn such that

l(x) = (x,u) for all x ∈ Xn. (4.97)

Proof. First, make sure that exactly one vector u is determined by the linear func-

tional l. Suppose that there is one more vector u1 ∈ Xn such that

l(x) = (x,u1) for all x ∈ Xn. (4.98)

Then, subtracting term by term (4.97) from (4.98), we get (x,u1 − u) = 0 for all

x ∈ Xn. If we put x = u1−u in the last equality, then (u1−u,u1−u) = 0, i.e., u1 = u.

Let us prove existence of a vector u defined by (4.97). Let {ek}n
k=1 be an orthonormal

basis for Xn, and let x =
n

∑
k=1

ξkek. Since functional l is linear, we see that

l(x) =
n

∑
k=1

ξkl(ek). (4.99)

Put u =
n

∑
k=1

l(ek)ek. Using (3.19), p. 75, we get l(x)=(x,u) for each x ∈ Xn. ⊓⊔

4.3.2 The Adjoint Operator

Let Xn, Ym be unitary spaces, and A : Xn → Ym be a linear operator. A linear oper-

ator A∗ : Ym → Xn is called the adjoint of A if

1 Riesz Frigyes (1880–1956) was a Hungarian mathematician.

126 4 Linear Operators

(Ax,y) = (x,A∗y) for all x ∈ Xn and for all y ∈ Ym. (4.100)

Surely, on the left hand side of (4.100) we use an inner product on the space Ym,

and on the right hand side of (4.100) we use an inner product on Xn.

Let us prove that for any linear operator A : Xn →Ym there exists an adjoint of A.

Indeed, for each fixed y ∈ Ym the inner product (Ax,y) is a functional on Xn. This

functional is linear, since the operator A is linear and the inner product in the first

argument is linear too. Using the Riesz Theorem, we see that there exists a unique

vector g ∈ Xn such that

(Ax,y) = (x,g) for all x ∈ Xn.

Thus a vector g ∈ Xn uniquely corresponds to each vector y ∈ Ym, and the map from

Ym to Xn is constructed. Denote this map by A∗. Then we can write

(Ax,y) = (x,A∗y) for all x ∈ Xn and for all y ∈ Ym. (4.101)

We assert that the map A∗ is linear. In fact, if y1,y2 ∈ Ym, α,β ∈ C, then

(Ax,αy1 +βy2) = ᾱ(Ax,y1)+ β̄ (Ax,y2)

= ᾱ(x,A∗y1)+ β̄ (x,A∗y2) = (x,αA∗y1 +βA∗y2). (4.102)

On the other hand, by the definition of A∗ we have

(Ax,αy1 +βy2) = (x,A∗(αy1 +βy2)). (4.103)

In (4.102) and (4.103) a vector x ∈ Xn is arbitrary. Therefore, comparing (4.102)

and (4.103), we see that

A∗(αy1 +βy2) = αA∗y1 +βA∗y2.

The reader can easily prove that for each linear operator A there exists exactly

one adjoint of A.

By the definition of the adjoint operator we obviously have

(A∗)∗ =A.

It is easy to see that

(AB)∗ = B∗A∗ (4.104)

and

(αA+βB)∗ = ᾱA∗+ β̄B∗ (4.105)

for any operators A,B and for any α , β ∈ C, and also that if an operator A is

invertible, then the adjoint A∗ is invertible too, and

(A∗)−1 = (A−1)∗. (4.106)

4.3 Operators on Unitary Spaces 127

If the space Ym is unitary, then there exists an useful formula for calculation of

the matrix of an operator A : Xn → Ym. Let En be a basis in Xn, Qm be a basis

in Ym, and Gq = {(q j,qi)}m
i, j=1 be the Gram matrix corresponding to the basis Qm.

Consider the matrix

GA =




(Ae1,q1) (Ae2,q1) . . . (Aen,q1)
(Ae1,q2) (Ae2,q2) . . . (Aen,q2)
. .
(Ae1,qm) (Ae2,qm) . . . (Aen,qm)


 .

Then

GA = GqAeq. (4.107)

Indeed, calculating the inner products of both sides of equation (4.9), p. 91, with ql ,

we get

(Aei,ql) =
m

∑
j=1

a
(eq)
ji (q j,ql), i = 1,2, . . . ,n, l = 1,2, . . . ,m. (4.108)

Formula (4.107) is the matrix form of equality (4.108). The Gram matrix Gq is

nonsingular, since Qm is the basis, therefore,

Aeq = G−1
q GA. (4.109)

If the basis Qm is orthonormal, then Gq = I and

Aeq = GA. (4.110)

If both spaces Ym and Xn are unitary and A∗ : Ym → Xn is the adjoint of the

operator A, then, as above,

GA∗ = GeA∗
qe, (4.111)

where Ge is the Gram matrix of the basis En, A∗
qe is the matrix of the operator A∗

with respect to the bases Qm, En, and

GA∗ =




(A∗q1,e1) (A∗q2,e1) . . . (A∗qm,e1)
(A∗q1,e2) (A∗q2,e2) . . . (A∗qm,e2)
. .
(A∗q1,en) (A∗q2,en) . . . (A∗qm,en)


 .

Since (A∗qi,e j) = (qi,Ae j) = (Ae j,qi), we see that the matrices GA and GA∗

are mutually adjoint. Hence, using (4.107), we get GA∗ = (Aeq)
∗Gq, and because

of (4.111) the following equality is true:

A∗
qe = G−1

e (Aeq)
∗Gq. (4.112)

128 4 Linear Operators

Formula (4.112) shows the relationship between the matrices of operators A and A∗.

In particular, if the bases En and Qm are orthonormal, then the matrices of operators

A and A∗ are mutually adjoint.

4.3.3 Linear Equations in Unitary Spaces

Theorem 4.29. Let Xn,Ym be unitary spaces. Each linear operator A : Xn →Ym

determines the orthogonal decomposition

Ym = Ker(A∗)⊕ Im(A) (4.113)

of the space Ym.

Proof. Suppose that y ∈ Im(A), y1 ∈ Ker(A∗). Then there exists x ∈ Xn such

that y =Ax, hence,

(y,y1) = (Ax,y1) = (x,A∗y1) = 0,

i.e., y is orthogonal to Ker(A∗). If the vector y ∈ Ym is orthogonal to Im(A),
then (y,Ax) = 0 for any x ∈Xn, and (A∗y,x) = 0 for any x ∈Xn, therefore, A∗y= 0,

i.e., y ∈ Ker(A∗). These arguments show that Im(A) is the orthogonal complement

of Ker(A∗), thus, using Theorem 3.12, p. 86, we see that equality (4.113) holds. ⊓⊔

Obviously, the following decomposition holds too:

Xn = Ker(A)⊕ Im(A∗). (4.114)

Theorem 4.30. Suppose that a linear operator A maps a finite-dimensional unitary

space Xn into a finite-dimensional unitary space Ym. Then

rank(A) = rank(A∗). (4.115)

Proof. The operator A realizes an isomorphism between Im(A∗) and Im(A). In-

deed, using (4.114), for any x ∈ Xn we get Ax =Ax1, where x1 ∈ Im(A∗), i.e., each

element of Im(A) is the image of an element of Im(A∗). Suppose that Ax′ =Ax′′

for distinct elements x′, x′′ of Im(A∗). Then A(x′−x′′) = 0, and (x′−x′′)∈Ker(A).
Since Im(A∗) is a linear subspace, we see that (x′− x′′) ∈ Im(A∗). Using (4.114)

again, we have x′−x′′ = 0. Hence the finite-dimensional spaces Im(A) and Im(A∗)
are isomorphic. Thus (see Theorem 4.3, p. 91) they have the same dimension. ⊓⊔

An immediate consequence of Theorem 4.29 is following.

Theorem 4.31 (Fredholm theorem). Let Xn, Ym be unitary spaces, A : Xn → Ym

be a linear operator. A linear equation

Ax = y (4.116)

4.3 Operators on Unitary Spaces 129

has a solution if and only if the vector y is orthogonal to each solution z of the

homogeneous equation A∗z = 0.

Note here that Theorems 4.12, p. 102 and 4.13, p. 103, can be proven on the base

of Fredholm theorem.

Using decomposition (4.114) and arguing as in the proof of Theorem 4.30, the

reader can prove that if linear equation (4.116) is solvable, then the set of all its

solutions contains a unique element x0 with minimal length. The element x0 is called

the normal solution of equation (4.116). It is easy to see that the vector x0 belongs

to Im(A∗).

4.3.4 The Pseudo-Solution. The Tikhonov Regularization Method

Suppose that a linear operator A maps an unitary space Xn into an unitary space Ym.

Let y be a fixed element of Ym and x be an arbitrary element of Xn. Then the vec-

tor Ax− y is called the residual corresponding to the equation (4.116). The real-

valued function

F(x) = |Ax− y|2

defined on the space Xn is called the residual functional. If Ax 6= y, i.e., the vector x

is not a solution of equation (4.116), then F(x)> 0. It is important to find a vector x,

which minimizes the residual functional.

A vector x ∈ Xn minimizing the residual functional is called a pseudo-solution of

equation (4.116).1 If equation (4.116) is solvable, then any its solution is a pseudo-

solution.

A pseudo-solution of equation (4.116) exists for any y∈Ym. Indeed, using (4.113),

we can write y = y1+y0, where y1 ∈ Im(A), y0 ∈ Ker(A∗). Then for any x ∈ Xn the

vector Ax− y1 belongs to Im(A), hence,

F(x) = |Ax− y1|2 + |y0|2.

Evidently, the minimum of the function F is equal to |y0|2 and is achieved at the

vector x that is a solution of equation

Ax = y1. (4.117)

Equation (4.117) is solvable, since y1∈ Im(A). The normal solution x0 of (4.117) is

called the normal pseudo-solution of equation (4.116).

We can write that Ax0 =Py, where P is the operator of the orthogonal projection

of Ym onto Im(A). As we have seen in the proof of Theorem 4.30 the operator A re-

alizes an isomorphism between Im(A∗) and Im(A). Therefore there exists the linear

operator A+ : Ym → Xn such that x0 =A+y, where x0 is the normal pseudo-solution

1 The problem on calculation of the pseudo solution is often called the Linear Least Squares

Problem.

130 4 Linear Operators

of the equation Ax = y for any given y ∈ Ym. The operator A+ is called the pseu-

doinverse of A. It is easy to see that if the operator A is invertible, then A+ = A−1.

We claim that for any y ∈ Ym the equation

A∗Ax =A∗y (4.118)

is solvable, and any solution of (4.118) is a pseudo-solution of equation (4.116).

Indeed, since A∗y0=0, we see that equation (4.118) is equivalent to the equation

A∗(Ax− y1) = 0. (4.119)

Equation (4.119) is solvable because each solution of (4.117) is the solution of

equation (4.119). Conversely, if x is a solution of equation (4.119), then the vec-

tor Ax − y1 belongs to Ker(A∗), and by (4.113) it is orthogonal to Im(A). On

the other hand, Ax− y1 ∈ Im(A), thus, Ax− y1 = 0, i.e., x is a solution of equa-

tion (4.117).

We say that original equation (4.116) is reduced to equation (4.118) by Gauss

transformation. Gauss transformation of any linear equation leads to a solvable

equation.

The Tikhonov1 regularization method can be used for a practical construction of

the normal pseudo-solution of equation (4.116). Along with the residual functional

consider the so-called regularizing functional (the Tikhonov functional):

Fα(x) = F(x)+α|x|2 = |Ax− y|2 +α|x|2. (4.120)

Here α is a positive number called the regularization parameter.

Theorem 4.32. For any positive α there exists a unique vector xα minimizing the

functional Fα on the space Xn, the limit of xα as α → 0 exists and is equal to the

normal pseudo-solution x0 of equation (4.116).

Proof. Consider the following equation:

A∗Ax+αx =A∗y. (4.121)

Equation (4.121) has a unique solution xα ∈ Xn for any y ∈ Ym. Indeed, if x is

a solution of the homogeneous equation corresponding to (4.121), then calculat-

ing the inner products of both sides of this homogeneous equation with x, we get

|Ax|2 +α|x|2 = 0, hence, x=0, since α > 0. Using equality A∗y = A∗Axα +αxα ,

by elementary calculations we obtain

Fα(x) = (Bα(x− xα),x− xα)+(y,y)− (Bαxα ,xα),

where Bα = A∗A+αI. Since (Bα(x − xα),x − xα) > 0 for any x 6= xα , we see

that xα is a unique minimum point of the functional Fα . Therefore,

1 Tikhonov A.N. (1906–1993) was a Soviet and Russian mathematician.

4.3 Operators on Unitary Spaces 131

Fα(xα)= |Axα −y1|2+ |y0|2+α|xα |2 ≤ |Ax−y1|2+ |y0|2+α|x|2 for all x∈Xn.

If we take here x = x0, then

|Axα − y1|2 +α|xα |2 ≤ α|x0|2. (4.122)

This implies that |xα | ≤ |x0|, and hence, by the Bolzano-Weierstrass theorem (see

a calculus textbook), we can find a sequence αk → 0 and a vector x∗ ∈ Xn such

that xαk
→ x∗ as αk → 0. From (4.122) it follows that Ax∗ = y1. The normal pseudo-

solution is unique, therefore, x∗ = x0. Using the uniqueness of the normal pseudo-

solution again, we see that xα → x0 if α tends to zero by any manner. ⊓⊔

4.3.5 Self-Adjoint and Skew-Hermitian operators

A linear operator A : Xn → Xn is called self-adjoint (Hermitian) if A∗ =A, in other

words, if

(Ax,y) = (x,Ay) for all x,y ∈ Xn. (4.123)

A linear operator A : Xn → Xn is called skew-Hermitian if A∗ = −A, i.e.,

(Ax,y) =−(x,Ay) for all x,y ∈ Xn. (4.124)

The reader can easily prove that if an operator A is self-adjoint, then the inner

product (Ax,x) is real for all x ∈ Xn; if an operator A is skew-Hermitian, then the

inner product (Ax,x) is imaginary for all x ∈ Xn.

Since the matrices of operators A and A∗ with respect to any orthonormal bases

are mutually adjoint (see Subsect. 4.3.2), we see that the matrix of a self-adjoint

operator with respect to an orthonormal basis is Hermitian, the matrix of a skew-

Hermitian operator is skew-Hermitian.

Theorem 4.33. If the matrix of an operator A with respect to an orthonormal basis

is Hermitian, then the operator A is self-adjoint; if the matrix of an operator A with

respect to an orthonormal basis is skew-Hermitian, then the operator A is skew-

Hermitian.

The proof of Theorem 4.33 is left to the reader.

Theorem 4.34. Each operator of the orthogonal projection1is self-adjoint.

Proof. Let P be an operator of the orthogonal projection of an unitary space X

onto a subspace L ⊂ X, and let x and y be arbitrary elements of the space X. By

definition, x = Px+ x2, y = Py+ y2, where the vectors x2 and y2 are orthogonal

to L. Hence, (Px,y) = (Px,Py). Similarly, we have (x,Py) = (Px,Py). There-

fore, (Px,y) = (y,Px). ⊓⊔
1 See the definition on p. 88.

132 4 Linear Operators

Theorem 4.35. If an operator A is self-adjoint and A2 =A, then the operator A is

the operator of the orthogonal projection.

The proof of Theorem 4.35 is left to the reader.

Arguing exactly as in Subsect. 1.2.7, p. 46, it is easy to verify that any operator

can be uniquely represented in the form

A=H1 + iH2, (4.125)

where i is the imaginary unit,

H1 =
1

2
(A+A∗), H2 =

1

2i
(A−A∗)

are self-adjoint operators.

Theorem 4.36. Let A be a linear operator acting in the unitary space Xn. If

(Ax,x) = 0 for all x ∈ Xn, (4.126)

then A= 0.

Proof. Assume first that A is self-adjoint. Then for any x,y ∈ Xn the following

equality holds: (A(x + y),x + y) = (Ax,x) + (Ay,y) + 2Re(Ax,y). Combining it

with (4.126), we get Re(Ax,y) = 0. The last equality holds for any y ∈ Xn. Hence

we can replace y by iy, but Re(Ax, iy) = Im(Ax,y). Therefore, (Ax,y) = 0 for

any x,y ∈ Xn. If we put y =Ax, we obtain |Ax|= 0 for any x ∈ Xn, i.e., A= 0. So,

the theorem is true for self-adjoint operators. Let now A be an arbitrary operator.

If (Ax,x) = 0, then, using (4.125) and considering the self-adjointness of H1, H2,

we get (H1x,x) = 0, (H2x,x) = 0 for any x ∈ Xn. Hence, using the self-adjointness

of the operators H1 and H2 again, we see that H1,H2 = 0. ⊓⊔

Lemma 4.5. Let A be a linear operator acting in the unitary space Xn. If the inner

product (Ax,x) is real for all x ∈ Xn, then A is self-adjoint.

Proof. If (Ax,x) is real, then (A∗x,x) = (x,Ax) = (Ax,x), and ((A∗−A)x,x) = 0

for any x ∈ Xn. Therefore, using Theorem 4.36, we see that A∗−A= 0. ⊓⊔

The following lemma is proved similarly.

Lemma 4.6. Let A be a linear operator acting in the unitary space Xn. If the inner

product (Ax,x) is imaginary for all x ∈ Xn, then A is skew-Hermitian.

Thus the next theorem is true.

Theorem 4.37. Let A be a linear operator acting in the unitary space Xn. The op-

erator A is self-adjoint if and only if the inner product (Ax,x) is real for all vec-

tors x ∈ Xn; A is skew-Hermitian if and only if the inner product (Ax,x) is imagi-

nary for all x ∈ Xn.

4.3 Operators on Unitary Spaces 133

It follows from Theorem 4.37 that all eigenvalues of each self-adjoint operator

are real and all eigenvalues of each skew-Hermitian operator are imaginary. Indeed,

if (x,λ) is an eigenpair of the operator A, then (Ax,x) = λ (x,x).
The reader can easily prove now that the determinant of each self-adjoint operator

is real.

4.3.6 Positive Definite and Non-Negative Semidefinite Operators

A self-adjoint operator A : Xn → Xn is called non-negative semidefinite if

(Ax,x)≥ 0 for all x ∈ Xn. (4.127)

A self-adjoint operator A : Xn → Xn is called positive definite if

(Ax,x)> 0 for all nonzero x ∈ Xn. (4.128)

A Hermitian matrix A of order n is called non-negative semidefinite if

(Ax,x) =
n

∑
i, j=1

ai jx j x̄i ≥ 0 for all x ∈ Cn. (4.129)

A Hermitian matrix A of order n is called positive definite if

(Ax,x) =
n

∑
i, j=1

ai jx j x̄i > 0 for all nonzero x ∈ Cn. (4.130)

In the rest of this subsection we give without proof some useful properties of

positive definite operators and matrices. The proof of the following properties is left

to the reader.

1. The equality (x,y)A = (Ax,y) defines an inner product on the space Xn for any

positive definite operator A : Xn → Xn.

2. For any operator A : Xn → Xn the operator A∗A is self-adjoint and non-negative

semidefinite. If A is invertible, then A∗A is positive definite.

3. Let A be a linear operator acting in the unitary space Xn. If the operator A+A∗

is positive definite, then the operator A is nonsingular.

4. The matrix of a positive definite operator with respect to any orthonormal basis

is positive definite.

5. All elements of the main diagonal of a positive definite matrix are positive.

6. The Gram matrix of any set of vectors in the unitary space is non-negative

semidefinite.

7. The Gram matrix of a set of vectors is positive definite if and only if the set of

the vectors is linearly independent.

134 4 Linear Operators

4.3.7 Unitary Operators

An operator A : Xn → Xn is called unitary if

AA∗ =A∗A= I. (4.131)

The proof of the following properties of unitary operators is left to the reader.

1. An operator A : Xn → Xn is unitary if and only if its matrix with respect to any

orthonormal basis of Xn is unitary (see p. 47).

2. The modulus of the determinant of any unitary operator is equal to one.

3. The product of two unitary operators is a unitary operator.

If an operator A is unitary, then we have (Ax,Ay) = (x,A∗Ay) = (x,y) for

all x, y∈ Xn, i.e., each unitary operator does not change the inner product of vectors.

Hence it does not change the length of vectors.

Conversely, if a linear operator does note change the inner product of any two

vectors in Xn, then this operator is unitary. Indeed, taking into account the equal-

ity (Ax,Ay) = (x,y), we obtain (x,A∗Ay) = (x,y). Since the last equality holds for

all x,y ∈ Xn, we see that

A∗A= I. (4.132)

Prove that the equality AA∗ = I holds too. From (4.132) it follows that the opera-

tor A is invertible. Then, using left multiplication of both sides of equality (4.132)

by A and then right multiplication by A−1, we obtain AA∗= I.

Now the reader can easily prove that if |Ax|= |x| for all x ∈ Xn, then the opera-

tor A is unitary.

Thus a linear operator A : Xn → Xn is unitary if and only if it does not change

the length of any vector in the space Xn.

The modulus of any eigenvalue of each unitary operator is equal to one. Indeed, if

Ax=λx, x 6= 0 then, since |Ax|= |x| for each unitary operator (see Subsect. 4.3.7),

we get |λ ||x|= |Ax|= |x|, i.e., |λ |= 1.

Let us point out the next useful corollary. Its proof is obvious.

Corollary 4.4. All eigenvalues of each Hermitian matrix are real; all eigenvalues of

each skew-Hermitian matrix are imaginary; the modulus of any eigenvalue of each

unitary matrix is equal to one.

4.3.8 Normal Operators

A linear operator A acting in the unitary space Xn is called normal if

AA∗ =A∗A.

4.3 Operators on Unitary Spaces 135

Evidently, self-adjoint operators, skew-Hermitian operators, and unitary operators

are normal. An operator is normal if and only if its matrix with respect to any or-

thonormal basis of the space Xn is normal (see the definition of a normal matrix on

p. 47).

Theorem 4.38. Let A :Xn→Xn be a normal operator. Then Ker(A)=Ker(A∗).

Proof. Suppose that Ax = 0. Then

0 = (Ax,Ax) = (A∗Ax,x) = (AA∗x,x) = (A∗x,A∗x),

hence, A∗x = 0. The same calculations show that if A∗x = 0, then Ax = 0. ⊓⊔

Theorem 4.38 and Theorem 4.29, p. 128, immediately imply the following corol-

lary.

Corollary 4.5. Let A : Xn → Xn be a normal operator. Then

Xn = Ker(A)⊕ Im(A) = Ker(A∗)⊕ Im(A∗), Im(A) = Im(A∗).

Theorem 4.39. Let A : Xn → Xn be a normal operator, (x,λ) be an eigenpair of A,

i.e., Ax = λx. Then (x, λ̄) is an eigenpair of the operator A∗.

Proof. It is obvious that if an operator A is normal, then for each λ ∈ C the opera-

tor A− λ I is normal too, and (A− λ I)∗ = A∗− λ̄ I. If we combine this equality

with Theorem 4.38, we get Ker(A−λ I) = Ker(A∗− λ̄ I). ⊓⊔

Theorem 4.40. Eigenvectors of a normal operator satisfying distinct eigenvalues

are orthogonal to each other.

Proof. Let A be a normal operator, and let Ax = λx, Ay = µy, where λ 6= µ .

Then λ (x,y) = (Ax,y) = (x,A∗y). By Theorem 4.39, it follows that A∗y = µ̄y,

hence, (x,A∗y)=µ(x,y). Thus, λ (x,y)=µ(x,y), and (x,y) = 0, since λ 6=µ . ⊓⊔

Theorem 4.41. Let A be a linear operator acting in the space Xn. There exists an

orthonormal basis {ek}n
k=1 ⊂ Xn such that Aek = λkek, k = 1,2, . . . ,n, if and only if

the operator A is normal.

Proof. Necessity. The matrices of mutually adjoint operators with respect to any

orthonormal basis are mutually adjoint (see Subsect. 4.3.2, p. 127). Hence if

Ae = diag(λ1,λ2, . . . ,λn)

is the matrix of the operator A with respect to the orthonormal basis {ek}n
k=1, then

A∗
e = diag(λ̄1, λ̄2, . . . , λ̄n)

is the matrix of the operator A∗ with respect to the same basis. The matrix of the

product of two operators is equal to the product of the matrices of these operators

(see Subsect. 4.1.5, p. 93), diagonal matrices are permutable, therefore,

136 4 Linear Operators

(A∗A)e = A∗
e Ae = AeA∗

e = (AA∗)e,

thus, A∗A=AA∗, i.e., the operator A is normal.

Sufficiency. Let (e1,λ1) be an eigenpair of A. Suppose that |e1| = 1. By Theo-

rem 4.39, it follows that (e1, λ̄1) is an eigenpair of the operator A∗. Denote by Ln−1

the subspace of all vectors in Xn that are orthogonal to e1. The subspace Ln−1

is invariant under the operator A. Indeed, if x ∈ Ln−1, i.e., (x,e1) = 0, then we

get (Ax,e1) = (x,A∗e1) = λ1(x,e1) = 0. Therefore, using Corollary 4.1, p. 109,

we see that there exists a normalized1 vector e2 ∈ Ln−1 and a number λ2 such

that Ae2 = λ2e2. Let now Ln−2 be the subspace of all vectors in Xn that are or-

thogonal to both vectors e1 and e2. Arguing as above, we prove that there exists a

normalized vector e3 ∈ Ln−2 and a number λ3 such that Ae3 = λ3e3. Continuing

this process, we construct an orthonormal set of vectors {ek}n
k=1 ⊂ Xn such that

Aek = λkek, where k = 1,2, . . . ,n. ⊓⊔

Remark 4.3. Theorem 4.41 states that for each normal operator A there exists an

orthonormal basis such that the matrix of A with respect to this basis is diagonal,

and all eigenvalues of A form the diagonal of this matrix. Thus each normal operator

is diagonalizable (see Subsect. 4.2.3, p. 114).

Remark 4.4. Often is useful the following equivalent formulation of the last result.

Let A be a normal operator acting in the space Xn. Denote by λ1, λ2, . . . , λk,

k ≤ n, all distinct eigenvalues of A and by Lλi
, i = 1,2, . . . ,k, all corresponding

eigenspaces. Then

Xn = Lλ1
⊕Lλ2

⊕·· ·⊕Lλk
, (4.133)

A= λ1P1 +λ2P2 + · · ·+λkPk, (4.134)

where the sums in (4.133) are orthogonal and Pi is the operator of the orthogonal

projection of the space Xn onto the subspace Lλi
for i = 1,2, . . . ,k.

The proof of the following corollary of Theorem 4.41 is left to the reader.

Corollary 4.6. Let A be a real square matrix of order n such that AT A = AAT . Then

there exists an orthonormal2 set of vectors {ξk}n
k=1 ⊂Cn and numbers λ1, . . . , λn

such that Aξk = λkξk, k = 1,2, . . . ,n. Moreover, if the number λk is real, then we can

choose the real corresponding vector ξk.

The proof of the following three propositions is left to the reader.

Proposition 4.1. If all eigenvalues of a normal operator are real, then the operator

is self-adjoint. If all eigenvalues of a normal operator are imaginary, then the oper-

ator is skew-Hermitian. If the modulus of each eigenvalue of a normal operator is

equal to one, then the operator is unitary.

1 As usual, a vector x is called normalized if ‖x‖ = 1.
2 With respect to the standard inner product on the space Cn.

4.3 Operators on Unitary Spaces 137

Proposition 4.2. Let A and B be normal operators, and their characteristic poly-

nomials are equal to each other. Then there exists a unitary operator Q such

that B=QAQ∗.

Proposition 4.3. Let A be a normal operator, Q be a unitary operator. Then the

operator Ã=QAQ∗ is normal and the following resolution holds:

Ã= λ1P̃1 +λ2P̃2 + · · ·+λkP̃k. (4.135)

Here λ1, λ2, . . . , λk are all distinct eigenvalues of A, and P̃i = QPiQ∗ is the

operator of the orthogonal projection of the space Xn onto the subspace QLλi
,

where i = 1,2, . . . ,k.

Theorem 4.42. Normal operators A and B are permutable if and only if they have a

common orthonormal basis that consists of their eigenvectors.

Proof. Sufficiency. Let {e j}n
k=1 be the common orthonormal basis that consists

of the eigenvectors of the operators A and B, i.e., Aek = λkek and Bek = µkek,

where k = 1,2, . . . ,n. Then BAek=λkµkek, ABek =λkµkek for k = 1,2, . . . ,n, i.e.,

for each vector of the basis the values of the operators AB and BA coincide.

Thus, AB = BA.

Necessity. Let us use representation (4.133) of the space Xn in the form of orthog-

onal sum of the eigenspaces of the operator A corresponding to distinct eigenvalues

of A. It follows from Lemma 4.3, p. 109, that each subspace Lλi
is invariant under B.

Since the operator B is normal, we see that in each Lλi
there exists an orthonormal

basis that consists of eigenvectors of the operator B. Clearly, the union of all such

bases is a basis of the space Xn, and by construction, all vectors of this basis are

eigenvectors of the operator A. ⊓⊔

4.3.9 The Root of a Non-Negative Semidefinite Self-Adjoint

Operator

Theorem 4.43. Let A be a non-negative semidefinite self-adjoint operator acting in

a finite-dimensional unitary space Xn and let k ≥ 2 be a given integer. Then there

exists a unique non-negative semidefinite self-adjoint operator T such that T k =A.

The operator T is called the k-th root of the operator A and is denoted by A1/k or

by
k
√
A.

Proof. Since the operator A is self-adjoint, there exists an orthonormal basis {ei}n
i=1

consisting entirely of the eigenvectors of A. Let us denote the corresponding eigen-

values by λ1, λ2, . . . , λn and define the operator T by the action of this operator on

the basis vectors:

T ei =
k
√

λi ei, i = 1,2, . . . ,n.

138 4 Linear Operators

All eigenvalues of any non-negative semidefinite operator are non-negative, hence

we can assume that all numbers k
√

λi, i = 1,2, . . . ,n, are non-negative. Obviously,

the operator T is self-adjoint and non-negative semidefinite, moreover, we see

that T k =A, i.e., T =A1/k. To complete the proof we shall show that the k-th root of

the operator A is unique. For this purpose we first establish that there exists a poly-

nomial Pm of degree m≤ n−1 such that T =Pm(A). Indeed, let λ1,λ2, . . . ,λr, r ≤ n,

be all distinct eigenvalues of the operator A. Then there exists a polynomial Pr−1 of

degree r−1 such that Pr−1(λi) =
k
√

λi, i = 1,2, . . . ,r.1 Hence,

Pr−1(A)ei = Pr−1(λi)ei =
k
√

λi ei, i = 1,2, . . . ,n,

i.e., Pr−1(A) = T . Let U be an arbitrary non-negative semidefinite self-adjoint op-

erator such that U k =A. Then

T U = Pr−1(A)U = Pr−1(U k)U = UPr−1(U k) = UT ,

i.e., the operators T and U are permutable. Therefore, by Theorem 4.42, these oper-

ators have a common orthonormal basis that consists of their eigenvectors. We also

denote this basis by e1,e2, . . . ,en and write

T ei = µiei, Uei = µ̃iei, µi, µ̃i ≥ 0, i = 1,2, . . . ,n.

Hence,

T kei = µk
i ei, U kei = µ̃k

i ei, i = 1,2, . . . ,n,

but T k=U k, therefore, µ̃k
i = µk

i , and µ̃i = µi, i = 1, . . . ,n. Thus, U = T . ⊓⊔

4.3.10 Congruent Hermitian Operators

Hermitian operators A, B : Xn → Xn are said to be congruent if there exists a non-

singular operator X such that B = X ∗AX . Let n+(A) be the number of positive

characteristic values of A, n−(A) be the number of negative characteristic values

of A, and n0(A) be the number of zero characteristic values of A, all counting mul-

tiplicity. Since all characteristic values of a Hermitian operator are real, we see that

n+(A)+n−(A)+n0(A) = n. The inertia of A is the triple (n+(A),n−(A),n0(A)).

Theorem 4.44 (Sylvester’s law of inertia). Hermitian operators A, B are congru-

ent if and only if they have the same inertia.

Proof. Sufficiency. Let (n+,n−,n0) be the inertia of the operator A and

Aek = λk(A)ek, k = 1,2, . . . ,n, (4.136)

1 The polynomial Pr−1 can be written in an explicit form, for example, using the Lagrange inter-

polation formula (see p. 28).

4.3 Operators on Unitary Spaces 139

where ek, k = 1,2, . . . ,n, is the orthonormal set of all eigenvectors of A. We assume

that all eigenvalues of the operator A are ordered by increasing such that the first n−
eigenvalues are negative, the next n0 eigenvalues are zero, and finally, the last n+
eigenvalues are positive. Let us define the Hermitian operator D by the action of this

operator on the basis vectors E = {ek}n
k=1:

Dek =

{
|λk(A)|−1/2

ek, λk(A) 6= 0,

ek, λk(A) = 0,

where k = 1,2, . . . ,n. Then we can write equality (4.136) in the form

DADE = ETA, (4.137)

where TA is the diagonal matrix. The first n− elements of its diagonal are equal

to −1, the next n0 elements are zero, and the last n+ elements are equal to one.

Let Q = {qk}n
k=1 be an orthonormal basis in Xn. We define the operator M by the

following equality:

MQ=QTA. (4.138)

The bases E and Q are orthonormal, hence there exists a unitary operator U such

that E = UQ (see p. 72), and we can write (4.137) in the form

U∗DADUQ=QTA. (4.139)

Comparing the left hand sides of (4.138) and (4.139), we see that the operators A
and M are congruent. Thus all operator having the same inertia (n+,n−,n0) are

congruent to the operator M. Therefore all of them are pairwise congruent.

Necessity. We denote by L+, L−, L0 the subspaces of the space Xn spanned by

the eigenvectors of the operator A corresponding to the positive, negative, and zero

eigenvalues of the operator A, respectively. Let us decompose the space Xn into

the orthogonal sum Xn = L+⊕L−⊕L0 (see Remark 2, p. 136). Then we see that

dim(L+)+dim(L−)+dim(L0) = n. Denote by M+ the subspace of Xn spanned by

all eigenvectors of the operator B corresponding to all its positive eigenvalues. For

each x ∈ M+, x 6= 0, we have (Bx,x) = (AX x,X x) = (Ay,y) > 0, where y = X x.

This means that (Ay,y)> 0 for each y belonging to the subspace M̃+ =XM+. Since

X is invertible, dim(M+) = dim(M̃+). Obviously, M̃+ ∩ (L− ⊕ L0) = {0}, hence,

dim(M+)+ dim(L−)+ dim(L0) ≤ n, and dim(M+) ≤ dim(L+). Arguing similarly,

we get the opposite inequality, whence, dim(M+) = dim(L+), or n+(A) = n+(B).
For the same reason, we get n−(A) = n−(B), n0(A) = n0(B). ⊓⊔

4.3.11 Variational Properties of Eigenvalues of Self-Adjoint

Operators

Recall that a linear operator A : Xn → Xn is self-adjoint if

140 4 Linear Operators

(Ax,y) = (x,Ay) for all x,y ∈ Xn. (4.140)

Recall also that all eigenvalues of each self-adjoint operator are real, there exists an

orthonormal basis of the space Xn that consists of the eigenvectors of the operator A.

Let A : Xn →Xn be a self-adjoint operator, λ1, λ2, . . . , λn be the eigenvalues of A,

and {ek}n
k=1 be the orthonormal basis of corresponding eigenvectors. We assume

that the eigenvalues are ordered by increasing:

λ1 ≤ λ2 · · · ≤ λn. (4.141)

Let us point out that we consider all characteristic values of the matrix of the

operator A as the eigenvalues of A, i.e., each multiple eigenvalue is repeated ac-

cording to its multiplicity. Therefore, generally speaking, inequalities in (4.141) are

non-strict.

Let p, q be integer numbers such that 1 ≤ p ≤ q ≤ n. Denote by Lpq the subspace

of the space Xn spanned by the vectors {ek}q
k=p . Clearly, L1n = Xn.

Lemma 4.7. For any x ∈ Lpq the following inequalities hold:

λp(x,x)≤ (Ax,x)≤ λq(x,x), (4.142)

moreover,

λp = min
x∈Lpq, x 6=0

(Ax,x)

(x,x)
, λq = max

x∈Lpq, x 6=0

(Ax,x)

(x,x)
. (4.143)

Proof. For any x ∈ Lpq we have

(Ax,x) =
(
A

q

∑
k=p

ξkek,
q

∑
k=p

ξkek

)

=
(q

∑
k=p

λkξkek,
q

∑
k=p

ξkek

)
=

q

∑
k=p

λk|ξk|2. (4.144)

Evidently,

λp

q

∑
k=p

|ξk|2 ≤
q

∑
k=p

λk|ξk|2 ≤ λq

q

∑
k=p

|ξk|2,
q

∑
k=p

|ξk|2 = (x,x),

hence (4.142) is true, and for any x 6= 0 that belongs to Lpq the following inequalities

hold:

λp ≤
(Ax,x)

(x,x)
≤ λq.

We have
(Aep,ep)

(ep,ep)
= λp,

(Aeq,eq)

(eq,eq)
= λq,

thus equalities (4.143) are true also. ⊓⊔

4.3 Operators on Unitary Spaces 141

Obviously, the next theorem follows from Lemma 4.7.

Theorem 4.45. For each k = 1,2, . . . ,n the following equalities hold:

λk = min
x∈Lkn, x 6=0

(Ax,x)

(x,x)
, λk = max

x∈L1k, x 6=0

(Ax,x)

(x,x)
. (4.145)

Note that Lkn = L⊥
1,k−1, L1k = L⊥

k+1,n. Therefore for calculation of k-th eigenvalue

we need to know all eigenvectors e j for j = 1,2, . . . ,k− 1 or for j = k+ 1, . . . ,n.

Thus formulas (4.145) are inconvenient. The next two theorems give descriptions of

each eigenvalue of the self-adjoint operator A without reference to the preceding or

to the succeeding eigenvectors.

Theorem 4.46. For each k = 1,2, . . . ,n the following equality holds:

λk = max
Rn−k+1

min
x∈Rn−k+1, x 6=0

(Ax,x)

(x,x)
. (4.146)

Here Rn−k+1 is an (n−k+1)-dimensional subspace of the space Xn. The maximum

is taken over all subspaces Rn−k+1 ⊂ Xn of dimension n− k+1.

Proof. Clearly, dim(Rn−k+1) + dim(L1k) = n + 1, hence (see Corollary 3.1, p. 82)

there exists a vector x 6= 0 belonging to Rn−k+1 ∩ L1k. Therefore, using (4.145),

we see that for each subspace Rn−k+1 there exists a vector x∈Rn−k+1 such that

(Ax,x)/(x,x)≤ λk. Thus for each subspace Rn−k+1 we get

min
x∈Rn−k+1, x 6=0

(Ax,x)

(x,x)
≤ λk.

If we chose now a subspace Rn−k+1 for which

min
x∈Rn−k+1, x 6=0

(Ax,x)

(x,x)
= λk,

then we prove equality (4.146). It follows from Theorem 4.45 that the desired sub-

space Rn−k+1 is Lkn. ⊓⊔
Theorem 4.47. For each k = 1,2, . . . ,n the following equality holds:

λk = min
Rk

max
x∈Rk, x 6=0

(Ax,x)

(x,x)
. (4.147)

Here Rk is a k-dimensional subspace of the space Xn. The minimum is taken over

all subspaces Rk ⊂ Xn of dimension k.

Proof. Clearly, dim(Rk)+dim(Lkn) = n+1 for each subspace Rk, therefore we see

that Rk ∩Lkn 6= {0}. By Theorem 4.45, we have

min
x∈Lkn, x 6=0

(Ax,x)

(x,x)
= λk,

142 4 Linear Operators

hence for each subspace Rk we get

max
x∈Rk, x 6=0

(Ax,x)

(x,x)
≥ λk.

To conclude the proof, it remains to choose a k-dimensional subspace Rk for which

max
x∈Rk, x 6=0

(Ax,x)

(x,x)
= λk.

Using Theorem 4.45, we see that the desired subspace is L1k. ⊓⊔

It follows immediately from (4.142) that a self-adjoint operator A is non-negative

semidefinite (see (4.127), p. 133) if and only if all eigenvalues of A are non-

negative; a self-adjoint operator A is positive-definite (see (4.128), p. 133) if and

only if all eigenvalues of A are positive. Using the last statement, the reader can

easily prove the following proposition.

Proposition 4.4. If an operator A is positive-definite, then det(A)> 0.

Now the reader can easily prove the Cauchy-Schwarz inequality (see Theo-

rem 3.1, p. 68) using the Gram matrix (see (3.7), p. 70) for the set of two vectors x,

y in the unitary space.

4.3.12 Examples of Application of Variational Properties of

Eigenvalues

Theorem 4.48. Let A,B,C : Xn → Xn be self-adjoint operators, and let

λ1(A)≤ λ2(A)≤ ·· · ≤ λn(A),

λ1(B)≤ λ2(B)≤ ·· · ≤ λn(B),
λ1(C)≤ λ2(C)≤ ·· · ≤ λn(C)

be eigenvalues of A, B, and C, respectively. Suppose that A= B+C. Then

λ1(C)≤ λk(A)−λk(B)≤ λn(C), k = 1,2, . . . ,n. (4.148)

Proof. To prove this statement it is enough to note that for each arbitrarily fixed

subspace Rk of the space Xn we have

(Ax,x)

(x,x)
=

(Bx,x)

(x,x)
+

(Cx,x)

(x,x)
for all x ∈ Rk, x 6= 0.

Since (4.142), we see that

4.3 Operators on Unitary Spaces 143

(Cx,x)

(x,x)
≤ λn(C) for all x ∈ Xn, x 6= 0,

hence,

max
x∈Rk, x 6=0

(Ax,x)

(x,x)
≤ max

x∈Rk, x 6=0

(Bx,x)

(x,x)
+λn(C),

thus,

min
Rk

max
x∈Rk, x 6=0

(Ax,x)

(x,x)
≤ min

Rk

max
x∈Rk, x 6=0

(Bx,x)

(x,x)
+λn(C).

By Theorem 4.47, the last inequality is equivalent to the following:

λk(A)−λk(B)≤ λn(C). (4.149)

Note that B =A+(−C). The eigenvalues of the operator −C are equal to −λk(C),
k = 1,2, . . . ,n, and the maximal eigenvalue of −C is equal to −λ1(C). Therefore,

arguing as above, we get

λk(B)−λk(A)≤−λ1(C). (4.150)

Combining (4.149) and (4.150), we obtain (4.148). ⊓⊔

Estimates (4.148) are useful because they show how the eigenvalues of a self-

adjoint operator B can change if we add to B a self-adjoint operator C. It is evident

that if the eigenvalues of the operator C are small, then changes of the eigenvalues

of B are small too.

Theorem 4.49. Let An+1 = {ai j}n+1
i, j=1 be an arbitrary Hermitian matrix of order

n+1 and An = {ai j}n
i, j=1 be the matrix corresponding to its leading principal minor

of order n. Let λ̂1 ≤ λ̂2 ≤ ·· · ≤ λ̂n+1 be the eigenvalues of the matrix An+1 and

λ1 ≤ λ2 ≤ ·· · ≤ λn be the eigenvalues of An. Then

λ̂1 ≤ λ1 ≤ λ̂2 ≤ λ2 ≤ ·· · ≤ λn ≤ λ̂n+1, (4.151)

i.e., the eigenvalues of An+1 are interlaced with the eigenvalues of An.

Proof. In this proof we use the standard inner product on Cn. Let 1 ≤ k ≤ n. By

Theorem 4.47

λ̂k+1 = min
Rk+1

max
x∈Rk+1, x 6=0

(An+1x,x)

(x,x)
. (4.152)

The minimum here is taken over all subspaces Rk+1 of dimension k + 1 of the

space Cn+1. Denote by Rk ⊂Cn the set of all vectors in Rk+1 such that the (n+1)-th
coordinate with respect to the natural basis is zero. Then

max
x∈Rk+1, x 6=0

(An+1x,x)

(x,x)
≥ max

x∈Rk, x 6=0

(Anx,x)

(x,x)
.

144 4 Linear Operators

To justify this inequality it is enough to note that on the left hand side the maxi-

mum is taken over the broader set of vectors than on the right hand side. Therefore,

using (4.152), we get

λ̂k+1 = min
Rk+1

max
x∈Rk+1, x 6=0

(An+1x,x)

(x,x)
≥ min

Rk

max
x∈Rk, x 6=0

(Anx,x)

(x,x)
,

but, by Theorem 4.47, the right hand side of this inequality is equal to λk. Thus,

λ̂k+1 ≥ λk for all k = 1,2, . . . ,n.

Let us use now Theorem 4.46. By this theorem,

λ̂k = max
Rn+2−k

min
x∈Rn+2−k, x 6=0

(An+1x,x)

(x,x)
. (4.153)

The maximum here is taken over all subspaces Rn+2−k of dimension n+ 2− k of

the space Cn+1. If we narrow the set of vectors over which the minimum is taken,

then this minimum can not decrease. Therefore, analogously to the previous case,

we can write

λ̂k = max
Rn+2−k

min
x∈Rn+2−k, x 6=0

(An+1x,x)

(x,x)

≤ max
Rn+1−k

min
x∈Rn+1−k, x 6=0

(Anx,x)

(x,x)
= λk. (4.154)

Thus inequalities (4.151) are true. ⊓⊔

In the same way we can prove the following more general result.

Theorem 4.50. Let A be a Hermitian matrix of order n and Am be the Hermitian

matrix of order m < n corresponding to a principal minor of order m of the matrix A

(see Subsect. 4.2.4, p. 115). Let λ1(A) ≤ λ2(A) ≤ ·· · ≤ λn(A) be the eigenvalues

of the matrix A and λ1(Am) ≤ λ2(Am) ≤ ·· · ≤ λm(Am) be the eigenvalues of the

matrix Am. Then

λk(A)≤ λk(Am)≤ λk+n−m(A), k = 1,2, . . . ,m. (4.155)

Remark 4.5. Clearly, Theorem 4.49 is the particular case of Theorem 4.50 when

m = n− 1 and An−1 corresponds to the leading principal minor of the matrix A of

order n− 1. Sometimes it is convenient to order the eigenvalues by nonincreasing.

Then, obviously, estimate (4.155) has the form

λk+n−m(A)≤ λk(Am)≤ λk(A), k = 1,2, . . . ,m. (4.156)

Theorem 4.51 (Sylvester’s criterion). A Hermitian matrix A is positive definite if

and only if all the leading principal minors of A are positive.

Proof. Necessity. Take an integer k, 1 ≤ k ≤ n. If in condition (4.130), p. 133, we

put x = (x1, . . . ,xk,0, . . . ,0) = (y,0, . . . ,0), where y is an arbitrary vector in Ck, then

4.3 Operators on Unitary Spaces 145

(Ax,x) = (Aky,y). Here Ak is the matrix corresponding to the leading principal minor

of order k of the matrix A.1 Evidently, it follows now from condition (4.130) that

(Aky,y) > 0 for each nonzero vector y ∈ Ck, i.e., the matrix Ak is positive definite.

Therefore its determinant (the leading principal minor of order k of the matrix A) is

positive (see Proposition 4.4, p. 142).

Sufficiency. Now we prove that if all leading principal minors of the matrix A

are positive, then all its eigenvalues are positive. The last condition means that the

matrix A is positive definite. Actually, we prove more, namely, we prove that all

eigenvalues of all leading principal minors of the matrix A are positive. Obviously,

for the minor of order one, i.e., for a11, it is true. Let us assume that all eigenval-

ues λ1 ≤ ·· · ≤ λk of the matrix Ak corresponding to the leading principal minor of

order k are positive, and prove that all eigenvalues λ̂1 ≤ ·· · ≤ λ̂k+1 of the matrix Ak+1

are positive too. Using Theorem 4.49, we see that the following inequalities hold:

λ̂1 ≤ λ1 ≤ λ̂2 ≤ λ2 ≤ ·· · ≤ λk ≤ λ̂k+1.

Therefore, λ̂2, . . . , λ̂k+1 > 0. Since, by hypothesis, det(Ak+1) > 0, and by equality

(4.79), p. 117, det(Ak+1) = λ̂1λ̂2 · · · λ̂k+1, we get λ̂1 > 0. ⊓⊔

Now we introduce two concepts, which will be used below. Let x,y ∈ Rn. Addi-

tionally we assume that x1 ≥ x2 ≥ ·· · ≥ xn, y1 ≥ y2 ≥ ·· · ≥ yn. We write x ≺w y and

say that x is weakly majorized by y if

k

∑
i=1

xi ≤
k

∑
i=1

yi, k = 1,2, . . . ,n.

We write x ≺ y and say that x is majorized by y if x ≺w y and

n

∑
i=1

xi =
n

∑
i=1

yi. (4.157)

Theorem 4.52 (Schur). Let A be a Hermitian matrix of order n. Let λ (A) ∈ Rn be

the vector consisting of all the eigenvalues of the matrix A ordered by nonincreasing

and d(A) ∈ Rn be the vector consisting of all the diagonal entries of the matrix A

ordered by nonincreasing. Then

d(A)≺ λ (A). (4.158)

Proof. Since for any permutation matrix P the eigenvalues of the matrices A

and PAP equal, without loss of generality we can assume that the matrix A is such

that all its diagonal entries are ordered by nonincreasing, i.e., a11 ≥ a22 ≥ ·· · ≥ ann.

Let Ak be the leading principal submatrix of A of order k. Using equality (4.79),

p. 117, and estimate (4.156), we get

1 The matrix Ak usually is called the leading principal submatrix of order k of the matrix A.

146 4 Linear Operators

k

∑
i=1

aii =
k

∑
i=1

λi(Ak)≤
k

∑
i=1

λi(A). (4.159)

Now using (4.79), p. 117, with respect to the matrix A, we see that for k = n inequal-

ity (4.159) transforms to the equality. ⊓⊔

The next corollary is obvious.

Corollary 4.7. Let A be a Hermitian matrix and U be an unitary matrix. Then

d(U∗AU)≺ λ (A).

Theorem 4.53. Let A be a Hermitian matrix of order n. Assume that all the eigen-

values of A are ordered by nonincreasing. Then

k

∑
i=1

λi(A) = max
V

tr(V∗AV), k = 1,2, . . . ,n.

The maximum here is taken over all rectangular unitary matrices V ∈ Mn,k.1

Proof. Let V be an arbitrary rectangular n-by-k unitary matrix. Let U = (V,W) be

the square unitary matrix of order n. For any matrix W the diagonal elements of

the matrix V∗AV equal to the first k diagonal elements of the matrix U∗AU . By

Corollary 4.7, their sum is no more than the number
k

∑
i=1

λi(U
∗AU), which is equal

to
k

∑
i=1

λi(A). If the columns of the matrix V are the eigenvectors of the matrix A cor-

responding to λ1(A), λ2(A), . . . , λk(A) and orthonormal with respect to the standard

inner product on the space Cn, then tr(V∗AV) =
k

∑
i=1

λi(A). ⊓⊔

Theorem 4.54 (Fan2). Let A, B be Hermitian matrices of the same order. Then

λ (A+B)≺ (λ (A)+λ (B)).

This theorem follows immediately from Theorem 4.53 and the fact that the trace

of the sum of matrices is equal to the sum of their traces (see (4.80), p. 117).

1 See the definition on p. 47.
2 Ky Fan (1914–2010) was an American mathematician.

4.4 Operators on Euclidean Spaces 147

4.4 Operators on Euclidean Spaces

4.4.1 Overview

Let Xn be an Euclidean space (i.e., n-dimensional real inner product space). In this

section we consider linear operators A acting in the Euclidean space Xn and note

some features related to the assumption that Xn is real.

The matrices of operators A and A∗ with respect to any orthonormal basis of the

space Xn are mutually transposed.

A linear operator is self-adjoint if and only if the matrix of this operator with

respect to any orthonormal basis of the space Xn is symmetric.

Skew-Hermitian operators acting in the Euclidean space usually are called skew-

symmetric. A linear operator is skew-symmetric if and only if the matrix of this

operator with respect to any orthonormal basis of the space Xn is skew-symmetric.

Each linear operator A : Xn → Xn is uniquely represented in the form

A=A1 +A2,

where A1 is a self-adjoint operator, A2 is a skew-symmetric operator, and

A1 =
1

2
(A+A∗), A2 =

1

2
(A−A∗).

Similar arguments for matrices see at pp. 46, 47.

Theorem 4.55.1 A linear operator A acting in the Euclidean space Xn is skew-

symmetric if and only if

(Ax,x) = 0 for all x ∈ Xn. (4.160)

Proof. If A=−A∗, then

(Ax,x) = (x,A∗x) =−(x,Ax),

i.e., (Ax,x) = 0. The sufficiency of condition (4.160) follows from the obvious iden-

tity (A(x+ y),x+ y) = (Ax,x)+(Ay,y)+(Ax+A∗x,y). ⊓⊔

Unitary operators (i.e., operators satisfying the condition AA∗ = I) acting in the

Euclidean space are called orthogonal. A linear operator is orthogonal if and only if

the matrix of this operator with respect to any orthonormal basis of the space Xn is

orthogonal (see Subsect. 1.2.7, p. 47).

Any orthogonal operator does not change the lengths of vectors and the angles

between vectors, this immediately follows from the definition. The determinant of

an orthogonal operator is equal to plus one or to minus one. Any eigenvalue of an

orthogonal operator is equal to plus one or to minus one.

1 Compare with Theorem 4.36 p. 132.

148 4 Linear Operators

Recall that a linear operator A is normal if AA∗ =A∗A. Self-adjoint operators,

skew-symmetric operators, and orthogonal operators are normal.

If an operator A : Xn → Xn is normal, then the matrix Ae of the operator A with

respect to any orthonormal basis of the space Xn is normal, i.e., Ae satisfies the

following condition:

AeAT
e = AT

e Ae. (4.161)

The converse is also true: if there exists an orthonormal basis En of the space Xn such

that the matrix of the operator A with respect to this basis satisfies condition (4.161),

then the operator A is normal.

4.4.2 The Structure of Normal Operators

In this subsection we consider linear operators acting in the Euclidean space Xn.

Theorem 4.56. Let A be a linear operator acting in the Euclidean space Xn. The

operator A is normal if and only if there exists an orthonormal basis En of the

space Xn such that the matrix of the operator A with respect to this basis is block-

diagonal:

Ae =




A1

A2

. . .

Ak


 . (4.162)

Each diagonal block here is an 1-by-1 matrix or a 2-by-2 matrix. Each 1-by-1 block

is a real number, each 2-by-2 block is a matrix of the form

Ap =

(
αp −βp

βp αp

)
, (4.163)

where αp, βp are real numbers.

Proof. Sufficiency. By direct calculations we can easily verify that the matrix Ae of

the described in the theorem structure satisfies condition (4.161).

Necessity. Let Ae be the matrix of the normal operator A with respect to the

arbitrarily chosen orthonormal basis En. Then Ae satisfies condition (4.161). Using

Corollary 4.6, p. 136, we see that for the matrix Ae there exists an orthonormal

basis Fn = { fk}n
k=1 of the space Cn such that

Ae fk = λk fk, k = 1,2, . . . ,n, (4.164)

where λ1, λ2, . . . , λn are the characteristic values of the matrix Ae, and if λk is real,

then the corresponding vector fk is real. Let us enumerate the characteristic values of

the matrix Ae in the following order: λ1=α1, λ2=α2, . . . , λm=αm, were 0≤ m≤ n,

are real; and λm+ j = αm+ j + iβm+ j, λ̄m+ j = αm+ j − iβm+ j, for j = 1,2, . . . , p, where

4.4 Operators on Euclidean Spaces 149

p = (n−m)/2, are complex. Then the eigenvectors fk for k = 1,2, . . . ,m are real;

and the other corresponding eigenvectors are complex, i.e., fk = gk + ihk, where

gk,hk ∈ Rn, k > m. The matrix Ae is real, therefore, if λk is a complex character-

istic value of Ae and Ae fk = λk fk, then Ae f̄k = λ̄k f̄k. By Theorem 4.40, p. 135, we

see that eigenvectors of the normal operator A satisfying distinct eigenvalues are

orthogonal to each other, hence, (fk, f̄k) = 0, and (gk,gk) = (hk,hk), (gk,hk) = 0.

Moreover, we have (fk, fk) = 1. This easily yields that (gk,gk) = (hk,hk) = 1/2.

Let now fk, fl ∈ Fn, k 6= l, be complex vectors such that fk 6= f̄l . Then we have

(fk, fl) = 0, and (fk, f̄l) = 0, whence by elementary calculations we obtain (gk,gl),
(hk,hl), (gk,hl), (hk,gl) = 0. Recall that (see Sect. 4.2.5, p. 118) if Ae fk = λk fk,

where λk = αk + iβk, fk = gk + ihk, then Aegk = αkgk −βkhk, Aehk = αkgk +βkhk.

Now the real eigenvector fk ∈ Fn we associate with each real eigenvalue λk of the

matrix Ae; the pair of real eigenvectors g̃k =
√

2gk, h̃k =
√

2hk we associate with

each pair of complex-conjugate characteristic values λk, λ̄k of the matrix Ae. As a

result, we obtain the following set of n vectors in the space Rn:

F̃n = { f1, f2, . . . , fm, g̃1, h̃1, g̃2, h̃2, . . . , g̃p, h̃p}.

We have proved that this set is orthonormal. For the vectors of the set F̃n we get

Ae fk = αk fk, k = 1,2, . . . ,m, (4.165)

Aeg̃ j = α jg̃ j −β jh̃ j

Aeh̃ j = β jg̃ j +α jh̃ j,
(4.166)

where j = 1,2, . . . , p. Using (4.165) and (4.166), we see that the matrix of the op-

erator A with respect to the orthonormal basis Ẽn = EF̃n of the space Xn has form

(4.162). The blocks of this matrix are consisted of the corresponding elements of

the matrix Ae. ⊓⊔
Let us discuss two important special cases using Corollary 4.4, p. 134.

1. Self-adjoint operators. The matrix of the self-adjoint operator A with respect

to any orthonormal basis is symmetric. By Corollary 4.4, p. 134, all the character-

istic values of this matrix are real. Therefore all the numbers β j, j = 1,2, . . . , p, in

equalities (4.166) are equal to zero. Thus there exists an orthonormal basis of the

space Xn such that the matrix of the operator A with respect to this basis is diagonal.

2. Skew-symmetric operators. The matrix of the skew-symmetric operator A with

respect to any orthonormal basis is skew-symmetric. By Corollary 4.4, p. 134, all

the characteristic values of this matrix are imaginary. Therefore all numbers α j in

equalities (4.165), (4.166) are equal to zero. Thus there exists an orthonormal basis

of the space Xn such that the matrix of the operator A with respect to this basis has

form (4.162), where all the diagonal blocks of order one are equal to zero, and all

the blocks of order two are skew-symmetric:

A j =

(
0 −β j

β j 0

)
,

150 4 Linear Operators

where j = 1,2, . . . , p.

4.4.3 The Structure of Orthogonal Operators

The matrix of the orthogonal operator with respect to any orthonormal basis is

orthogonal. By Corollary 4.4, p. 134, the modulus of each characteristic value

of this matrix is equal to one. Therefore all the numbers αk, k = 1,2, . . . ,m, in

equalities (4.165) are equal to plus one or to minus one; the numbers α j, β j for

j = 1,2, . . . , p in (4.166) satisfy the conditions α2
j +β 2

j = 1, hence there exist an-

gles ϕ j ∈ [0,2π) such that α j = cosϕ j, β j = sinϕ j. Thus there exist an orthonormal

basis of the space Xn such that the matrix of the orthogonal operator with respect

to this basis has form (4.162), where each diagonal block of order one is a number

equal to plus one or to minus one, and each diagonal block of order two has the

following form: (
cosϕ j −sinϕ j

sinϕ j cosϕ j

)
.

Now we can give clear geometrical interpretation to each orthogonal transforma-

tion of the Euclidean space Xn.

Let us start with the two-dimensional case. As it follows from the above, for each

orthogonal transformation A of the Euclidean space X2 there exists an orthonormal

basis e1,e2 such that the matrix of the transformation with respect to this basis has

either the form

Ae =

(
−1 0

0 1

)

or the form

Ae =

(
cosϕ −sinϕ
sinϕ cosϕ

)
.

In the first case, the operator A transforms each vector x = ξ1e1 +ξ2e2 ∈ X2 into

the vector Ax = −ξ1e1 + ξ2e2, i.e., the operator A carries out a specular reflection

with respect to the coordinate axis ξ2.

In the second case, (Ax,x) = |x||Ax|cosϕ , i.e., the operator A carries out a rota-

tion of each vector x ∈X2 through an angle ϕ . For ϕ > 0 the direction of the rotation

coincides with the direction of the shortest rotation from e1 to e2.

In the three-dimensional case, each orthogonal operator A has at least one eigen-

value, since corresponding characteristic equation is an algebraic equation of order

three with real coefficients. Therefore the matrix Ae of the operator A with respect

to the orthonormal basis e1, e2, e3 ∈ X3 (renumbered if necessary) has one of the

following forms:

Ae =




1 0 0

0 cosϕ −sinϕ
0 sinϕ cosϕ


 , (4.167)

4.4 Operators on Euclidean Spaces 151

Ae =



−1 0 0

0 cosϕ −sinϕ
0 sinϕ cosϕ


 . (4.168)

Observe that if the operator A has exactly one eigenvalue, then these representations

immediately follow from Theorem 4.56, if the operator A has three eigenvalues,

then representation (4.167) or (4.168) we obtain by choosing a special angle ϕ .

Arguing by analogy with the two-dimensional case, it is easy to verify that the

operator A that has the matrix (4.167) carries out a rotation through an angle ϕ about

the coordinate axis ξ1, the operator A that has the matrix (4.168) at first carries out

a rotation through an angle ϕ about the coordinate axis ξ1 and then carries out a

specular reflection with respect to the ξ2ξ3 coordinate plane. In the first case, the

determinant of the operator A is equal to one, in the second case, it is equal to

minus one.

As we know, the determinant of the linear operator does not depend on the choice

of the basis in the space. Therefore all orthogonal transformations of the three-

dimensional space we can divide into two classes: proper rotations and improper

rotations. A proper rotation is a transformation with the positive determinant, it

carries out a rotation of the space about an axis. An improper rotation is a transfor-

mation with the negative determinant, it is the combination of a rotation about an

axis and the reflection in the plane that is orthogonal to this axis.

Using Theorem 4.56, we can represent the Euclidean space Xn of an arbitrary

dimension n as the orthogonal sum of some one-dimensional invariant subspaces

of the orthogonal operator A : Xn → Xn and some two-dimensional invariant sub-

spaces of A. In each two-dimensional invariant subspace the operator A carries out

a rotation through an angle. Generally speaking, these angles can differ for differ-

ent subspaces. In each one-dimensional invariant subspace only the direction of a

coordinate axis can be transformed.

The proof of the following proposition is left to the reader.

Proposition 4.5. Each real symmetric matrix A is orthogonally similar to a diago-

nal matrix, i.e., QT AQ = Λ , where Λ is the diagonal matrix, Q is the orthogonal

matrix. The columns of the matrix Q are the eigenvectors of A. The diagonal ele-

ments of the matrix Λ are the eigenvalues of A.

4.4.4 Givens Rotations and Householder Transformations

In this subsection we consider two important types of orthogonal matrices, which

are often used in applications.

1. Givens1 rotations. A real matrix Qst(ϕ)= {qi j(ϕ)}n
i, j=1, 1≤ s< t ≤ n, is called

a Givens rotation if qss(ϕ) = qtt(ϕ) = cosϕ , qii(ϕ) = 1 for i 6= s, t, qst(ϕ) =−sinϕ ,

qts(ϕ) = sinϕ , and all other elements of the matrix Qst(ϕ) are equal to zero.

1 Wallace Givens (1910–1993) was an American mathematician.

152 4 Linear Operators

It is easy to see that the matrix Q = Qst(ϕ) is orthogonal. This matrix defines

an orthogonal transformation of the Euclidean space Rn with the standard inner

product, and it carries out a rotation trough an angle ϕ in the two-dimensional space

(in the plane) spanned by the vectors is, it of the natural basis in the space Rn. The

matrix QT is inverse of Q and performs the contra-rotation in the same plane.

Let x be an arbitrary vector in the space Rn. Obviously, (Qx)i = xi for i 6= s, t,
(Qx)s = xs cosϕ − xt sinϕ, (Qx)t = xs sinϕ + xt cosϕ. Take ρ = (x2

s + x2
t)

1/2. Sup-

pose that ϕ = 0 if ρ = 0 and cosϕ = xs/ρ , sinϕ = −xt/ρ if ρ > 0. Then we

get (Qx)s = ρ , (Qx)t = 0.

Now it is perfectly clear that if x is an arbitrary nonzero vector in Rn, then sequen-

tially choosing the angles ϕn, ϕn−1, . . . , ϕ2, we can construct the Givens rotations

Q1,n(ϕn), Q1,n−1(ϕn−1), . . . , Q1,2(ϕ2) such that Qx = |x| i1, where

Q = Q1,2(ϕ2) · · ·Q1,n−1(ϕn−1)Q1,n(ϕn).

Thus, using an orthogonal matrix, we can transform any nonzero vector into a vector

whose direction coincides with the direction of the vector i1 of the natural basis.

Let x, y be two arbitrary nonzero vectors in Rn. As we have just shown, there

exist orthogonal matrices Qx and Qy such that Qxx = |x|i1, Qyy = |y|i1. Therefore,

Qx = (|x|/|y|)y, where Q = QT
y Qx, i.e., for any pair of nonzero vectors there exists

an orthogonal matrix that transforms the first vector into a vector whose direction

coincides with the direction of the second vector.

2. Householder1 transformations. Let w = {wi}n
i=1 be an arbitrarily chosen in Rn

vector with |w|= 1. A matrix

R = I −2wwT

is called a Householder transformation (or reflection). We explain that the vector w

is treated here as a column vector, hence, R = {δi j −2wiw j}n
i, j=1.

The matrix R is symmetric. Let us show that this matrix is orthogonal. Indeed,

RT R = R2 = I −4wwT +4wwT wwT = I

because wT w = |w|2 = 1. Note further that

Rw = w−2wwT w =−w, Rz = z−2wwT z = z, (4.169)

if wT z = (w,z) = 0, i.e., the vectors w are z orthogonal.2

Now let x be an arbitrary vector. By theorem 3.13, p. 86, it can be uniquely

represented in the form x=αw+z, where α is a real number, z is a vector orthogonal

to w. Using equalities (4.169), we see that Rx =−αw+ z. We can say therefore that

the matrix R carries out a specular reflection of the vector x with respect to the

(n−1)-dimensional hyperplane that is orthogonal to the vector w. This property of

the matrix R lets call her the Householder reflection.

1 Alston Scott Householder (1904–1993) was an American mathematisian.
2 With respect to the standard inner product on the space Rn.

4.4 Operators on Euclidean Spaces 153

Consider the following problem. A nonzero vector a and an unit vector e are

given. It is necessary to construct a Householder reflection R such that Ra = µe,

where µ is a number (clearly, the equality |µ |= |a| is true, since R is orthogonal).

It is easy to see (make a drawing!) that the solution of this problem is the House-

holder reflection defined by the vector

w =
a−|a|e
|a−|a|e| (4.170)

or by the vector w = (a+ |a|e)/|a+ |a|e|. For minimization of effects of the round-

ing errors in numerical calculations we should take the vector w that has the bigger

denominator.

Useful to note that if a is an arbitrary nonzero vector, then the Householder trans-

formation R can be constructed such that for any vector x ∈Rn the following condi-

tion holds:

(a,Rx) = |a|xk, (4.171)

were k is a given integer number lying in the range from 1 to n and xk is the k-

th component of the vector x. Evidently, to do this we need to choose e = ik in

formula (4.170).

Chapter 5

Canonical Forms and Factorizations

In this chapter we detailed explore the problem of reducing the matrix of an operator

to a simple form due to the choice of special bases in finite-dimensional spaces. The

singular value decomposition of an operator is constructed. The Jordan canonical

form of the matrix of a finite-dimensional operator is obtained. The special section

is devoted to study of the so-called matrix pencils. We obtain their canonical forms

and describe applications to investigation of the structure of solutions of systems of

ordinary linear differential equations.

5.1 The Singular Value Decomposition

5.1.1 Singular Values and Singular Vectors of an Operator

In this section we show that for any linear operator A acting from a finite-dimensional

unitary space Xn into a finite-dimensional unitary space Ym there exist orthonormal

bases {ek}n
k=1 ⊂ Xn and {qk}m

k=1 ⊂ Ym such that

Aek =

{
σkqk, k ≤ r,

0 , k > r,
(5.1)

where σk > 0, k = 1,2, . . . ,r. The numbers σ1, σ2, . . . , σr are called the singular

values of the operator A. Sometimes it is convenient to include min(m,n)− r zeros

in the set of singular values.

Relationships (5.1) show that the numbers σ1, σ2, . . . , σr form the main diago-

nal of the leading principal (basic) minor of the matrix Aeq of the operator A with

respect to the bases {ek}n
k=1, {qk}m

k=1, and all other elements of the matrix Aeq are

equal to zero.

The vectors {ek}n
k=1, {qk}m

k=1 are called the singular vectors of the opera-

tor A. Let us construct them. The operator A∗A is self-adjoint and non-negative

155

156 5 Canonical Forms and Factorizations

semidefinite (see Property 2, p. 133), therefore (see Theorem 4.41, p. 135, and Sub-

sect. 4.3.11, p. 142) there exist the orthonormal eigenvectors {ek}n
k=1 of the opera-

tor A∗A and all its eigenvalues are non-negative. Thus,

A∗Aek = σ2
k ek, k = 1,2, . . . ,n. (5.2)

Here σ2
k ≥ 0 are the eigenvalues of the operator A∗A. Let us enumerate them as

follows: σ1 ≥ σ2 ≥ ·· · ≥ σr > 0, σr+1 = · · ·= σn = 0. Put zk =Aek for k = 1, . . . ,r
and note that (zp,zq) = (Aep,Aeq) = (A∗Aep,eq) = σ2

p(ep,eq). Hence,

(zp,zq) =

{
0, p 6= q,

σ2
p , p = q,

(5.3)

and the vectors

qk = σ−1
k Aek, k = 1,2, . . . ,r, (5.4)

form the orthonormal set in the space Ym. If r < m, then we join this set with

some vectors qk, k = r + 1, r + 2, . . . ,m, to complete the orthonormal basis of the

space Ym. Relationships (5.1) follow now immediately from the definition of the

vectors {ek}n
k=1 and {qk}m

k=1.

Using (5.1), we see that the vectors {qk}r
k=1 form the basis in Im(A). Hence

it follows from Theorem 4.29, p. 128, that the vectors {qk}m
k=r+1 form the basis

in Ker(A∗). Therefore,

A∗qk = 0 for k = r+1,r+2, . . . ,m. (5.5)

For k = 1,2, . . . ,r, using (5.4), (5.2), we get

A∗qk = σ−1
k A∗Aek = σkek. (5.6)

Combining (5.6), (5.4), and (5.5), we obtain

AA∗qk = σ2
k qk, k = 1,2, . . . ,r, AA∗qk = 0, k = r+1,r+2, . . . ,m. (5.7)

It follows from (5.2) and (5.7) that all the nonzero eigenvalues of the operators A∗A
and AA∗ coincide, i.e., the spectra of these operators can differ only by the multi-

plicity of the zero eigenvalue.

Moreover, the next equalities follow from the previous arguments:

rank(A) = rank(A∗A) = rank(AA∗),

def(A∗A) = n− rank(A), def(AA∗) = m− rank(A).

Clearly, the rank r of the operator A is equal to the number of all nonzero sin-

gular values of the operator A. This remark gives us a real opportunity to compute

the rank of the operator A: we have to solve the eigenvalue problem for the non-

negative semidefinite self-adjoint operator A∗A and calculate the number of all

5.1 The Singular Value Decomposition 157

nonzero eigenvalues. Precisely this method is typically used in practical computa-

tions of the rank. Evidently, the eigenvectors {ei}n
i=r+1 of the operator A∗A form

the orthonormal basis of the kernel of the operator A.

If the singular values and the singular vectors of the operator A are known, then

the pseudo-solution (see Subsect. 4.3.4, p. 129) of the equation

Ax = y (5.8)

can be easily constructed. Indeed, in Subsect. 4.3.4 we have proved that any solution

of the equation

A∗Ax =A∗y (5.9)

is the pseudo-solution of (5.8). Substituting in (5.9) the expansions x =
n

∑
k=1

ξkek

and y =
m

∑
k=1

ηkqk with respect to the bases {ek}n
k=1 ⊂ Xn and {qk}m

k=1 ⊂ Ym for x

and y and using after that (5.2), (5.5), (5.6), we get

r

∑
k=1

(σ2
k ξk −σkηk)ek = 0. (5.10)

Therefore, ξk = ηk/σk for k = 1,2, . . . ,r. Thus any vector

x =
r

∑
k=1

ηk

σk

ek +
n

∑
k=r+1

ξkek, (5.11)

where ξr+1, . . . , ξn are arbitrary numbers, is the pseudo-solution of equation (5.8).

If y ∈ Im(A), i.e., equation (5.8) is solvable, then formula (5.11) gives the gen-

eral solution (see Subsect. 4.1.11, p. 101) of equation (5.8). Indeed, in this case the

vector x0 =
r

∑
k=1

(ηk/σk)ek is the particular solution of equation (5.8), and
n

∑
k=r+1

ξkek

is the general solution of the corresponding homogeneous equation.

For each pseudo-solution x of equation (5.8) we have

|x|2 =
r

∑
k=1

|ηk|2
σ2

k

+
n

∑
k=r+1

|ξk|2.

If we take ξr+1, . . . , ξn = 0, then we get the pseudo-solution with the minimal

length. This pseudo-solution is normal. Obviously, it is orthogonal to the kernel

of the operator A.

The proof of the following four propositions is left to the reader.

Proposition 5.1. The absolute value of the determinant of any operator acting in a

finite-dimensional space is equal to the product of all its singular values.

Proposition 5.2. Let A ∈ Mm,n be an arbitrary rectangular matrix of rank r. Then

there exist the unitary matrices U and V (of order m and n, respectively) such that

158 5 Canonical Forms and Factorizations

A =UΣV, (5.12)

where

Σ =

(
S O1,2

O2,1 O2,2

)

is the block 2-by-2 matrix, S = diag(σ1,σ2, . . .σr), all elements of the diagonal S

are positive, all elements of the matrices O1,2, O2,1, O2,2 are equal to zero. For-

mula (5.12) determines the so-called singular value decomposition of the rectangu-

lar matrix.

Proposition 5.3. Let A ∈ Mm,n be an arbitrary matrix, and U,V be arbitrary uni-

tary matrices of order m and n, respectively. The singular values of the matrices A

and UAV coincide (therefore we say that the singular values of any matrix are in-

variant under unitary transformations).

Proposition 5.4. Let A ∈ Mm,n be an arbitrary matrix, σ1,σ2, . . . ,σr be its singular

values. Then

max
1≤k≤r

σk ≤
(

m,n

∑
i, j=1

|ai j|2
)1/2

. (5.13)

The singular values of an operator characterize the sensitivity of the solution of a

linear equation with respect to changes in its right-hand side. Let A be a nonsingular

operator acting in a finite-dimensional unitary space Xn. Consider two equations:

Ax = y (5.14)

and

Ax = ỹ. (5.15)

Since the operator A is nonsingular, these both equations are uniquely solvable.

Denote by x the solution of equation (5.14) and by x̃ the solution of equation (5.15).

The number δx = |x− x̃|/|x| is the relative change in the solution with respect to

the change in the right-hand side. Let us clarify the dependence of δx on the relative

change in the right-hand side δy = |y− ỹ|/|y|. If we represent the vectors y and ỹ in

the form of expansions y =
n

∑
k=1

ηkqk and ỹ =
n

∑
k=1

η̃kqk, then, using (5.1), we obtain

x =A−1y =
n

∑
k=1

ηk

σk

ek, x̃ =A−1ỹ =
n

∑
k=1

η̃k

σk

ek.

Here, as usual, σk, k = 1,2, . . . ,n, are the singular values, {ek}n
k=1 and {qk}m

k=1 are

the singular vectors of A. Therefore, using the inequalities σ1 ≥ σ2 ≥ ·· · ≥ σn > 0,

we get

5.1 The Singular Value Decomposition 159

δ 2
x =

n

∑
k=1

|ηk − η̃k|2
σ2

k

n

∑
k=1

|ηk|2
σ2

k

≤ σ2
1

σ2
n

n

∑
k=1

|ηk − η̃k|2

n

∑
k=1

|ηk|2
=

σ2
1

σ2
n

δ 2
y . (5.16)

Thus,

δx ≤
σ1

σn

δy. (5.17)

The number σ1/σn, which characterizes the stability of the solution of equa-

tion (5.14) with respect to changes in its right-hand side, is called the condition

number of the operator A and is denoted by cond(A). Evidently, cond(A) ≥ 1 for

any operator A.

The reader can easily check the following properties of the condition number.

1. There exist vectors y and ỹ such that the two sides in (5.17) are equal. It this sense

estimate (5.17) is unimprovable.

2. There exist operators whose condition numbers are equal to one (give some ex-

amples!).

5.1.2 The Polar Decomposition

Theorem 5.1. Let A : Xn → Ym be an arbitrary operator. There exist operators

U : Xn → Ym, S : Xn → Xn, and T : Ym → Ym such that

U∗U = I if n ≤ m, UU∗ = I if n ≥ m, (5.18)

the operators S , T are self-adjoint and non-negative semidefinite, and

A= US = T U . (5.19)

Proof. Let {ek}n
k=1, {qk}m

k=1 be the singular vectors of the operator A (which form

the orthonormal bases in the spaces Xn, Ym, see Subsect. 5.1.1). Let σ1, σ2, . . . , σr

be the singular values of A. If n ≤ m, we define the operator U by the relationships

Uek = qk, k = 1,2, . . . ,n. (5.20)

If n ≥ m, we put

Uek = qk, k = 1,2, . . . ,m, Uek = 0, k = m+1,m+2, . . . ,n. (5.21)

We define the operators S , T by the following equalities:

Sek = σkek, k = 1,2, . . . ,r, Sek = 0, k = r+1,r+2, . . . ,n,

T qk = σkqk, k = 1,2, . . . ,r, T qk = 0, k = r+1,r+2, . . . ,m.

160 5 Canonical Forms and Factorizations

The operators T and S are self-adjoint and non-negative semidefinite, since, as it

is easy to see, the numbers (Sx,x), (T y,y) are non-negative for all x ∈ Xn and for

all y ∈ Ym. Obviously,

USek =Aek, T Uek =Aek, k = 1,2, . . . ,n,

i.e., relationships (5.19) are true. By direct calculations we verify that the opera-

tor U∗ can be defined by the relationships

U∗qk = ek, k = 1,2, . . . ,m, if m ≤ n, (5.22)

U∗qk = ek, k = 1,2, . . . ,n, U∗qk = 0, k = n+1,n+2, . . . ,m, if m ≥ n. (5.23)

Clearly, equalities (5.18) follow from (5.20)–(5.23). ⊓⊔
Formulas (5.19) define the polar decomposition of the operator A.

Now let us dwell on the case when the operator A acts in the space Xn. Re-

lationships (5.18) show that in this case the operator U is unitary. It follows from

equalities (5.19) that any linear transformation of the finite-dimensional space Xn is

the result of the sequential execution of the unitary transformation, which does not

change the length of vectors, and the non-negative semidefinite self-adjoint trans-

formation, which stretches the space Xn in the n pairwise orthogonal directions.

It immediately follows from (5.19) that A∗A= S2, AA∗ = T 2. Since the oper-

ators S and T are self-adjoint and non-negative semidefinite, the last two equalities

show that S and T are uniquely determined by the operator A, namely (see Theo-

rem 4.43, p. 137),

S =
√
A∗A, T =

√
AA∗. (5.24)

If the operator A is nonsingular, then the operator A∗A is nonsingular. Hence the

operator S is also nonsingular. Therefore in this case the operator U =AS−1 is also

uniquely determined.

The next theorem readily follows from formulas (5.19), (5.24).

Theorem 5.2. The operator A is normal if and only if the operators T and S in

factorization (5.19) coincide, in other words, if and only if the operators U and S
commute.

Note that if the space Xn is real, then the polar decomposition holds true, but

the operator U in (5.19) is orthogonal, the operators T and S are symmetric and

non-negative semidefinite.

5.1.3 Basic Properties of the Pseudoinverse Operator

Let Xn, Ym be finite-dimensional unitary spaces, A : Xn → Ym be a linear oper-

ator, {ek}n
k=1 ⊂ Xn, {qk}m

k=1 ⊂ Ym be its singular vectors, σ1, σ1, . . . , σr be the

singular values of A, where r = rank(A), r ≤ min(m,n).

5.1 The Singular Value Decomposition 161

As we have seen in Sect. 5.1.1, the formula

x0 =
r

∑
k=1

ηk

σk

ek,

where ηk = (qk,y), k = 1,2, . . . ,m, are the coordinates of the vector y with respect

to the basis {qk}m
k=1, defines the normal pseudo-solution x0 of the equation Ax = y.

Thus the pseudoinverse of the operator A (see Subsect. 4.3.4, p. 130) can be pre-

sented in the form

A+y =
r

∑
k=1

(qk,y)

σk

ek. (5.25)

Here are the basic properties of the pseudoinverse operator:

1. (A∗)+ = (A+)∗,

2. (A+)+ =A,

3. (AA+)∗ =AA+, (AA+)2 =AA+,

4. (A+A)∗ =A+A, (A+A)2 =A+A,

5. AA+A=A,

6. A+AA+ =A+,

7. if rankA= n, then A+A= I.

We prove only the first and the third equalities. The reader can easily prove all

other properties by himself.

1. Let x =
n

∑
k=1

ξkek, y =
m

∑
k=1

ηkqk. Solving the equation AA∗y = Ax in the same

way as (5.9), we see that (A∗)+x =
r

∑
k=1

(ξk/σk)qk. By elementary calculations, we

get ((A∗)+x,y) =
r

∑
k=1

ξkη̄k/σk. Using (5.25), we obtain (x,A+y) =
r

∑
k=1

ξkη̄k/σk.

This means that (A∗)+ = (A+)∗.

3. It follows from (5.25) that A+qk = σ−1
k ek for k = 1,2, . . . ,r and A+qk = 0

for k = r+ 1,r+ 2, . . . ,m. Hence, AA+qk = qk for k = 1,2, . . . ,r and AA+qk = 0

for k = r+1,r+2, . . . ,m. Therefore, (AA+)2=AA+. By elementary calculations,

we get (AA+y,y) =
r

∑
k=1

|ηk|2≥0 for each y ∈ Ym. Thus we obtain (AA+)∗ =AA+

(see Lemma 4.5, p. 132).

It follows from Properties 3 and 4 that the operators AA+ and A+A are the

operators of the orthogonal projections (see Theorem 4.35, p. 132).

5.1.4 Elements of the Theory of Majorization

A real-valued function f of a real variable is called convex on an interval (a,b) if for

any points x1, x2 in this interval and for any t ∈ [0,1] the following inequality holds:

162 5 Canonical Forms and Factorizations

f (tx1 +(1− t)x2)≤ t f (x1)+(1− t) f (x2). (5.26)

Geometrically, this means that any point on the graph of the function f on the closed

interval [x1,x2] lies below the chord subtending the points (x1, f (x1)) and (x2, f (x2))
or on this chord.

Theorem 5.3 (Jensen’s1 inequality). If a function f is convex on an interval (a,b),
then for any points x1, x2, . . . , xm that belong to (a,b) and for any nonnegative

numbers α1, α2, . . . , αm such that α1+α2+ · · ·+αm = 1 the next inequality is true:

f

(
m

∑
i=1

αixi

)
≤

m

∑
i=1

αi f (xi). (5.27)

Proof. We easily get (5.27) by induction over m using the obvious identities:

m

∑
i=1

αixi = αmxm +(1−αm)
m−1

∑
i=1

αi

(1−αm)
xi,

m−1

∑
i=1

αi

(1−αm)
= 1. ⊓⊔

Theorem 5.4. Suppose that a function f is differentiable on an interval (a,b) and

the derivative of f is nondecreasing on (a,b). Then the function f is convex on the

interval (a,b).

Proof. It is enough to prove that for any x1,x2 ∈ (a,b), x1 < x2, the function

ϕ(t) = f ((1− t)x1 + tx2)− (1− t) f (x1)− t f (x2)

is nonpositive for all t ∈ [0,1]. It is easy to see that ϕ(0) = 0, ϕ(1) = 0, and ϕ ′(t) is

nondecreasing on the segment [0,1]. Using the Lagrange finite-increments formula,

we see that ϕ(t) = ϕ(t)−ϕ(0) = tϕ ′(t1), where t1 is a point in the interval (0, t).
Similarly, ϕ(t) = (t − 1)ϕ ′(t2), were t2 is a point in the interval (t,1). Hence it is

evident that ϕ(t) = t(t −1)(ϕ ′(t2)−ϕ ′(t1))≤ 0. ⊓⊔

Below we will use the following definitions. A real matrix is called nonnegative

if all its elements are nonnegative. A nonnegative square matrix is called stochastic

if it is nonnegative and the sum of all the elements of each its row is equal to one.

A stochastic matrix is called doubly stochastic if the sum of all the elements of each

its column is also equal to one.

Theorem 5.5. Let x,y ∈Rn, x1 ≥ x2 ≥ ·· · ≥ xn, y1 ≥ y2 ≥ ·· · ≥ yn, and x ≺ y.2 Then

there exists a doubly stochastic matrix S such that x = Sy.

Proof. We prove the theorem by induction over n. For n = 1 the theorem is trivial.

Now we assume that the assertion is true for all vectors of length n− 1 and prove

that it holds true and for all vectors of length n. We easily check that if vectors x

1 Johan Willem Ludwig Valdemar Jensen (1859–1925) was a Danish mathematician and engineer.
2 We use the notation defined on p. 145.

5.1 The Singular Value Decomposition 163

and y satisfy all conditions of the theorem, then x1 ≥ yn.1 Therefore there exist an

integer k, 1 ≤ k ≤ n−1, and a real number τ ∈ [0,1] such that

x1 = τyk +(1− τ)yk+1. (5.28)

Let us consider the two following vectors of length n−1:

x̃ = (x2,x3, . . . ,xn) and ỹ = (y1,y2, . . . ,yk−1,yk + yk+1 − x1,yk+2, . . . ,yn).

It is easy to see that the components of these vectors are monotonically nonincreas-

ing and x̃ ≺ ỹ. Therefore, by the induction hypothesis, there exists a doubly stochas-

tic matrix S̃ of order n−1 such that

x̃ = S̃ỹ. (5.29)

Writing (5.28), (5.29) in the form of the one matrix equality, we get x = Sy, where S

is the doubly stochastic matrix. ⊓⊔

Theorem 5.6. Let x,y∈Rn, x1 ≥ x2 ≥ ·· · ≥ xn, y1 ≥ y2 ≥ ·· · ≥ yn, and x ≺w y. Let f

be a nondecreasing and convex on the whole real axis function. Then

n

∑
i=1

f (xi)≤
n

∑
i=1

f (yi). (5.30)

Proof. By assumption, α =
n

∑
i=1

yi−
n

∑
i=1

xi ≥ 0. We take numbers xn+1, yn+1 such that

the following conditions hold: xn+1 ≤ xn, yn+1 ≤ yn, and xn+1 − yn+1 = α . Then

for the vectors (x1,x2, . . . ,xn+1) and (y1,y2, . . . ,yn+1) all conditions of Theorem 5.5

hold, hence there exists a doubly stochastic matrix S = {si j}n+1
i, j=1 such that

xi =
n+1

∑
j=1

si jy j, i = 1,2 . . . ,n+1.

Whence, using Jensen’s inequality, we get

f (xi)≤
n+1

∑
j=1

si j f (y j), i = 1,2 . . . ,n+1. (5.31)

Summing all inequalities (5.31), we see that

n+1

∑
i=1

f (xi)≤
n+1

∑
j=1

n+1

∑
i=1

si j f (y j) =
n+1

∑
i=1

f (yi). (5.32)

By construction, xn+1 ≥ yn+1. By assumption, the function f is nondecreasing.

Therefore, f (xn+1)≥ f (yn+1). Thus it follows from (5.32) that (5.30) is true. ⊓⊔
1 Otherwise, equality (4.157), p. 145, is impossible.

164 5 Canonical Forms and Factorizations

Remark 5.1. Obviously, if all conditions of Theorem 5.6 hold and additionally x≺ y,

then the proof is simpler. In this case we can omit the condition that f is a nonde-

creasing function.

Corollary 5.1. Suppose that x,y ∈ Rn, x1 ≥ x2,≥ ·· · ≥ xn, y1 ≥ y2,≥ ·· · ≥ yn,

and x ≺w y. Additionally we assume that all components of the vectors x and y

are nonnegative. Then for any p > 1 the following inequalitiy holds:

n

∑
i=1

x
p
i ≤

n

∑
i=1

y
p
i . (5.33)

Proof. It follows immediately from Theorem 5.4 that for any p > 1 the func-

tion f (t) = t p is convex on the positive semiaxis. Extending f (t) to the whole real

axis such that f (t) = 0 if t < 0, we get (5.33). ⊓⊔

Corollary 5.2. Suppose that

x1 ≥ x2 ≥ ·· · ≥ xn ≥ 0,

y1 ≥ y2 ≥ ·· · ≥ yn ≥ 0,

and
k

∏
i=1

xi ≤
k

∏
i=1

yi, k = 1,2, . . . ,n. (5.34)

Then

x ≺w y. (5.35)

Proof. If x = 0, then the assertion is obvious. Let xp+1 = xp+2 = · · · = xn = 0,

where p ≥ 1, and let all other components of the vector x be positive. Then, us-

ing conditions (5.34), we see that the first q, p ≤ q ≤ n, components of the vector y

are also positive (and all other components are zeros). In this case conditions (5.34)

have the form
k

∏
i=1

xi ≤
k

∏
i=1

yi, k = 1,2, . . . ,q. (5.36)

It is easy to see that there exists a positive δ such that for all ε ∈ (0,δ) and for

x̃i =

{
xi, i = 1,2, . . . , p,

ε , i = p+1, p+2, . . . ,q,

as a consequence of (5.36) we have

k

∏
i=1

x̃i ≤
k

∏
i=1

yi, k = 1,2, . . . ,q. (5.37)

Finding the logarithm of all inequalities (5.37), we obtain

5.1 The Singular Value Decomposition 165

k

∑
i=1

log x̃i ≤
k

∑
i=1

log yi, k = 1,2, . . . ,q. (5.38)

If we put now f (t) = et , t ∈ R, then, using Theorem 5.6, we get

k

∑
i=1

x̃i ≤
k

∑
i=1

yi, k = 1,2, . . . ,q. (5.39)

Taking the limit as δ → 0 in these inequalities, we obtain (5.35). ⊓⊔

5.1.5 Some Estimates of Eigenvalues and Singular Values

It readily follows from the definition, that the singular values of any matrix A are

calculated by the formulas σk =
√

λk(A∗A), where λk(A
∗A), k = 1,2, . . . ,r, are the

nonzero eigenvalues of the matrix A∗A. The next lemma gives another (sometimes

more useful) representation of the singular values using the eigenvalues of a Hermi-

tian matrix.

Lemma 5.1. Let A ∈ Mm,n be an arbitrary matrix, σ1, σ2, . . . , σr be its singular

values, and {ek}n
k=1 ⊂Cn, {qk}m

k=1 ⊂Cm be its singular vectors (see Subsect. 5.1.1,

p. 155). Let Ã be the Hermitian matrix of order m+n of the form

Ã =

(
0 A

A∗ 0

)
.

Then the vectors uk =(qk,ek)∈Cm+n, k= 1,2, . . . ,r; ur+k =(qk,−ek), k= 1,2, . . . ,r;

u2r+k = (qk,0), k = r+1,r+2, . . . ,m; ur+m+k = (0,ek), k = r+1,r+2, . . . ,n, form

the complete orthogonal set of eigenvectors of Ã. The corresponding eigenvalues

are ±σ1, ±σ2, . . . , ±σr, and m+n−2r zeros.

The reader can prove this lemma by the multiplication of the vectors uk by the

matrix Ã for k = 1,2, . . . ,m+n.

Using Lemma 5.1, we can easily prove, for example, a theorem, which is analo-

gous to Theorem 4.54, p. 146. Let us introduce the necessary notation. Let A ∈ Mm,n

be an arbitrary matrix, and σ1, σ2, . . . , σr be its singular values. We denote by σ(A)
the vector of length min(m,n) that consists of the singular values of the matrix A

completed by zeros if r < min(m,n) and ordered by nonincreasing of all its ele-

ments.

Theorem 5.7. Let A and B be arbitrary m-by-n matrices. Then

σ(A+B)≺w (σ(A)+σ(B)).

The next theorem is useful for the estimation of the singular values of the product

of matrices.

166 5 Canonical Forms and Factorizations

Theorem 5.8. Let A and B be arbitrary square matrices of order n. Then

σi(AB)≤ σ1(A)σi(B), i = 1,2, . . . ,n. (5.40)

Proof. Let M = σ2
1 (A)I − A∗A. Obviously, the matrix M is Hermitian and non-

negative semidefinite, and σ2
1 (A)B

∗B = B∗(A∗A+M)B = (AB)∗(AB)+B∗MB. The

matrix B∗MB is also Hermitian and non-negative semidefinite, therefore inequali-

ties (5.40) are true. ⊓⊔

The next corollary is obvious but useful.

Corollary 5.3. For any k = 1,2, . . . ,n and p > 1 the following inequalities hold:

(
k

∑
i=1

σ p
i (AB)

)1/p

≤
(

k

∑
i=1

σ p
i (A)

)1/p(
k

∑
i=1

σ p
i (B)

)1/p

. (5.41)

Theorem 5.9. Let A ∈ Mm,n be given, and let Ar denote a submatrix of A obtained

by deleting a total of r columns and (or) rows from A. Then

σk+r(A)≤ σk(Ar)≤ σk(A), k = 1,2, . . . ,min(m,n), (5.42)

where for X ∈ Mp,q we set σ j(X) = 0 if j > min(p,q).

Proof. It suffices to note that if columns from the matrix A are deleted (replaced by

zeros), then the nonzero rows and columns of the matrix A∗
r Ar form its submatrix

corresponding to the principal minor of the matrix A∗A of the corresponding order.1

After that, to conclude the proof, we use Theorem 4.50, p. 144. ⊓⊔

Lemma 5.2. Let A ∈ Mm,n, Vk ∈ Mm,k, Wk ∈ Mn,k, k ≤ min(m,n). We assume that the

columns of the matrices Vk, Wk are orthonormal with respect to the standard inner

products on the spaces Cm, Cn, respectively. Then

σi(V
∗
k AWk)≤ σi(A), i = 1,2, . . . ,k. (5.43)

Proof. Let matrices V = (Vk,Vm−k) ∈ Mm, W = (Wk,Wn−k) ∈ Mn be unitary. It is

easy to see that the matrix V∗
k AWk is the leading principal submatrix of order k of

the matrix V∗AW . Therefore, using Theorem 5.9 and the fact that the singular values

of any matrix are invariant under its unitary transformations, we get the following

estimates:

σi(V
∗
k AWk)≤ σi(V

∗AW) = σi(A), i = 1,2, . . . ,k. ⊓⊔

Theorem 5.10 (Weyl2). Let A ∈ Mn have singular values σ1(A)≥ . . .≥ σn(A)≥ 0

and eigenvalues λ1(A), . . . ,λn(A) ordered so that |λ1(A)| ≥ . . .≥ |λn(A)|. Then

1 Similarly, if rows from the matrix A are deleted, then we get the submatrix of AA∗ of the same

order.
2 Hermann Klaus Hugo Weyl (1885–1955) was a German mathematician.

5.1 The Singular Value Decomposition 167

|λ1(A)λ2(A) · · ·λk(A)| ≤ σ1(A)σ2(A) · · ·σk(A), k = 1,2, . . . ,n, (5.44)

with equality for k = n.

Proof. By Schur Theorem 4.23, p. 120, there exists a unitary matrix U such

that U∗AU = T , where T is upper triangular and the numbers λ1(A),λ2(A), . . . ,λn(A)
form the main diagonal of T . Let Uk ∈ Mn,k be the matrix that consists of the first k

columns of U . By elementary calculations, we get

U∗AU = (Uk,Un−k)
∗A(Uk,Un−k) =

(
U∗

k AUk T12

T21 T22

)
= T,

where U∗
k AUk is the upper triangular matrix, and λ1(A),λ2(A), . . . ,λk(A) form its

main diagonal. Evidently,

|λ1(A)λ2(A) · · ·λk(A)|= |det(U∗
k AUk)|

= σ1(U
∗
k AUk)σ2(U

∗
k AUk) · · ·σk(U

∗
k AUk).

Hence (5.44) follows from Lemma 5.2. Equality in (5.44) for k = n holds, since,

as we know, for any square matrix A of order n the following equalities are true:

det(A) = λ1(A)λ2(A) · · ·λn(A), |det(A)|= σ1(A)σ2(A) · · ·σn(A). ⊓⊔

Now it follows from Corollary 5.2, p. 164, that for any matrix A ∈ Mn we have

k

∑
i=1

|λi(A)| ≤
k

∑
i=1

σi(A), k = 1,2 . . . ,n. (5.45)

Theorem 5.11. Let A ∈ Mm,p, B ∈ Mp,n be arbitrary matrices, q = min(m,n, p).
Then

k

∏
i=1

σi(AB)≤
k

∏
i=1

σi(A)σi(B), k = 1,2, . . . ,q. (5.46)

If m = n = p, then equality holds in (5.46) for k = n.

Proof. Let AB =UDV be the singular value decomposition of the product AB. Then

D =U∗ABV∗. Denote by Uk, V∗
k the matrices consisting of the first k columns of the

matrices U , V∗, respectively. Then U∗
k ABV∗

k = diag(σ1(AB),σ2(AB), . . . ,σk(AB))
because it is the leading principal submatrix of order k of the matrix D. By as-

sumption, p ≥ k. Therefore, by Theorem 5.1, the exists the polar decomposition

BV∗
k = XkQk, where X∗

k Xk = Ik, and Qk ∈ Mk is the non-negative semidefinite Her-

mitian matrix, Ik is the identity matrix of order k. By elementary calculations, we

get the equality Q2
k = (BV∗

k)
∗BV∗

k . Therefore, by Lemma 5.2, we obtain

det(Q2
k) = det(VkB∗BV∗

k)≤ σ1(B
∗B)σ2(B

∗B) · · ·σk(B
∗B) = σ2

1 (B)σ
2
2 (B) · · ·σ2

k (B).

Using Lemma 5.2 one more time, we see that

168 5 Canonical Forms and Factorizations

σ1(AB)σ2(AB) · · ·σk(AB) = |det(U∗
k ABV∗

k)|
= |det(U∗

k AXkQk)|= |det(U∗
k AXk)det(Qk)|

≤ σ1(A)σ2(A) · · ·σk(A)σ1(B)σ2(B) · · ·σk(B).

Finally, if m = n = p, then

σ1(AB)σ2(AB) · · ·σn(AB) = |det(AB)|
= |det(A)||det(B)|= σ1(A)σ2(A) · · ·σn(A)σ1(B)σ2(B) · · ·σn(B). ⊓⊔

Using Corollary 5.2, p. 164, we see that under the assumptions of Theorem 5.11

the following inequalities hold:

k

∑
i=1

σi(AB)≤
k

∑
i=1

σi(A)σi(B), k = 1,2, . . . ,n. (5.47)

Sums of singular values of a matrix have useful variational characterizations. Let

us introduce the following concept, which we will use below in the formulations of

corresponding results. A matrix C ∈ Mm,n is called a partial isometry of rank k if it

has rank k and all its (nonzero) singular values are equal to one. If m = n = k, we

get the set of all unitary matrices of order n.

Theorem 5.12. Let A ∈ Mm,n, q = min(m,n). Then for each k = 1,2, . . . ,q the fol-

lowing equalities are true:

k

∑
i=1

σi(A) = max
X ,Y

|trX∗AY |, (5.48)

k

∑
i=1

σi(A) = max
C

|trAC|. (5.49)

In the first case the maximum is taken over all matrices

X ∈ Mm,k, Y ∈ Mn,k such that X∗X = I, Y∗Y = I. (5.50)

In the second case the maximum is taken over all matrices C ∈ Mn,m that are partial

isometries of rank k.

Proof. First we show that formulations (5.48) and (5.49) are equivalent. Using for-

mula (4.81), p. 118, we get trX∗AY = trAY X∗ = trAC, where C = Y X∗ ∈ Mn,m,

therefore, C∗C = XX∗. As we have seen on p. 156, all the nonzero eigenvalues of

the self-adjoint matrices XX∗ and X∗X coincide. Hence all their singular values co-

incide too, but X∗X is the identity matrix of order k. Thus the matrix C has exactly k

singular values and all of them are equal to one, i.e., C is the partial isometry of

rank k. Conversely, if C ∈ Mn,m is a partial isometry of rank k, then, by definition,

the following singular value decomposition of C holds:

5.2 The Jordan Canonical Form 169

C = (Yk,Yn−k)

(
Ik 0

0 0

)(
X∗

k

X∗
m−k

)
, (5.51)

where Ik is the identity matrix of order k, the matrices

Y = (Yk,Yn−k) ∈ Mn, X∗ =

(
X∗

k

X∗
m−k

)
∈ Mm

are unitary. Using equality (5.51), by elementary calculations, we see that C =YkX∗
k ,

and the matrices Yk,X
∗
k satisfy conditions (5.50). Thus the equivalence of formula-

tions (5.48) and (5.49) is established.

Now successively using (5.45) and (5.47), we can write that if C is an arbitrary

partial isometry of rank k, then

|tr(AC)| ≤
m

∑
i=1

|λi(AC)| ≤
m

∑
i=1

σi(AC)≤
q

∑
i=1

σi(A)σi(C) =
k

∑
i=1

σi(A). (5.52)

To conclude the proof, it is enough to find a partial isometry C of rank k such that

inequality (5.52) transforms to the equality. Let A = UDV be the singular value

decomposition of the matrix A. Put C =V∗PU∗, where

P =

(
Ik 0

0 0

)
∈ Mn,m.

By construction, C ∈ Mn,m and it is the partial isometry of rank k. Moreover,

AC =UDVV∗PU∗ =UDPU∗,

therefore, tr(AC) = tr(DP), and, using elementary calculations, we obtain the equal-

ity tr(DP) =
k

∑
i=1

σi(A). ⊓⊔

5.2 The Jordan Canonical Form

In this section we show that for any linear operator acting in the complex finite-

dimensional space Xn there exists a basis such that the matrix of the operator with

respect to this basis has the very simple form. It is bidiagonal. All elements of the

main diagonal of this matrix form the set of all eigenvalues of the operator. Each

element of the diagonal above the main diagonal is either one or zero. The matrix of

this form is called the Jordan matrix.1 To obtain the Jordan canonical form of the

operator it is necessary to take its matrix in an arbitrarily chosen basis and after that

to reduce this matrix to the Jordan canonical form by a similarity transformation.

This plan is realized in this section.

1 Marie Ennemond Camille Jordan (1838–1922) was a French mathematician.

170 5 Canonical Forms and Factorizations

The question naturally arises: is it possible to reduce any matrix to the diagonal

form by a similarity transformation? The simple examples show that it is impossible.

For instance, if we require that the matrix SAS−1 is diagonal, where

A =

(
0 1

0 0

)

and S is a nonsingular matrix, then we get the contradictory equalities.

5.2.1 Existence and Uniqueness of the Jordan Canonical Form

We begin with the definition. A Jordan block Jk(λ) is a k-by-k upper triangular

matrix of the form

Jk(λ) =




λ 1 0

λ 1
. . .

. . .

λ 1

0 λ



. (5.53)

We explain that all k elements of the main diagonal of the matrix Jk(λ) are equal

to λ , all k− 1 elements of the diagonal above the main diagonal are equal to one,

and all other entries of this matrix are zero.

It is useful to note that if the matrix of the operator A : Xk → Xk with respect to a

basis {ei}k
i=1 is the Jordan block Jk(0), then, evidently, the vectors of this basis are

connected to each other by the following relationships:

Ae1 = 0, Ae2 = e1, . . . , Aek = ek−1.

If we denote the vector ek by f , then we see that the basis {ei}k
i=1 consists of the

vectors f , A f , A2 f , . . . , Ak−1 f ,1 and moreover, Ak f = 0.

Let us formulate now the main result of this section.

Theorem 5.13. Let A be a given complex matrix of order n. There is a nonsingular

matrix S such that

S−1AS = J, (5.54)

where

J =




Jn1
(λ1) 0

Jn2
(λ2)

. . .

0 Jnk
(λk)


 (5.55)

1 Which are listed in the reverse order.

5.2 The Jordan Canonical Form 171

and n1+n2+ · · ·+nk = n. The numbers λi, i= 1,2, . . . ,k, (which are not necessarily

distinct) form the set of all characteristic values of the matrix A (according to their

multiplicities).

Matrix (5.55) is called the Jordan canonical form of the matrix A. Obviously,

Theorem 5.13 is equivalent to the following statement. For each operator A acting

in a finite-dimensional complex space there exists a basis En such that the matrix of

the operator A with respect to this basis has form (5.55), i.e.,

AEn = EnJ. (5.56)

The basis En is called the Jordan basis.

The easiest proof of the existence of the Jordan basis is for the nilpotent operator.

Using Theorem 4.21, p. 119, and the Schur Theorem, p. 120, we see that the operator

is nilpotent if and only if there exists a basis such that the matrix of the operator with

respect to this basis is upper triangular and all elements of the main diagonal of this

matrix are zero.

Theorem 5.14. Let A : Xn → Xn be a nilpotent operator acting in a complex vector

space Xn. Then there exists a basis in the space Xn such that the matrix of the

operator A with respect to this basis has the following Jordan canonical form:




Jn1
(0) 0

Jn2
(0)

. . .

0 Jnm(0)


 . (5.57)

Here n1 +n2 + · · ·+nm = n.

Proof. Taking into account the remark in the last paragraph before Theorem 5.13, it

is easy to see that the assertion is equivalent to the following one: for every nilpotent

operator A : Xn → Xn there exists vectors f1, f2, . . . fm such that the vectors

f1, A f1, A2 f1, . . . , An1−1 f1, f2, A f2, A2 f2, . . . , An2−1 f2, . . . ,

fm, A fm, A2 fm, . . . , Anm−1 fm (5.58)

form the basis in the space Xn, and

An1 f1 =An2 f2 = · · ·=Anm fm = 0. (5.59)

We prove the existence of the required basis by induction over the dimension of

the space. In the case of the nilpotent operator acting in the one-dimensional space

the assertion is obviously true. Now we suppose that the assertion is true for each

space whose dimension is less than n, and prove that then the statement is true for

the n-dimensional space.

The operator A is nilpotent, therefore, def(A) ≥ 1, hence, rank(A) < n (see

equality (4.23), p. 96). Evidently, the subspace Im(A) is invariant under A. Whence,

172 5 Canonical Forms and Factorizations

by the induction hypothesis, we conclude that there exist vectors u1, u2, . . . , uk such

that the vectors

u1, Au1, A2u1, . . . , Ap1−1u1, u2, Au2, A2u2, . . . , Ap2−1u2, . . . ,

uk, Auk, A2uk, . . . , Apk−1uk (5.60)

form the basis in the subspace Im(A), and

Ap1 u1 =Ap2u2 = · · ·=Apk uk = 0. (5.61)

For i = 1,2, . . . ,k the vectors ui belong to Im(A), hence there exist vectors vi ∈ Xn

such that

ui =Avi. (5.62)

The vectors

Api−1ui, i = 1,2, . . . ,k, (5.63)

belong to the basis (5.60), hence they are linearly independent. Relationships (5.61)

show that these vectors belong to Ker(A). Thus we can join vectors (5.63) with

some vectors w1, w2, . . . , wl to complete the basis of the subspace Ker(A).
If we prove now that the vectors

v1, Av1, . . . , Ap1 v1, v2, Av2, . . . , Ap2 v2, . . . , vk, Avk, . . . , Apk vk,

w1, w2, . . . , wl (5.64)

form the basis in the space Xn, then, obviously, this basis is the required Jordan

basis of the operator A. Set (5.64) consists of n vectors. Indeed, this set consists of

p1 + · · ·+ pk + k+ l elements, moreover, p1 + · · ·+ pk = rank(A), k+ l = def(A),
but rank(A)+def(A) = n for any operator A. Further, put

α1,0v1 +α1,1Av1 + · · ·+α1,p1
Ap1 v1 +α2,0v2 +α2,1Av2 + · · ·+α2,p2

Ap2 v2

+ · · ·+αk,0vk +αk,1Avk + · · ·+αk,pk
Apk vk

+β1w1 +β2w2 + · · ·+βlwl = 0. (5.65)

Acting on both sides of the last equality by the operator A, using relationships (5.61),

(5.62), and also using the fact that w1, w2, . . . , wl ∈ Ker(A), we get

α1,0u1 +α1,1Au1 + · · ·+α1,p1−1Ap1−1u1

+α2,0u2 +α2,1Au2 + · · ·+α2,p2−1Ap2−1u2

+ · · ·+αk,0uk +αk,1Auk + · · ·+αk,pk−1Apk−1uk = 0. (5.66)

Vectors (5.60) are linearly independent, therefore, all the coefficients in the linear

combination on the left hand side of (5.66) are zero, and (5.65) has the form

5.2 The Jordan Canonical Form 173

α1,p1
Ap1v1 +α2,p2

Ap2 v2 + · · ·+αk,pk
Apk vk

+β1w1 +β2w2 + · · ·+βlwl = 0. (5.67)

The left hand side of (5.67) is the linear combination of the vectors of the basis of the

subspace Ker(A). Therefore all the coefficients in this linear combination are equal

to zero. Thus we have proved that all the coefficients in the linear combination on

the left hand side of equality (5.65) can be only zeros, i.e., the set of vectors (5.64)

is linearly independent and consists of n vectors, and, hence, it is the basis of the

space Xn. ⊓⊔
The next theorem is an immediate generalization of Theorem 5.14.

Theorem 5.15. Suppose that the operator A acting in the complex space Xn has the

form A=A0+λ I, where A0 is a nilpotent operator, λ is an arbitrary number. Then

the matrix of the operator A with respect to the Jordan basis of the operator A0 has

the following Jordan canonical form:




Jn1
(λ) 0

Jn2
(λ)

. . .

0 Jnm(λ)


 . (5.68)

This statement immediately follows from the facts that the linear operations with

their matrices correspond to the linear operations with operators and that the matrix

of the identity operator with respect to any basis is the identity matrix.

Proof of Theorem 5.13. Representation (5.54) is the result of the sequential real-

ization of the following steps.

1. Using the Schur Theorem, p. 120, we construct the upper triangular matrix T

that is unitarily similar to the matrix A.

2. Using Theorem 4.24, p. 122, we reduce the matrix T to the block diagonal

form. Each block here is an upper triangular matrix. All diagonal elements of this

matrix equal to each other and coincide with a characteristic value of the matrix A.

3. Using Theorems 5.14 and 5.15, we independently reduce each block con-

structed on the second step to the form (5.68). ⊓⊔
The next lemma is useful for the investigation of the uniqueness of the Jordan

canonical form.

Lemma 5.3. The following relationships are true for the Jordan block Jk(0) :

(Jk(0))
k = 0, (5.69)

(Jk(0))
j 6= 0, j = 1,2, . . . ,k−1. (5.70)

Proof. Relationship (5.69) immediately follows from Theorem 4.21, p. 119, and

Corollary 4.3, p. 119. Relationships (5.70) are easily verified by direct calculations.

It is important to note that while the order of the matrix Jk(0) sequentially increases,

the nonzero columns of Jk(0) are displaced to the right. ⊓⊔

174 5 Canonical Forms and Factorizations

Theorem 5.16. Jordan matrix (5.55) is uniquely determined by the matrix A (up to

permutations of the diagonal Jordan blocks).

Proof. Two possible Jordan canonical forms of the matrix A are similar to the ma-

trix A. Therefore they have the same set of the characteristic values (according to

their multiplicities). Hence, to complete the proof, it is enough to show the coin-

cidence of the orders of the Jordan blocks that correspond to a given characteristic

value of the matrix A.

This problem can be formulated as follows: prove the coincidence of the orders

of the Jordan blocks of two possible Jordan canonical forms of the matrix that has

a unique characteristic value. Moreover, arguing as in the proof of Theorem 5.15,

it is easy to see that it is sufficient to consider the matrix A0 with the unique zero

characteristic value.

Thus, let

J(0) =




Jn1
(0) 0

. . .

0 Jnk
(0)


 , J̃(0) =




Jm1
(0) 0

. . .

0 Jmr(0)




be two possible Jordan canonical forms of the matrix A0. We assume that the Jor-

dan blocks are sorted according to the nondecreasing of their orders (this may be

achieved by the corresponding numeration of the Jordan bases) such that

n1 ≥ n2 ≥ ·· · ≥ nk, n1 +n2 + · · ·+nk = n,

m1 ≥ m2 ≥ ·· · ≥ mr, m1 +m2 + · · ·+mr = n,

where n is the order of the matrix A0. Suppose that the first l−1, l ≥ 1, Jordan blocks

of the matrices J(0) and J̃(0) coincide. By assumption, there exists a nonsingular

matrix S such that

J(0) = SJ̃(0)S−1. (5.71)

As a result of the assumption on the coincidence of the first Jordan blocks the ma-

trix S has the following form:

S =

(
Ip 0

0 Sn−p

)
,

where Ip is the identity matrix of order p = n1 + · · ·+nl−1. This gives us the oppor-

tunity to consider only the matrices J(0) and J̃(0) such that the first their blocks are

note coincide, i.e., Jn1
(0) 6= Jm1

(0). If we prove that it is impossible, then we con-

clude the proof of the theorem. To be definite, assume that n1 > m1. Raising both

sides of equality (5.71) to the power m1, we get

(J(0))m1 = S(J̃(0))m1S−1. (5.72)

5.2 The Jordan Canonical Form 175

Using Lemma 5.3, we see that (J̃(0))m1 = 0 and also that (J(0))m1 6= 0. This con-

tradiction concludes the proof of the theorem. ⊓⊔

5.2.2 Root and Cyclic Subspaces

The Jordan matrix is block diagonal, hence the space Xn can be represented in the

form of the direct sum of the invariant subspaces of the operator A corresponding

to the blocks of the Jordan matrix (see Subsect. 4.2.1, p. 107). The subspace corre-

sponding to the block Jn j
(λ j) in representation (5.54) is called the cyclic subspace.

The direct sum of all cyclic subspaces corresponding to the same eigenvalue λ of

the operator A is called the root subspace.

Let us investigate the structure of cyclic and root subspaces. Suppose that the m-

dimensional cyclic subspace corresponds to the eigenvalue λ of the operator A. For

the sake of being definite, assume that the vectors {ek}m
k=1 of the basis En belong to

this subspace. Using (5.56), we see that

Ae1 = λe1, Ae2 = λe2 + e1, . . . , Aem = λem + em−1. (5.73)

This immediately implies that e1 is the eigenvector of the operator A. Clearly, the

vectors e1, e2, . . . , em−1 are nonzero, therefore all other vectors e2, e3, . . . , em are

not eigenvectors of the operator A.

Each cyclic subspace includes exactly one eigenvector of the operator A. Indeed,

if we assume that x = ξ1e1 + ξ2e2 + · · ·+ ξmem is the eigenvector of the opera-

tor A, then Jm(λ)ξ = λξ , where ξ = (ξ1,ξ2, . . . ,ξm)
T . The last equality is equiva-

lent to Jm(0)ξ = 0. The rank of the matrix Jm(0) is m−1. Indeed, detJm(0) = 0 and

the minor obtained from the determinant detJm(0) by deleting of the first column

and the last row is equal to one. Thus the dimension of the kernel of the matrix Jm(0)
is one.

Clearly, if the root subspace corresponding to an eigenvalue λ of the operator A is

the direct sum of k cyclic subspaces, then it contains exactly k linearly independent

eigenvectors of the operator A corresponding to the eigenvalue λ . Therefore, the

number of cyclic subspaces of a given root subspace is equal to the geometrical

multiplicity of the corresponding eigenvalue λ .

The sum of dimensions of all cyclic subspaces corresponding to the eigenvalue λ
is equal the multiplicity of λ as the root of the characteristic equation, i.e., it is equal

to the algebraic multiplicity of the eigenvalue λ .

It follows immediately from (5.73) that

(A−λ I) je j = 0, j = 1,2, . . . ,m. (5.74)

Also it is easy to see that (A−λ I)pe j 6= 0 for p < j. For this reason the integer j

is called the height of the cyclic vector e j. Particularly, the eigenvector is the cyclic

vector of height one.

176 5 Canonical Forms and Factorizations

It is easy to guess that if l is the dimension of the root subspace corresponding to

the eigenvalue λ of the operator A, then for every vector x of this subspace the next

equality is true:

(A−λ I)lx = 0. (5.75)

Remark 5.2. Obviously, the Jordan basis is not uniquely determined by the opera-

tor A. Moreover, if we have a Jordan basis, then, using it, we can easily construct

another Jordan basis. For example, if in the basis En we replace the vector e2 by the

vector ẽ2 = e2 +αe1, where α is an arbitrary number, then for this new basis the

equalities (5.73) hold true, i.e., it is also the Jordan basis of the operator A. However,

since the Jordan matrix is uniquely determined by the operator A (up to permuta-

tions of the diagonal Jordan blocks), then all Jordan bases have the described above

structure.

5.2.3 The real Jordan Canonical Form

Theorem 5.17. Let A be a real square matrix of order n ≥ 1. There exists a nonsin-

gular real matrix S such that S−1AS = J, where

J = diag(Jm1
(λ1),Jm2

(λ2), . . . ,Jml
(λl))

and λ1, λ2,. . . , λl are the characteristic values of the matrix A. If λk is real, then the

Jordan block Jmk
(λk) that corresponds to λk is exactly the same as in form (5.55) in

Theorem 5.13. The diagonal block of the form




α β 1 0 0 0 . . . 0 0

−β α 0 1 0 0 . . . 0 0

0 0 α β 1 0 . . . 0 0

0 0 −β α 0 1 . . . 0 0

. .

. .

. 0 1

0 0 0 0 0 0 . . . α β
0 0 0 0 0 0 . . . −β α




(5.76)

in the matrix J corresponds to each pair of the complex conjugate characteristic

values λ =α+ iβ , λ̄ =α− iβ of the matrix A. The dimension of block (5.76) is twice

more than the dimension of the corresponding Jordan block of the eigenvalue λ in

the matrix A in representation (5.54), p. 170.

Proof. Let {ek}n
k=1 be the Jordan basis of the matrix A constructed in the proof

of Theorem 5.13. Suppose that the vectors {ek}m
k=1, m ≤ n, correspond to the

real characteristic values of the matrix A. Taking into account the relationships of

form (5.73), it is easy to see that these vectors can be real. Suppose that the vec-

tors {ek}m+p
k=m+1 correspond to the Jordan block Jp(λ) of the complex characteristic

5.2 The Jordan Canonical Form 177

value λ = α + iβ of the matrix A. Then we can assume that the vectors {ēk}m+p
k=m+1

of the same Jordan basis correspond to the block Jp(λ̄). Put xk = Reek, yk = Imek,

where k = m+1,m+2, . . . ,m+ p. It is easy to see that the vectors

e1, e2, . . . , em, xm+1, ym+1, . . . , xm+p, ym+p, em+2p+1, . . . , en (5.77)

are linearly independent, writing the change of basis matrix from the Jordan ba-

sis {ek}n
k=1 to (5.77). Now let us move from the Jordan basis to basis (5.77). Note

that, by the definition of the Jordan basis,

Aem+1 = λem+1, Aem+2 = λem+2 + em+1, . . . , Aem+p = λem+p + em+p−1.

Equating the real and imaginary parts of these equalities,1 we see that the block of

form (5.76) corresponds to the vectors xm+1, ym+1, . . . , xm+p, ym+p in basis (5.77).

To conclude the proof, we apply this process to all other pairs of the complex con-

jugate characteristic values of the matrix A. ⊓⊔
Let us give some examples of applications of the Jordan canonical form.

Theorem 5.18. Every square matrix A is similar to AT .

Proof. If we represent A in the Jordan canonical form and write A = SJS−1,

then AT = (S−1)T JT ST . If there exists a nonsingular matrix P such that

JT = P−1JP, (5.78)

then the assertion is true. Indeed, in this case the matrix AT is similar to the matrix J,

and J is similar to A. Obviously, it is enough to check the equality of form (5.78) only

for an arbitrary Jordan block. Moreover, since any Jordan block is equal to λ I+J(0),
it is sufficient to specify a matrix P such that (J(0))T = P−1J(0)P. By elementary

calculations we see that the permutation matrix

P =




0 1
. .

.

1

1 0


 (5.79)

satisfies the required condition. ⊓⊔
Theorem 5.19. Each real square matrix A can be represented in the form of the

product of two real symmetric matrices, one of which can be nonsingular.

Proof. By Theorem 5.17, the matrix A is represented in the real Jordan canonical

form: A = SJS−1. Using elementary calculations, we see that the matrix JP, where

the matrix P is defined by equality (5.79), is symmetric (it is convenient to perform

calculations for each Jordan block of the matrix J separately). Now we write the

evident equalities: A = SJPPS−1 = SJPST (S−1)T PS−1. Clearly, the matrix SJPST

is symmetric, the matrix (S−1)T PS−1 is symmetric and nonsingular. ⊓⊔
1 Analogous calculations were done in Subsect. 4.2.5, p. 118.

178 5 Canonical Forms and Factorizations

5.2.4 The Power Series of Matrices

Let us recall that by Mn we denote the set of all square matrices of order n with

complex, generally speaking, elements. The infinite series of the form

a0I +a1A+a2A2 + · · ·+akAk + · · · , (5.80)

where a0, a1, . . . , are complex numbers, A ∈ Mn, n ≥ 1, is called the power series of

matrices. We say that series (5.80) converges if there is a matrix B such that

lim
m→∞

m

∑
k=0

akAk = B.

We connect power series of matrices (5.80) with the following power series:

∞
∑
k=0

akλ k, λ ∈ C. (5.81)

Let us recall some results of the course of calculus. Series (5.81) is connected

with the series of nonnegative terms:
∞
∑

k=0
|ak|tk, t ≥ 0. The set of all numbers t ≥ 0

such that
∞
∑

k=0
|ak|tk < ∞ form the interval on the positive semiaxis. This interval

includes the point t = 0, can be open or closed on the right, finite or infinite. The

length of this interval (denote it by r) is called the radius of convergence of power

series (5.81). Series (5.81) converges absolutely for all |λ | < r. For |λ | > r se-

ries (5.81) diverges.

Now we clarify the conditions of convergence of series (5.80).

Let λ1, λ2, . . . , λn be all eigenvalues of the matrix A. The spectral radius of A is

the nonnegative number

ρ(A) = max
1≤ j≤n

|λ j|. (5.82)

This is just the radius of the smallest closed disc centered at the origin in the complex

plane that includes all eigenvalues of A.

Let λ be an eigenvalue of the matrix A. Denote by nλ the maximal order of the

Jordan blocks corresponding to λ .

Theorem 5.20. 1) If ρ(A) < r, then series (5.80) converges. 2) If ρ(A) > r, then

series (5.80) diverges. 3) If ρ(A) = r, then series (5.80) converges if and only if

for each characteristic value λ of the matrix A such that |λ | = ρ(A) the following

series (which are obtained by the differentiation of series (5.81)) converge:

∞
∑
k=1

akk(k−1) · · ·(k− j+1)λ k− j, j = 0,1, . . . ,nλ −1. (5.83)

Proof. Suppose that the matrix S reduces the matrix A to the Jordan canonical form,

i.e., A = SJS−1, where the matrix J is defined by equality (5.55), p. 170. Then for

5.2 The Jordan Canonical Form 179

each m ≥ 0 we have
m

∑
k=0

akAk = S

(
m

∑
k=0

akJk

)
S−1.

Therefore series (5.80) converges if and only if the series

∞
∑
k=0

akJk. (5.84)

converges. Series (5.84) converges if and only if each of the following series con-

verges:
∞
∑

k=0
akJk

l (λ), where λ is the characteristic value of the matrix A, Jl(λ) is the

Jordan block corresponding to λ , and l is the order of the matrix Jl(λ). By defini-

tion, 1 ≤ l ≤ nλ . Now we note that Jl(λ) = λ Il + Jl(0). By Lemma 5.3, p. 173, it

follows that (Jl(0))
l = 0, (Jl(0))

j 6= 0, j = 1,2, . . . , l−1, therefore for each k > l−1

we get

(Jl(λ))
k = λ kI +Ck

1λ k−1Jl(0)+ · · ·+Ck
l−1λ k−l+1(Jl(0))

l−1. (5.85)

Thus the investigation of convergence of series (5.84) is reduced to the investiga-

tion of convergence of the l power series of form (5.83). If ρ(A) > r, then there

exists a characteristic value λ of the matrix A such that |λ | > r. In this case the

series
∞
∑

k=l

akλ k corresponding to j = 0 diverges, hence the condition ρ(A) ≤ r is

necessary for the convergence of series (5.80). Let now ρ(A) < r. Then for each

characteristic value λ of the matrix A the next inequality holds: |λ | < r,1 therefore

for each j = 1,2, . . . , l −1 and for all big enough k we get

|akk(k−1) · · ·(k− j+1)λ k− j|

= |ak|k(k−1) · · ·(k− j+1)

(|λ |
r

)k− j

rk− j ≤ r j|ak|rk,

thus all series (5.83) converge, and series (5.80) also converges. Finally, if ρ(A) = r,

and for each characteristic value λ of the matrix A such that |λ | = ρ(A) all se-

ries (5.83) converge, then, as it follows from the previous arguments, series (5.80)

also converges; if at least one of them diverges, then series (5.80) also diverges.2 ⊓⊔

Let us give some examples of power series of matrices, which arise in different

applications.

1. The Neumann series (or the geometric progression) is the power series of

matrices of the form

1 We can assume that r > 0, since otherwise the matrix A is nilpotent and series (5.80) consists of

a finite number of terms.
2 Here we take into account the structure of the powers of the matrix Jl(0)), see the proof of

Lemma 5.3, p. 173.

180 5 Canonical Forms and Factorizations

I +A+A2 + · · ·+Ak + · · · (5.86)

The power series
∞
∑

k=1
λ k, which diverges only for |λ | < 1, corresponds to se-

ries (5.86). Therefore series (5.86) converges if and only if ρ(A)< 1. If this condi-

tion holds, then as a consequence we get

Ak → 0 as k →∞. (5.87)

A matrix, which satisfies condition (5.87) is called convergent. Using (5.85), we see

that if ρ(A)≥ 1, then condition (5.87) does not hold. Thus a matrix A is convergent

if and only if ρ(A)< 1.

Theorem 5.21. Let A be a convergent matrix. Then the inverse matrix of I−A exists

and is expressed as the power series:

(I −A)−1 = I +A+A2 + · · · (5.88)

Proof. Clearly, if λ is an eigenvalue of the matrix I−A, then 1−λ is the eigenvalue

of A. Since ρ(A) < 1, no one of the eigenvalues of A is equal to one, hence no one

of the eigenvalues of the matrix I −A is equal to zero. For each integer k ≥ 1 we

obviously have (I −A)(I +A+ · · ·+Ak) = I −Ak+1. Therefore,

k

∑
i=0

Ai = (I −A)−1 − (I −A)−1Ak+1.

Since A is convergent, the limit as k →∞ on the right hand side of the last equality

exists and is equal to (I −A)−1. Hence the limit on the left hand side of the last

equality exists too, and relationship (5.88) holds. ⊓⊔

2. The matrix exponential is the following power series of matrices:

eA = I +A+
1

2!
A2 + · · ·+ 1

k!
Ak + · · · (5.89)

The power series
∞
∑
k=1

1

k!
λ k corresponding to (5.89) has infinite radius of conver-

gence, therefore series (5.89) converges for every A ∈ Mn, n ≥ 1.

In the rest of this section we give without proof some useful properties of the

matrix exponential. The proof of these properties is left to the reader.

1. For all A ∈ Mn the next equality holds:

eA = lim
k→∞

(
I +

1

k
A

)k

.

Hint: note that for each m ≥ 1 we have

5.3 Matrix Pencils 181

eA −
(

I +
1

m
A

)m

=
∞
∑
k=1

(
1

k!
− Ck

m

mk

)
Ak,

and coefficients of Ak are nonnegative.

2. If A, B ∈ Mn commute, then eA+B = eAeB. Hint: use the well known equal-

ity ex+y = exey, which is true for all x,y ∈ C.

3. For all A ∈ Mn, t ∈ R the next equality holds:

detA

d t
= AetA. (5.90)

5.3 Matrix Pencils

5.3.1 Definitions and Basic Properties

In this section all vectors are elements of the space Cn, all matrices are, generally

speaking, complex, and we use only the standard inner product on Cn.

Let A, B be rectangular m-by-n matrices. The function that assigns to each λ ∈C

the matrix A+λB is called the matrix pencil. Since the pencil is uniquely defined by

the ordered pair of matrices A, B, we usually denote the pencil by (A,B). If m = n,

i.e., A and B are square matrices of order n, then the polynomial det(A− λB) is

called the characteristic polynomial of the pencil (A,B). Arguing as in the derivation

of formula (4.75), p. 116, we get

det(A−λB) = ∆(a1,a2, . . . ,an)

−λ (∆(b1,a2, . . . ,an)+∆(a1,b2, . . . ,an)+ · · ·+∆(a1,a2, . . . ,bn))

+λ 2(∆(b1,b2, . . . ,an)+ · · ·+∆(a1,a2, . . . ,bn−1,bn))−·· ·
±λ n∆(b1,b2, . . . ,bn). (5.91)

Here a1,a2, . . . ,an are the columns of the matrix A; b1,b2, . . . ,bn are the columns of

the matrix B. All other symbols are the same as in formula (4.75), p. 116.

It immediately follows from (5.91) that the degree of the characteristic polyno-

mial of the pencil (A,B) is less than or equal to rank(B).
If det(A−λB)= 0 for all λ ∈C, then the pencil (A,B) is called singular. If m 6= n,

then the pencil is also called singular. In all other cases the pencil is called regular.

Thus the regular pencil is the pencil of the square matrices A and B such that there

exists a λ ∈ C for which det(A−λB) 6= 0.

Theorem 5.22. If ker(A)∩ ker(B) 6= {0}, then the pencil (A,B) of square matrices

is singular.

Proof. Indeed, if x 6= 0 and Ax = 0, Bx = 0, then Ax − λBx = 0 for all λ ∈ C,

therefore, det(A−λB) = 0 for all λ ∈ C. ⊓⊔

182 5 Canonical Forms and Factorizations

Corollary 5.4. If the pencil (A,B) is regular, then ker(A)∩ker(B) = {0}.

Let us give some examples.

1. A = I3 =




1 0 0

0 1 0

0 0 1


 , B =




1 1 1

0 1 1

0 0 1


 , rank(A) = rank(B) = 3,

p(λ) = det(A−λB) = (1−λ)3, deg(p) = 3;1

2. A = I3, B =




1 1 1

0 1 1

0 0 0


 , rank(B) = 2,

p(λ) = det(A−λB) = (1−λ)2, deg(p) = 2.

3. A = I3, B =




0 1 1

0 0 1

0 0 1


 , rank(B) = 2,

p(λ) = det(A−λB) = (1−λ), deg(p) = 1.

4. A = I3, B =




0 1 1

0 0 1

0 0 0


 , rank(B) = 2,

p(λ) = det(A−λB) = 1, deg(p) = 0.

5. A =




1 0 0

0 1 0

0 0 0


 , B =




0 1 1

0 0 1

0 0 0


 , rank(A) = rank(B) = 2,

ker(A)∩ker(B) = {0}, p(λ) = det(A−λB)≡ 0, the pencil (A,B) is singular.

A number λ ∈ C is called a characteristic value of the regular pencil (A,B)
if det(A − λB) = 0. Let λ be a characteristic value of the pencil (A,B). Then a

vector x 6= 0 is called an eigenvector corresponding to λ if Ax = λBx.

Two pencils (A,B) and (A1,B1) are called equivalent if there exist nonsingular

matrices U , V such that A1 =UAV , B1 =UBV .2 It is useful to note that the conver-

sion to the equivalent pencil, actually, is the change of bases in the spaces Cn, Cm

(see Subsect. 4.1.5, p. 91).

Theorem 5.23. The characteristic polynomials of two equivalent pencils coincide

up to a constant nonzero factor.

Proof. Indeed, det(UAV −λUBV) = det(U)det(A−λB)det(V). ⊓⊔
We also note that if x is an eigenvector of the pencil (A,B) corresponding to a

characteristic value λ , then the vector y = V−1x is the eigenvector of the equiva-

lent pencil (UAV,UBV) corresponding to the same characteristic value. Indeed, the

vector y is nonzero, and if Ax= λBx, then AV y= λBV y, therefore, UAV y= λUBV y.

Theorem 5.24 (Generalized Schur theorem). If the pencil (A,B) is regular, then

there exist unitary matrices U, V such that the matrices A1 = UAV and B1 = UBV

are upper triangular.

1 We denote degree of the polynomial p by deg(p).
2 The matrices A, B can be rectangular.

5.3 Matrix Pencils 183

Proof. First let us prove that there exist unitary matrices U1 and V1 such that all

entries of the first columns of the matrices Ã = U1AV1 and B̃ = U1BV1 that are lo-

cated below the main diagonal are zero. By assumption, the pencil (A,B) is regular,

therefore two cases are possible: 1) the characteristic polynomial of the pencil has

a root (denote it by λ1); 2) the characteristic polynomial of the pencil is identically

equal to det(A) 6= 0 (see (5.91)).

Let us consider the first case. Let v1 be a normalized eigenvector of the pencil

corresponding to λ1, i.e.,

Av1 = λ1Bv1. (5.92)

We join the vector v1 with some vectors to complete the orthonormal basis {vk}n
k=1

of the space Cn. Let V be the unitary matrix, the columns of which are formed by

the vectors {vk}n
k=1. Now we note that the vector Bv1 is nonzero, since otherwise,

using (5.92), we see that Av1 is also equal to zero, but this contradicts the assump-

tion on the regularity of the pencil (see Corollary 5.4). We take u1 = Bv1/|Bv1|,
join the vector u1 with some vectors to complete the orthonormal basis {uk}n

k=1 of

the space Cn, and construct the matrix U1, the rows of which are ū1, ū2, . . . , ūn.

Using elementary calculations, we see that the elements of the first column of the

matrix B̃ =U1BV1 are computed by the formulas b̃ j,1 = |Bv1|(u1,u j), j = 1,2, . . . ,n,

therefore, b̃1,1 = |Bv1| > 0, b̃ j,1 = 0 for j = 2,3, . . . ,n. The elements of the first

column of the matrix Ã = U1AV1 are analogously determined. As a result we get

ã11 = (Av1,u1) = λ1|Bv1|, ã1 j = (Av1,u j) = 0 for j = 2,3, . . . ,n. Now let us turn to

the case when the characteristic polynomial of the pencil (A,B) does not have any

roots. Then det(B) = 0, but det(A) 6= 0, hence there exists a normalized vector v1

such that Bv1 = 0 and Av1 6= 0. As in the first case we construct the orthonormal

bases {vk}n
k=1 and u1 = v1/|Av1|, u2, . . . , un of the space Cn, and using them, we

form the unitary matrices U , V . Using elementary calculations, we see that the first

column of the matrix B̃ =U1BV1 is zero, the diagonal element of the first column of

the matrix Ã =U1AV1 is equal to |Av1|> 0, and all other elements of this column are

zero. The further arguments are based on the decreasing of the order of the consid-

ered matrices and are completely analogous to the corresponding arguments in the

proof of Theorem 4.23, p. 120. ⊓⊔

It is useful to note that if the triangular matrices A1 and B1, which appear in

Theorem 5.24, are constructed, then the characteristic equation of the pencil (A,B)
can be written in the form

n

∏
i=1

(a
(1)
ii −λb

(1)
ii) = 0,

where a
(1)
ii and b

(1)
ii , i = 1, 2, . . . , n, are the diagonal elements of the matrices A1

and B1. Therefore, if the characteristic polynomial of the pencil has degree k, then

the characteristic values of the pencil are calculated by the formulas λi = a
(1)
ii /b

(1)
ii

for i= 1,2, . . . ,k. Obviously, b
(1)
ii = 0 for i> k. Hence if the polynomial of the pencil

has degree k < n, then we say that the pencil has the infinite characteristic value of

multiplicity n− k.

184 5 Canonical Forms and Factorizations

5.3.2 The Quasidiagonal Form of a Regular Pencil

Theorem 5.25. Each regular pencil (A,B) can be reduced to the equivalent quasidi-

agonal form, namely, to the pencil (A1,B1), where

A1 =

(
A11 0

0 In−k

)
, B1 =

(
Ik 0

0 B22

)
, (5.93)

the matrix A11 is upper triangular, all characteristic values λ1, λ2, . . . , λk of the pen-

cil (A,B) form the main diagonal of this matrix; B22 is the upper triangular matrix

with the zero main diagonal; Ik, In−k are the identity matrices of the corresponding

orders.

Proof. As we have proved in Theorem 5.24, the pencil (A,B) is equivalent to the

pencil ((
A11 A12

0 A22

)
,

(
B11 B12

0 B22

))
. (5.94)

Here A11 is the upper triangular matrix of order k, the main diagonal of this matrix

are formed by the numbers b11λ1, b22λ2, . . . , bkkλk; B11 is the upper triangular

matrix of order k, the numbers b11, b22, . . . , bkk form the main diagonal of B11, and

all of them are nonzero; A22 is the upper triangular matrix of order n−k, its diagonal

elements ak+1,k+1, ak+2,k+2, . . . , ann are nonzero; B22 is the upper triangular matrix

with the zero main diagonal. Multiplying the both matrices of pencil (5.94) by the

block diagonal matrix diag(B−1
11 ,A−1

22), we move to the equivalent pencil

((
Ã11 Ã12

0 In−k

)
,

(
Ik B̃12

0 B̃22

))
.

Here Ã11 is the upper triangular matrix, the main diagonal of which are formed by

the nubers λ1, λ2, . . . , λk; the main diagonal of the upper triangular matrix B̃22 are

zero. We complete the proof if we construct k-by-(n− k) rectangular matrices P

and Q such that

(
Ik Q

0 In−k

)(
Ã11 Ã12

0 In−k

)(
Ik P

0 In−k

)
=

(
Ã11 0

0 In−k

)
,

(
Ik Q

0 In−k

)(
Ik B̃12

0 B̃22

)(
Ik P

0 In−k

)
=

(
Ik 0

0 B̃22

)
.

By elementary calculations we get the following equations for the determination of

the matrices P and Q:

Ã11P+Q =−Ã12, P+QB̃22 =−B̃12. (5.95)

We can consider the system of equations (5.95) as the system of linear algebraic

equations for the elements of the matrices P and Q. To prove its solvability for any

Ã12 and B̃12 it is enough to check that the corresponding homogeneous system

5.3 Matrix Pencils 185

Ã11P+Q = 0, P+QB̃22 = 0 (5.96)

has the trivial solution only. If the matrices P and Q satisfy (5.96), then P= Ã11PB̃22

and Q = Ã11QB̃22. The matrix B̃22 is nilpotent. Therefore, arguing as in the proof of

Theorem 4.24, p. 122, we see that P = 0 and Q = 0. ⊓⊔

5.3.3 The Weierstrass Canonical Form

In this subsection we show that each regular matrix pencil is equivalent to a pencil

of bidiagonal matrices that is analogous to the matrix Jordan canonical form.

Theorem 5.26 (Weierstrass1). Let (A,B) be a regular pencil of matrices of order n,

and let λ1, λ2, . . . , λk, k ≤ n, be all its characteristic values. Then there exist nonsin-

gular matrices U and V such that UAV = diag(J, In−k) and UBV = diag(Ik,H). Here

In−k and Ik are the identity matrices of order n−k and k, respectively; J is the Jordan

matrix, the main diagonal of this matrix are formed by the numbers λ1, λ2, . . . , λk;

and H is the nilpotent Jordan matrix.

Proof. Let Sk and Sn−k be the nonsingular matrices that reduce the matrices A11

and B22 of the equivalent quasidiagonal form (5.93) of the pencil (A,B) to the Jordan

canonical form, correspondingly. Then we reduce the pencil (A1,B1) to the required

form by the next similarity transformation:

diag(Sk,Sn−k)A1diag(S−1
k ,S−1

n−k), diag(Sk,Sn−k)B1diag(S−1
k ,S−1

n−k).

⊓⊔

The pencil of matrices (diag(J, In−k),diag(Ik,H)), which appears in Theorem 5.26,

is called the Weierstrass canonical form.

Theorem 5.27. The Jordan matrices J and H in the Weierstrass canonical form are

uniquely determined by the matrices of the original pencil (A,B) up to permutations

of the diagonal Jordan blocks.

Proof. Let (diag(J, In−k),diag(Ik,H)) and (diag(J1, In−k),diag(Ik,H1)) be two dif-

ferent Weierstrass canonical forms of the same pencil of matrices (A,B). Then there

exist nonsingular matrices U and V such that

(
U11 U12

U21 U22

)(
J 0

0 I

)
=

(
J1 0

0 I

)(
V11 V12

V21 V22

)
, (5.97)

(
U11 U12

U21 U22

)(
I 0

0 H

)
=

(
I 0

0 H1

)(
V11 V12

V21 V22

)
. (5.98)

1 Karl Theodor Wilhelm Weierstrass (1815- 1897) was a German mathematician.

186 5 Canonical Forms and Factorizations

In equalities (5.97), (5.98) we use the block representations of the matrices U and V

that correspond to the orders of the blocks J and H. Here we do not write the indices

that indicate the orders of the identity blocks. Using elementary calculations, as a

consequence of (5.97), (5.98) we get U11 =V11 and U22 =V22,

U11J = J1U11, U22H = H1U22, (5.99)

V21 =U21J, U21 = H1V21, (5.100)

U12 = J1V12, V12 =U12H. (5.101)

It follows from (5.100) and (5.101) that U21 = H1U21J and U12 = J1U12H. The ma-

trices H and H1 are nilpotent, hence (see the final part of the proof of Theorem 5.93)

U12 = 0 and U21 = 0, therefore, V12 = 0 and V21 = 0. The matrix U is nonsingular,

whence the matrices U11 and U22 are nonsingular. Thus (see (5.99)) the matrix J

is similar to J1, the matrix H is similar to H1, and the assertion follows now from

Theorem 5.16, p. 174. ⊓⊔

5.3.4 Hermitian and Definite Pencils

If det(B) 6= 0, then the matrix pencil (A,B) is equivalent to the pencils (B−1A, I)
and (AB−1, I). The set of all characteristic values of the pencil (A,B) coincides with

the spectrum of the matrix B−1A. Obviously, the eigenvectors of the matrix B−1A

are also connected with the eigenvectors of the pencil (A,B). These facts are useful

for theoretical investigations, but numerically spectral problems for matrix pencils

with det(B) 6= 0 are not solved as eigenvalue problems for the matrix B−1A, since,

usually, such important properties of the matrices A and B as symmetry, sparseness,

and so on, are lost.

The pencil (A,B) is called Hermitian if A = A∗, B = B∗. All characteristic values

of any Hermitian pencil are real. Indeed, if x 6= 0, Ax = λBx, then (Ax,x) = λ (Bx,x).
The numbers (Ax,x) and (Bx,x) are real (see Theorem 4.37, p. 132).

It is important to note that as a consequence of Theorem 5.19, p. 177, we see

that the problem of calculation of eigenvalues and eigenvectors of an arbitrary real

matrix is equivalent to the problem on characteristic values and eigenvectors of a

pencil of symmetric real matrices with det(B) 6= 0. Thus the spectral problem for the

pencil of symmetric real matrices with det(B) 6= 0 in the general case is as difficult

as the spectral problem for an arbitrary real matrix. The situation is improving if we

narrow the class of the allowable matrices B.

The pencil (A,B) is called definite if it is Hermitian and the matrix B is positive

definite. The next theorem shows that each definite pencil can be reduced to the

diagonal form by a similarity transformation.

5.3 Matrix Pencils 187

Theorem 5.28. If the pencil (A,B) is definite, then there exists a nonsingular ma-

trix U such that U∗BU = I and U∗AU = Λ , where Λ = diag(λ1,λ2, . . . ,λn).
1

Proof. Let us define the new inner product on Cn by the formula (x,y)B = (Bx,y).
The operator C = B−1A : Cn →Cn is self-adjoint with respect to this inner product,

since for all x,y ∈ Cn we have

(Cx,y)B = (BB−1Ax,y) = (x,Ay) = (Bx,B−1Ay) = (x,Cy)B.

Therefore, by Theorem 4.41, p. 135, there exist the vectors e1, e2, . . . , en and the

numbers λ1, λ2, . . . , λn such that

Cek = λkek, k = 1,2, . . . ,n, (ek,el)B = δkl , k, l = 1,2, . . . ,n. (5.102)

Let us construct the matrix U , the columns of which are the vectors e1, e2, . . . , en. It

is easy to see that the matrix U is nonsingular. We can write relationships (5.102) in

the form B−1AU =UΛ and U∗BU = I, where Λ = diag(λ1,λ2, . . . ,λn). Evidently,

the next equality is also true: U∗AU = Λ . ⊓⊔

5.3.5 Singular Pencils. The Theorem on Reduction

In this subsection we show that each singular pencil is equivalent to a quasidiagonal

pencil of 2-by-2 block matrices of a special form. Let us denote by r the maximal

order of the minors of the matrix A+λB that are not identically zero as the functions

of λ ∈ C. The number r is called the rank of the pencil (A,B). We assume that the

pencil (A,B) is singular, hence one of the following inequalities is true: either r < m

or r < n. Here, as usual, m is the number of the rows of the pencil, n is the number of

the columns of the pencil. To be definite, assume that r < n. Since the pencil (A,B)
is singular, for any λ ∈ C there exists a nonzero vector x(λ) ∈ Cn such that

(A+λB)x(λ) = 0 for all λ ∈ C. (5.103)

Solving the homogeneous system of equations (5.103) by the method described

in Subsect. 4.1.13, p. 104, we see that the components xk(λ) of the vector x(λ)
are calculated by the formulas Plk(λ)/Qmk

(λ), where Plk and Qmk
are some poly-

nomials, k = 1,2, . . . ,n. Multiplying the vector x(λ) by an arbitrary function of the

variable λ , we also get a solution of system (5.103). Therefore we can assume that

the vector x(λ) is a polynomial of degree ε:

x(λ) = x0 +λx1 + · · ·+λ ε xε , ε ≥ 0. (5.104)

1 Clearly, λ1,λ2, . . . ,λn are the characteristic values of the pencil (A,B).

188 5 Canonical Forms and Factorizations

We choose the polynomial of the minimal degree among all polynomials satisfy-

ing (5.103). The corresponding integer ε is called the minimal index of the singular

pencil (A,B).

Lemma 5.4. The minimal indices of equivalent pencils are equal.

Proof. If x(λ) is the polynomial of the minimal degree satisfying (5.103), then for

any nonsingular matrices U and V we have

U(A−λB)VV−1x(λ) = 0 for all λ ∈ Cn.

Obviously, the degrees of the polynomials V−1x(λ) and x(λ) are equal. ⊓⊔

Substituting polynomial (5.104) into equation (5.103), collecting all coefficients

with the same power of λ , and equating them to zero, we get the homogeneous

system of linear equations for vectors x0, x1, . . . , xε , which is equivalent to (5.103):

Ax0 = 0, Bx0 +Ax1 = 0, . . . , Bxε−1 +Axε = 0, Bxε = 0.1 (5.105)

If ε > 0 is the minimal index of the pencil (A,B), then the system

Ax0 = 0, Bx0 +Ax1 = 0, . . . , Bxk−1 +Axk = 0, Bxk = 0 (5.106)

has the trivial solution only for each k < ε . Thus the next lemma is true.

Lemma 5.5. If ε >0 is the minimal index of the pencil (A,B), then the columns of

the matrix of system (5.106) are linearly independent for each k<ε .

Lemma 5.6. Let ε be the minimal index of the pencil (A,B) and x0, x1, . . . , xε be

the solutions of system (5.105). Then these vectors are linearly independent. The

vectors Ax1, Ax2, . . . , Axε are also linearly independent.

Proof. First let us prove that no one of the vectors {xi}ε
i=0 is equal to zero. Indeed,

if x0 = 0, then the polynomial λ−1x(λ) has degree ε − 1 and satisfies relation-

ship (5.103), which contradicts the assumption on the minimality of the index ε .

If x j = 0 for any j ≥ 1, then Ax j = 0. Not all vectors x0, x1, . . . , x j−1 are zero. It

follows from (5.105) that these vectors satisfy system (5.106) for k = j− 1, which

contradicts the assumption on the minimality of the index ε . In the same way we

prove that no one of the vectors {Axi}ε
i=1 is equal to zero. Let us prove that the vec-

tors {Axi}ε
i=1 are linearly independent. If we assume the contrary, then there exists

an integer h ∈ [1,ε] and numbers α1, α2, . . . , αh−1, not all zero, such that

Axh = α1Axh−1 +α2Axh−2 + · · ·+αh−1Ax1. (5.107)

Let

y0 = x0, y1 = x1 −α1x0, y2 = x2 −α1x1 −α2x0, . . . ,

1 Clearly, the matrix of system (5.105) is block bidiagonal.

5.3 Matrix Pencils 189

yh−1 = xh−1 −α1xh−2 −·· ·−αh−1x0.

Using equations (5.105) and (5.107), it is easy to see that

Ay0 = Ax0 = 0, Ay1 = Ax1 −α1Ax0 =−Bx0 =−By0,

Ay2 = Ax2 −α1Ax1 −α2Ax0 =−Bx1 +α1Bx0 =−B(x1 −α1x0) =−By1, . . . ,

Ayh−1 =−Byh−2, Byh−1 = 0.

Therefore the polynomial y(λ) = y0 + λy1 + · · ·+ λ h−1yh−1 has degree h− 1< ε
and satisfies the relationship of form (5.103), but this fact contradicts the assumption

on the minimality of the index ε . It remains to prove that the vectors {xi}ε
i=0 are

linearly independent. Now we assume that α0x0 +α1x1 + · · ·+αε xε = 0 for some

numbers α0, α1, . . . , αε . Then α1Ax1 +α2Ax2 + · · ·+αε Axε = 0. As a consequence

of the linear independence of the vectors {Axi}ε
i=1 we get α1 = α2 = · · · = αε = 0,

hence, α0x0 = 0, but x0 6= 0, therefore, α0 = 0. ⊓⊔

Lemma 5.7. If the pencil (A,B) has the minimal index ε > 0, then it is equivalent

to the quasitriangular pencil (A1,B1), where

A1 =

(
L
(0)
ε D

0 Â

)
, B1 =

(
L
(1)
ε F

0 B̂

)
, (5.108)

L
(0)
ε = (0, Iε), L

(1)
ε = (Iε ,0), (5.109)

and the minimal index of the pencil (Â, B̂) is more than or equal to ε .

Proof. Using Lemma 5.6, we see that we can introduce a basis in the space Cn

such that, the first ε +1 vectors of this basis are {(−1)ixi}ε
i=0. Analogously, we can

introduce a basis in the space Cm, the first vectors of which are {(−1)iAxi}ε
i=1.1

Equalities (5.105) show that the conversion to the specified bases leads to pencil of

matrices (5.108). Let us prove the second part of the theorem. Note that there is not

a polynomial y(λ) of degree less than ε that satisfies the identity

(L
(0)
ε +λL

(1)
ε)y(λ) = 0 for all λ ∈ C. (5.110)

Indeed, in this case the polynomial x(λ) = (y(λ),0) of degree less than ε satisfies

the identity

(A1 +B1)x(λ) = 0 for all λ ∈ C, (5.111)

but it is impossible, since the minimal indices of the equivalent pencils (A,B)
and (A1,B1) must be equal. Now we suppose that, contrary to the assertion of the

theorem, there exists a polynomial z(λ) of degree less than ε that satisfies the iden-

tity

(Â+ B̂)z(λ) = 0 for all λ ∈ C. (5.112)

1 The alternation of signs in these bases will be convenient for some formulas below.

190 5 Canonical Forms and Factorizations

If we construct a polynomial v(λ) such that

(L
(0)
ε +λL

(1)
ε)v(λ)+(D+λF)z(λ) = 0 for all λ ∈ C, (5.113)

then x(λ)= (v(λ),z(λ))∈Cn satisfies (5.111). Let z(λ)= z0+λ z1+ · · ·+λ ε−1zε−1

and let v(λ) = v0 + λv1 + · · ·+ λ ε−1vε−1. Substituting these representations into

(5.113), collecting all coefficients with the same power of λ , and equating them to

zero, we get the system of equations

L
(0)
ε v0 =−g0, L

(1)
ε v0 +L

(0)
ε v1 =−g1, . . . , L

(1)
ε vε−2 +L

(0)
ε vε−1 =−gε−1,

L
(1)
ε vε−1 =−gε , (5.114)

where g0 = Dz0, g1 = Fz0 +Dz1,. . . , gε−1 = Fzε−2 +Dzε−1, gε = Fzε−1. It has

been proved that the minimal index of the pencil (L
(0)
ε ,L

(1)
ε) is equal to ε , there-

fore, by Lemma 5.5, it follows that the rank of the matrix of system (5.114) is equal

to ε(ε +1) (to the number of its columns). It is easy to compute that the number of

equations in system (5.114) is also equal to ε(ε + 1). Therefore system (5.114) is

uniquely solvable for any right-hand side. Thus the polynomial x(λ) = (v(λ),z(λ))
has degree ε − 1 and satisfies identity (5.111). This contradiction concludes the

proof of the lemma. ⊓⊔

Theorem 5.29 (on reduction). If the minimal index of the pencil (A,B) is equal

to ε > 0 and the rank of the pencil is less than n, then the pencil (A,B) is equivalent

to the pencil ((
L
(0)
ε 0

0 Â

)
,

(
L
(1)
ε 0

0 B̂

))
, (5.115)

were, as above, L
(0)
ε = (0, Iε), L

(1)
ε = (Iε ,0), and the minimal index of the pen-

cil (Â, B̂) is more than or equal to ε .

Proof. Let (A1,B1) be the pencil that has been constructed in the proof of Lemma 5.7

and is equivalent to the pencil (A,B). Using elementary calculations, we see that

(
Iε Q

0 Im−ε

)
A1

(
Iε+1 −P

0 In−ε−1

)
=

(
L
(0)
ε R

0 Â

)
,

(
Iε Q

0 Im−ε

)
B1

(
Iε+1 −P

0 In−ε−1

)
=

(
L
(1)
ε S

0 B̂

)
.

Here P and Q are some yet unknown rectangular matrices of corresponding orders,

R = D+QÂ−L
(0)
ε P, S = F +QB̂−L

(1)
ε P.

We complete the proof of the theorem if we show that the matrices P and Q can be

chosen such that R = 0 and S = 0. Let p1, p2, . . . , pε+1 be the rows of the matrix P.

5.3 Matrix Pencils 191

It is easy to see that the matrix L
(0)
ε P consists of the rows p2, p3, . . . , pε+1, and the

matrix L
(1)
ε P consists of the rows p1, p2, . . . , pε . Therefore, if R = 0 and S = 0, then

q jÂ+q j+1B̂+ f j+1 +d j = 0, j = 1,2, . . . ,ε −1. (5.116)

Here the lowercase letters with indices denote the rows of the corresponding matri-

ces. Let us consider (5.116) as the system of equations for the elements of the rows

(−1) jq j, j = 1,2, . . . ,ε . Obviously, the matrix of this system has the same form

as the matrix of system (5.106) for k = ε − 2. Since, by Lemma 5.7, the minimal

index of the pencil (Â, B̂) is more than or equal to ε , then the rank of this matrix

is equal to (ε − 1)(n− ε − 1), i.e., it is equal to the number of its columns. It is

easy to calculate that the number of equalities in system (5.116) is also equal to

(ε − 1)(n− ε − 1). Therefore system (5.116) is solvable for any D and F . If we

find the matrix Q, then the matrix P is easily found as the solution of the system of

equations L
(0)
ε P = D+QÂ and L

(1)
ε P = F +QB̂. ⊓⊔

Remark 5.3. Let us recall that we have assumed above that the rank of the pen-

cil (A,B) is less than n. If the rank of the pencil (A,B) is less than m, then it is easy

to establish by the reduction to the pencil (AT ,BT) that (A,B) is equal to the pencil

((
(L

(0)
η)T 0

0 Ã

)
,

(
(L

(1)
η)T 0

0 B̃

))
,

where η is the minimal index of the pencil (AT ,BT), and the minimal index of the

pencil (ÃT , B̃T) is more than or equal to η . The number ε is called the right minimal

index, the number η is called the left minimal index of the pencil (A,B).

5.3.6 The Kronecker Canonical Form

In this subsection we show that each singular pencil (A,B) is equivalent to a qua-

sidiagonal pencil such that each of the diagonal blocks is a bidiagonal matrix.

First we assume that the right minimal index of the pencil (A,B) is equal to zero.

This means that there is a nonzero vector x ∈ Cn such that Ax = 0 and Bx = 0. In

other words, the defect of the 2-by-1 block matrix

M =

(
A

B

)
(5.117)

is positive. Denote it by hr. Evidently, choosing the vectors of a basis of Ker(M)
as the first hr vectors for the basis in the space Cn, we reduce the pencil (A,B) to

the pencil ((0(m,hr),A0),(0(m,hr),B0)), where 0(m,hr) is the m-by-hr zero matrix,

and the right minimal index of the pencil (A0,B0) is positive.

Now we assume that the left minimal index of the pencil (A0,B0) is equal to

zero. Then, arguing as above, we reduce the original pencil (A,B) to the quasdi-

192 5 Canonical Forms and Factorizations

agonal pencil (diag(0(hl ,hr),A1),diag(0(hl ,hr),B1)), where hl is the dimension of

the kernel of the 1-by-2 block matrix M0 = (A0,B0). Clearly, in this case the left

and the right minimal indices of the pencil (A1,B1) is positive. To be definite, as-

sume that the rank of the pencil (A1,B1) is less than the number of its columns.

Then by Theorem 5.29, it follows that the pencil (A1,B1) is equaivalent to the pen-

cil (diag(L
(0)
ε1
, Â1),diag(L

(1)
ε1
, B̂1)), where ε1 > 0, and the right minimal index of the

pencil (Â1, B̂1) is more than or equal to ε1. Continuing this process, we get the pencil

(diag(0(hl ,hr),L
(0)
ε1
,L

(0)
ε2

. . . ,L
(0)
εp
, Âp),diag(0(hl ,hr)),L

(1)
ε1
,L

(1)
ε2

. . . ,L
(1)
εp
, B̂q),

where 0< ε1 ≤ ε1 · · · ≤ εp, and the rank of the pencil (Âp, B̂p) is equal to the number

of its columns.

Suppose that the number of the rows of the pencil (Âp, B̂p) is more than its rank

(in the contrary case this pencil is regular). It is easy to see that, since the left min-

imal index of the pencil (A1,B1) is positive, the left minimal index of the pencil

(Âp, B̂p) is also positive. Consistently applying Theorem 5.29 again (se also Re-

mark 5.3), we reduce the pencil (Âp, B̂p) to the pencil

((L
(0)
η1
)T ,(L

(0)
η2
)T . . . ,(L

(0)
ηq
)T , Âq),(L

(1)
η1
)T ,(L

(1)
η2
)T . . . ,(L

(1)
ηq
)T , B̂q),

where 0 < η1 ≤ η1 · · · ≤ ηq. Here the pencil (Âq, B̂q) is regular, and therefore it can

be reduced to the Weierstrass canonical form (see Theorem 5.26, p. 185).

Thus we have proved that any arbitrary singular pencil can be reduced to the

equivalent pencil

(diag(0(hl ,hr),L
(0)
ε1
,L

(0)
ε2

. . . ,L
(0)
εp
,(L

(0)
η1
)T ,(L

(0)
η2
)T . . . ,(L

(0)
ηq
)T ,J, In−k)),

diag(0(hl ,hr),L
(1)
ε1
,L

(1)
ε2

. . . ,L
(1)
εp
,(L

(1)
η1
)T ,(L

(1)
η2
)T . . . ,(L

(1)
ηq
)T , Ik,H)). (5.118)

Here n is the order of the pencil (Âq, B̂q), k is the number of its characteristic val-

ues, J is the corresponding Jordan matrix, H is the nilpotent Jordan matrix (details

see in Theorem 5.26, p. 185).

The pair of matrices (5.118) is so called the Kronecker canonical form of the

singular pencil in the most general case. Clearly, in specific particular situations the

both of numbers hr and hl or one of them can be equal to zero, any group of the

diagonal blocks of pencil (5.118) can also be omitted.

5.3.7 Applications to Systems of Linear Differential Equations

The Jordan, the Weierstrass, and the Kronecker canonical forms have many appli-

cations to the study of systems of linear differential equations.

5.3 Matrix Pencils 193

1. Let us start with the Cauchy problem for the system of ordinary linear differ-

ential equations with constant coefficients solved with respect to the derivatives:

ẋ(t) = Ax(t)+ f (t), (5.119)

x(0) = x0. (5.120)

Here A is a given square matrix of order n, f is a given continues vector-valued

function of the variable t ∈ R with values in the space Cn, the vector x0 ∈ Cn is

given, x is an unknown vector-valued function.

Let us recall (see (5.90), p. 181), that

detA

d t
= AetA, (5.121)

etA|t=0 = I. (5.122)

Using relationships (5.121), (5.122), it is easy to check by direct substitution that

the solution of problem (5.119), (5.120)) is given by the formula

x(t) = etAx0 +

t∫

0

e(t−τ)A f (τ)dτ . (5.123)

In the simplest case of n = 1, i.e., if A = λ ∈ C and x0, f (t) ∈ C, the solution of

problem (5.119), (5.120) is calculated as follows:

x(t) = x0eλ t +

t∫

0

f (τ)eλ (t−τ)dτ . (5.124)

Let S be the nonsingular matrix that reduces the matrix A to the Jordan canonical

form (i.e., A = SJS−1, J = diag(Jn1
(λ1),Jn2

(λ2), . . . ,Jnk
(λk)), see Subsect. 5.2.1,

p. 170). Then problem (5.119), (5.120) is reduced to the problem

ẏ(t) = Jy(t)+g(t), (5.125)

y(0) = y0, (5.126)

where y = S−1x, g = S−1 f , y0 = S−1y(0). Clearly, problem (5.125), (5.126) splits

into the following independent systems of equations:

ẏni
(t) = Jni

(λni
)yni

(t)+gni
(t), (5.127)

yni
(0) = y0,ni

, (5.128)

where i = 1,2, . . . ,k. Thus it is enough to learn to solve the problem

ẏ(t) = J(λ)y(t)+g(t), (5.129)

y(0) = y0, (5.130)

194 5 Canonical Forms and Factorizations

where J(λ) is the Jordan block whose order we denote by m. Let us write the ho-

mogeneous system corresponding to (5.129) in detail:

ẏ1(t) = λy1(t)+ y2(t),

ẏ2(t) = λy2(t)+ y3(t),

. .

ẏm(t) = λym(t).

It follows from the last equation that

ym(t) = ym(0)e
λ t ,

therefore,

ẏm−1(t) = λym−1(t)+ ym(0)e
λ t .

Whence, by formula (5.124), we get

ym−1(t) = (ym(0)t + ym−1(0))e
λ t .

Analogously,

ym−2(t) =
(

ym(0)
t2

2
+ ym−1(0)t + ym−2(0)

)
eλ t , . . .

Finally,

y1(t) =

(
ym(0)

tm−1

(m−1)!
+ ym−1(0)

tm−2

(m−2)!
+ · · ·+ y2(0)t + y1(0)

)
eλ t .

Writing the obtained relationships in matrix form, we see that

y(t) = EJ(λ)(t)y(0),

where

EJ(λ)(t) = eλ t




1 t t2/2 . . . tm−1/(m−1)!
0 1 t . . . tm−2/(m−2)!
0 0 1 . . . tm−3/(m−3)!
.
0 0 1



.

It is easy to see that relationships (5.121), (5.122), where A = J(λ), hold for the

matrix-valued function EJ(λ)(t). Thus,

EJ(λ)(t) = etJ(λ), (5.131)

and the solution of problem (5.125), (5.126) can be calculated by the formula

5.3 Matrix Pencils 195

y(t) = EJ(λ)(t)y0 +

t∫

0

EJ(λ)(t − τ)g(τ)dτ ,

which is often used in the theory of differential equations for the analysis of systems

of form (5.119).

Note that the reader can easily prove formula (5.131) using Property 2, p. 181.

Hint: use equality J(λ) = λ I + J(0).

2. Now we consider the system of linear differential equations unsolved with

respect to the derivatives:

Bẋ(t) = Ax(t)+ f (t). (5.132)

First we assume that A, B ∈ Mn and the pencil (A,B) is regular. For any nonsingular

matrices U,V ∈ Mn we have

UBVV−1ẋ(t) =UAVV−1x(t)+U f (t). (5.133)

Suppose that the matrices U , V reduce the pencil (A,B) to the Weierstrass canonical

form. Put y =V−1x, g =U f (t), then (see Theorem 5.26, p. 185)

diag(Ik,H)ẏ = diag(J, In−k)y+g. (5.134)

System (5.134) splits into the independent subsystems of the form

ẏ = J(λ)y+g, (5.135)

where J(λ) is the Jordan block corresponding to a characteristic value λ of the

pencil (A,B), and

J(0)ẏ = y+g, (5.136)

where J(0) is the nilpotent Jordan block. We denote its order by m and write sys-

tem (5.136) in detail:

ẏ2 = y1 +g1,

ẏ3 = y2 +g2,

.

ẏm = ym−1 +gm−1,

ym + gm = 0.

Whence, starting from the last equation, we get

ym = −gm,

ym−1 = −gm−1 − ġm, . . .

Generally,

196 5 Canonical Forms and Factorizations

yi =−
m

∑
k=i

dk−i

d tk−i
gk, i = 1,2, . . .m. (5.137)

The method of solution of system (5.135) have been described above.

Thus, if the pencil (A,B) is regular, then the Cauchy problem for system (5.132)

is solvable. It is important to note that, as it follows from relationship (5.137), the

solution of (5.132) can include the derivatives of the function f . Therefore, if the

function f is insufficiently smooth, then the solution of (5.132) can be a discontin-

uous function.

If the pencil (A,B) is singular, then system (5.132), as we will show below, is

solvable only if some conditions for vector-valued function f (t) hold. When, using

some matrices U , V (see (5.133)), we reduce the pencil (A,B) to Kronecker canon-

ical form (5.118), we get the system of differential equations, which splits into the

independent subsystems of the investigated forms and the following forms:

0(hl ,hr)ẏ(t) = 0(hl ,hr)y+g, (5.138)

L
(0)
ε ẏ(t) = L

(1)
ε y+g, (5.139)

(L
(0)
η)T ẏ(t) = (L

(1)
η)T y+g. (5.140)

First of all, using (5.138), we see that for solvability of system (5.132) it is nec-

essary that the first hl components of the vector U f are equal to zero. Note that the

number of equations in system (5.139) is less than the number of unknowns, i.e., this

system is underdetermined. System (5.140) is overdetermined: the number of equa-

tions in (5.140) is greater than the number of unknowns. Writing system (5.139) in

detail, we get (see (5.109), p. 189)

ẏ2 = y1 +g1, ẏ3 = y2 +g2, . . . , ẏε+1 = yε +gε . (5.141)

Obviously, we can equate the function y1 to any integrable on each finite interval

function. After that, using (5.141), we can sequentially define all other components

of the vector-valued function y.

System (5.140) in detail looks as follows:

0 = y1 +g1, ẏ1 = y2 +g2, . . . , ẏε−1 = yε +gε , ẏε = gε+1.

Hence, y1 =−g1, y2 =−g2 − ġ1, . . . , yε =−gε − ġε−1 −·· ·− dε−1

d tε−1
g1,

gε+1 =− d

d t

(
gε + ġε−1 + · · ·+ dε−1

d tε−1
g1

)
. (5.142)

Equality (5.142) is the necessary condition of solvability of system (5.140). Obvi-

ously, this equality defines some additional conditions for the components of the

vector-valued function f (t) that are necessary for the solvability of original sys-

tem (5.132).

Chapter 6

Vector and Matrix Norms

In this chapter the concept of a norm on the vector space Cn is introduced. We in-

vestigate relationships between different norms. We give the definition of the norm

on the space of complex rectangular matrices and detailed study its properties, par-

ticularly, with regard to estimations of eigenvalues and singular values of operators.

6.1 Basic Inequalities

Using Theorem 5.4, p. 162, it is easy to see that the function − ln(x) is convex on

the interval (0,∞). Therefore for arbitrary positive numbers a,b and any p,q > 1

such that 1/p+1/q = 1 we have ln(ap/p+bq/q)≥ ln(ap)/p+ ln(bq)/q = ln(ab),
hence we get ab ≤ ap/p+ bq/q. Clearly, the last inequality holds also for ab = 0.

Further, since |ab|= |a||b|, we get

|ab| ≤ |a|p
p

+
|b|q
q

(6.1)

for any, generally speaking, complex numbers a,b and for any p,q > 1 such

that 1/p+1/q = 1. Inequality (6.1) is called Young’s inequality.1

Theorem 6.1 (Hölder’s2 inequality). Let x,y ∈ Cn, p > 1, 1/p+1/q = 1. Then

∣∣∣∣∣
n

∑
k=1

xkyk

∣∣∣∣∣≤
(

n

∑
k=1

|xk|p
)1/p(

n

∑
k=1

|yk|q
)1/q

. (6.2)

Proof. If at least one of the vectors x, y is equal to zero, then inequality (6.2) holds.

Assume that the vectors x, y are nonzero. Then, using the Young’s inequality, we get

1 William Henry Young (1863–1942) was an English mathematician.
2 Otto Ludwig Hölder (1859–1937) was a German mathematician.

197

198 6 Vector and Matrix Norms

|xl |
(

n

∑
k=1

|xk|p
)1/p

|yl |
(

n

∑
k=1

|yk|q
)1/q

≤ |xl |p

p
n

∑
k=1

|xk|p
+

|yl |q

q
n

∑
k=1

|yk|q
, l = 1,2, . . . ,n.

Summing these inequalities over all l, we obtain

n

∑
k=1

|xk||yk| ≤
(

n

∑
k=1

|xk|p
)1/p(

n

∑
k=1

|yk|q
)1/q

,

hence, evidently, inequality (6.2) holds. ⊓⊔

In the special case of p = 2 inequality (6.2) is called the Cauchy-Schwarz in-

equality.

Theorem 6.2 (Minkowski inequality). Let x,y ∈ Cn, p > 1. Then

(
n

∑
k=1

|xk + yk|p
)1/p

≤
(

n

∑
k=1

|xk|p
)1/p

+

(
n

∑
k=1

|yk|p
)1/p

. (6.3)

Proof. If the left hand side of (6.3) is equal to zero, then inequality (6.3), evidently,

holds. We therefore assume that the left hand side of (6.3) is positive. Clearly,

n

∑
k=1

|xk + yk|p =
n

∑
k=1

|xk + yk|p−1|xk + yk|

≤
n

∑
k=1

|xk + yk|p−1|xk|+
n

∑
k=1

|xk + yk|p−1|yk|. (6.4)

Let us estimate the sums on the right hand side of the last inequality using Hölder’s

inequality:

n

∑
k=1

|xk + yk|p−1|xk| ≤
(

n

∑
k=1

|xk + yk|(p−1)q

)1/q(
n

∑
k=1

|xk|p
)1/p

, (6.5)

n

∑
k=1

|xk + yk|p−1|yk| ≤
(

n

∑
k=1

|xk + yk|(p−1)q

)1/q(
n

∑
k=1

|yk|p
)1/p

, (6.6)

where 1/p+1/q = 1 and (p−1)q = p. Thus, combining (6.4)–(6.6), we obtain

n

∑
k=1

|xk + yk|p ≤
(

n

∑
k=1

|xk + yk|p
)1/q



(

n

∑
k=1

|xk|p
)1/p

+

(
n

∑
k=1

|yk|p
)1/p


 ,

and, taking into account that 1−1/q = 1/p, we get (6.3). ⊓⊔

6.2 Norms on the Space Cn 199

6.2 Norms on the Space Cn

In this subsection we consider the concept of a vector norm on the space Cn. This

concept generalizes the notion of the length of a vector x ∈ Cn and in many cases is

more convenient.

We say that a norm is introduced on the space Cn if for each x ∈ Cn there exists

a unique real number ‖x‖ (read: the norm of x) and the following conditions (the

axioms of a norm) hold:

1. ‖x‖ ≥ 0 for all x ∈ Cn; ‖x‖=0 if and only if x=0;

2. ‖αx‖= |α|‖x‖ for all x ∈ Cn and for all α ∈ C;

3. ‖x+ y‖ ≤ ‖x‖+‖y‖ for all x, y ∈ Cn.

Condition 3 is called usually the triangle inequality. Also, the next inequality holds:

4.
∣∣‖x‖−‖y‖

∣∣≤ ‖x− y‖ for all x, y ∈ Cn.

Inequality 4 follows from Axiom 3. Indeed,

‖x‖= ‖x− y+ y‖ ≤ ‖x− y‖+‖y‖.

Similarly,

‖y‖ ≤ ‖x− y‖+‖x‖.
Combining the last two inequalities, we obtain inequality 4.

Examples of norms on the space Cn.

1. Let p ≥ 1. The equality ‖x‖p =
(n

∑
k=1

|xk|p
)1/p

defines a norm. Indeed, Ax-

ioms 1 and 2 evidently hold; inequality 3 for p = 1 immediately follows from the

properties of the modulus of a complex number, and for p > 1 coincides with the

Minkowski inequality. Note that ‖x‖2 = |x|= (x,x)1/2 for all x ∈ Cn. Here and fur-

ther in this section by (·, ·) we denote the standard inner product on the space Cn.

2. Let ‖x‖∞ = max
1≤k≤n

|xk|. It is easy to verify that this equality defines a norm.

3. The function ‖x‖A = (Ax,x)1/2 is a norm on the space Cn if A is a Hermitian

positive definite matrix. To substantiate this fact it is enough to recall that the rela-

tionship (x,y)A = (Ax,y) defines an inner product on the space Cn (see Property 1,

p. 133, and also Subsect. 3.2.2, p. 69).

Any vector norm is continuous on the entire space Cn. Indeed, let x and y be

arbitrary vectors in Cn. Expanding these vectors into the finite serieses x =
n

∑
k=1

xkik

and y =
n

∑
k=1

ykik with respect to the natural basis of Cn, and using the triangle in-

equality, we obtain ‖x− y‖ ≤
n

∑
k=1

‖ik‖|xk − yk|. Obviously, this inequality implies

that if x tends to y, then ‖x− y‖ tends to zero.

200 6 Vector and Matrix Norms

We say that a sequence {xk} ⊂ Cn converges to a vector x ∈ Cn in norm

if lim
k→∞

‖x− xk‖ = 0. As we have seen in the previous paragraph, the convergence

of a sequence of vectors in any norm introduced on the space Cn follows from the

componentwise convergence. Below we will prove that the converse statement is

also true.

We say that two norms ‖·‖(1) and ‖·‖(2) are equivalent if there exist two positive

constants c1 and c2 such that

c1‖x‖(1) ≤ ‖x‖(2) ≤ c2‖x‖(1) for all x ∈ Cn. (6.7)

Theorem 6.3. Any two norms on the space Cn are equivalent.

Proof. Clearly, the relation of the equivalence of norms is transitive. Therefore it is

sufficient to prove that any norm ‖ · ‖ is equivalent to the norm ‖ · ‖2 = | · |, i.e., to

prove that there exist two positive constants c1 and c2 such that

c1|x| ≤ ‖x‖ ≤ c2|x| for all x ∈ Cn. (6.8)

Let S1(0) be the set of all vectors in the space Cn such that |x| = 1 (S1(0) is the

unit sphere centered at the origin). This set is closed and bounded in the space Cn.

The function ϕ(x1,x2 . . . ,xn) = ‖x‖ is continuous on the whole space Cn. There-

fore, by the Weierstrass theorem (see a calculus textbook), it follows that there

exist points x1, x2 ∈ S1(0) such that ‖x1‖ = min
x∈S1(0)

‖x‖ and ‖x2‖= max
x∈S1(0)

‖x‖. Let

c1 = ‖x1‖, c2 = ‖x2‖. Clearly, 0 ≤ c1 ≤ c2, we see also that c1 is not equal to

zero, since otherwise x1 = 0, but x1 ∈ S1(0), hence, |x1| = 1, and x1 6= 0. Thus,

0 < c1 ≤ ‖x‖ ≤ c2 for all x ∈ S1(0). Let now x be an arbitrary nonzero vec-

tor in the space Cn. Then, evidently, the vector (1/|x|)x belongs to S1(0), there-

fore, c1 ≤ ‖(1/|x|)x‖ ≤ c2. Whence it follows that the vector x satisfies inequali-

ties (6.8). Obviously, if x is equal to zero, then inequalities (6.8) hold. ⊓⊔
It follows from Theorem 6.3 that any norm on the space Cn is equivalent to the

norm ‖ · ‖2. Therefore, the componentwise convergence of a sequence of vectors

follows from the convergence of this sequence in any norm.

It is important to note that, generally, the constants c1, c2 depend on n, i.e., they

depend on the dimension of the space Cn. For example, the following estimates

hold:

‖x‖∞ ≤ ‖x‖p for all x ∈ Cn and for all p ≥ 1; (6.9)

‖x‖p ≤ ‖x‖q for all x ∈ Cn if p ≥ q ≥ 1; (6.10)

‖x‖p ≤ n1/p−1/q‖x‖q for all x ∈ Cn if q > p ≥ 1; (6.11)

‖x‖p ≤ n1/p‖x‖∞ for all x ∈ Cn and for all p ≥ 1. (6.12)

Before proving these estimates, we note that they are the best possible, i.e., for

each of them there exists a nonzero vector x such that the inequality becomes the

equality. In particular, if x = (1,0, . . . ,0), then the first two inequalities become the

equalities; if x = (1,1, . . . ,1), then the last two inequalities become the equalities.

6.2 Norms on the Space Cn 201

Now we present the appropriate proofs.

1. Let ‖x‖∞ = max
1≤k≤n

|xk|= |xi|. Evidently,

|xi|= (|xi|p)1/p ≤
(

n

∑
k=1

|xk|p
)1/p

= ‖x‖p.

2. Doing the obvious calculations, we obtain

‖x‖p =

(
n

∑
k=1

|xk|q|xk|p−q

)1/p

≤ ‖x‖(p−q)/p
∞ ‖x‖q/p

q ,

hence, using (6.9), we get (6.10).

3. Writing |xk|p in the form |xk|p ·1 and then using Hölder’s inequality with t =
q/p > 1, r = t/(t −1) = q/(q− p) for the estimation of ‖x‖p, we get

‖x‖p =

(
n

∑
k=1

|xk|p
)1/p

≤
(

n

∑
k=1

|xk|q
)1/q(

n

∑
k=1

1

)(q−p)/(pq)

= n1/p−1/q‖x‖q.

The reader can easily prove inequality (6.12). Then it can be proved that

‖x‖∞ = lim
p→∞

‖x‖p for all x ∈ Cn.

The proof is also left to the reader.

A vector norm is called absolute if it depends only on the absolute values of the

components of the vector. For example, the norm ‖ · ‖p for any p ≥ 1 is absolute;

the norm ‖x‖= (|x1|2 + |x2|2 −Re(x1x2))
1/2 on the space C2 is not absolute.

Let D = diag(d1,d2, . . . ,dn), 0 ≤ di ≤ 1, i = 1,2, . . . ,n, x ∈ Cn. Then for any

absolute norm we get ‖Dx‖ ≤ ‖x‖. Evidently, it is sufficient to verify this inequality

for D = diag(1, . . . ,1,dk,1, . . . ,1), dk ∈ [0,1]. We have

Dx =
1

2
(1−dk)(x1,x2, . . . ,−xk, . . . ,xn)+

1

2
(1−dk)x+dkx,

therefore, ‖Dx‖ ≤ 1
2
(1−dk)‖x‖+ 1

2
(1−dk)‖x‖+dk‖x‖= ‖x‖.

A vector norm on Cn is called monotone if the inequality ‖x‖ ≤ ‖y‖ follows from

the inequalities |xk| ≤ |yk|, k = 1,2, . . . ,n. Any monotone norm is absolute. Indeed,

if a norm is monotone, then for each vector x the following inequalities hold:

‖(|x1|, |x2|, . . . , |xn|)‖ ≤ ‖(x1,x2, . . . ,xn)‖ ≤ ‖(|x1|, |x2|, . . . , |xn|)‖.

Conversely, any absolute norm is monotone. Indeed, if for vectors x and y we

have |xk| ≤ |yk|, k = 1, 2, . . . ,n, then there exists a matrix1

D = diag(d1eiϕ1 ,d2eiϕ2 , . . . ,dneiϕn), 0 ≤ dk ≤ 1, k = 1,2, . . . ,n,

1 Let us recall that, by definition, eiϕ = cosϕ + i sinϕ .

202 6 Vector and Matrix Norms

such that x = Dy. Using now the definition of an absolute norm and the inequal-

ity ‖Dy‖ ≤ ‖y‖, we get ‖x‖ ≤ ‖y‖.

6.3 The Hahn-Banach Theorem. Dual Norms

Let us recall that a linear functional f is defined on the space Cn if a complex

number f (x) uniquely corresponds to each vector x ∈Cn and this map is linear, i.e.,

f (αx+βy) = α f (x)+β f (y) for all x,y ∈ Cn and for all α,β ∈ C. (6.13)

We say that a real linear functional f is defined on the space Cn if a real number f (x)
uniquely corresponds to each vector x ∈ Cn and

f (αx+βy) = α f (x)+β f (y) for all x,y ∈ Cn and for all α,β ∈ R. (6.14)

If a norm ‖ · ‖ is defined on the space Cn, then for each linear functional (real or

complex) we can define its norm by the formula

‖ f‖= sup
x∈Cn, x 6=0

| f (x)|
‖x‖ = sup

x∈Cn, ‖x‖=1

| f (x)|. (6.15)

For each linear functional we have

‖ f‖<∞. (6.16)

Let us prove inequality (6.16) for real functionals. For complex functionals the proof

is analogous and easier. Let z = (z1,z2, . . . ,zn) ∈ Cn, ‖z‖ = 1. If we assume now

that zk = xk + iyk, xk,yk ∈ R, k = 1,2, . . . ,n, then we get

f (z) = f

(
n

∑
k=1

(xk + iyk)ik

)
=

n

∑
k=1

(xk f (ik)+ yk f (iik)) .

Hence, | f (z)| ≤ max(max
1≤k≤n

| f (ik)|, max
1≤k≤n

| f (iik)|)
n

∑
k=1

|zk|. Since all norms on Cn are

equivalent, using the last inequality, we conclude that | f (z)| ≤ c‖z‖= c, where c is

a constant, which depends only on n. This means that (6.16) is true.

Theorem 6.4 (Hahn-Banach1). Let L be a subspace of the space Cn and f be a

linear functional defined on L,

‖ f‖= sup
x∈L,‖x‖=1

| f (x)|. (6.17)

1 Hans Hahn (1879–1934) was an Austrian mathematician, Stefan Banach (1892–1945) was a

Polish mathematician.

6.3 The Hahn-Banach Theorem. Dual Norms 203

Then there exists a linear functional F defined on Cn such that F(x) = f (x) for

all x ∈ L and

‖F‖= sup
x∈Cn,‖x‖=1

|F(x)|= ‖ f‖.1 (6.18)

Proof. First we assume that f is a real linear functional. Naturally, we suppose

that f is not identically zero. Theretofore, without loss of generality, we can assume

that ‖ f‖= 1. We do not consider the trivial case of L =Cn. Let u /∈ L and let L1 ⊃ L

be the set of all vectors of the form x+ tu, where x ∈ L, t ∈ R. Using the triangle

inequality, we see that

f (x)− f (y)≤ ‖x− y‖ ≤ ‖x+u‖+‖y+u‖

for all x,y ∈ L. Hence, f (x)−‖x+ u‖ ≤ f (y)+ ‖y+ u‖. Therefore, there exists a

number a such that

sup
x∈L

(f (x)−‖x+u‖)≤ a ≤ inf
x∈L

(f (x)+‖x+u‖). (6.19)

Let us define a functional f1 on L1 by the formula f1(x+ tu) = f (x)− at (check

that f1 is the real linear functional!). It follows from inequalities (6.19) that

| f (x)−a| ≤ ‖x+u‖ for all x ∈ L,

and | f1(x+u)| ≤ ‖x+u‖ for all x ∈ L. For t 6= 0 we get f1(x+ tu) = t f1(t
−1x+u),

hence,

| f1(x+ tu)|= |t|| f1(t
−1x+u)| ≤ |t|‖t−1x+u)‖= ‖x+ tu‖,

or | f1(x)| ≤ ‖x‖ for all x ∈ L1. Arguing us above, we construct a real linear func-

tional f2 defined on the set L2 ⊃ L1 of all vectors of the form x+ t(iu), where x ∈ L1,

t ∈R, such that | f2(x)| ≤ ‖x‖ for all x ∈ L2. It is easy to see that the set L2 coincides

with the subspace of the space Cn spanned by the basis of the subspace L and the

vector u. Thus we have constructed the extension of the real linear functional f

defined on L onto the wider subspace. Increasing sequentially the dimension of

the subspaces, we can construct the real linear functional F defined on the entire

space Cn such that F(x) = f (x) for all x ∈ L and |F(x)| ≤ ‖x‖ for all x ∈ Cn. It

follows from the last estimate and (6.17) that ‖F‖= ‖ f‖.

Let now f be a (complex) linear functional defined on L. We represent it in the

form f (x) = g(x)+ ih(x) for all x ∈ L, where g and h are real linear functionals on L.

Since the functional f is linear, we get f (ix) = g(ix)+ ih(ix) = i f (x) = ig(x)−h(x),
hence, h(x) = −g(ix), and f (x) = g(x)− ig(ix). By assumption, ‖ f‖ = 1, conse-

quently we have ‖g‖ ≤ 1. Using the construction described in the previous part of

the proof, we construct a real linear functional G(x) defined on the entire space Cn

such that

G(x) = g(x) for all x ∈ L, and |G(x)| ≤ ‖x‖ for all x ∈ Cn.

1 One says, F is the norm-preserving extension of the functional f onto the entire space Cn.

204 6 Vector and Matrix Norms

Further, let F(x) = G(x)− iG(ix) for all x ∈ Cn. Clearly, F(x) = f (x) for all x ∈ L.

Now we prove that the functional F is linear. For this purpose it is enough (in ad-

dition to the previous) to show that F(ix) = iF(x) for all x ∈ Cn. This fact follows

directly from the definition. Indeed, F(ix) = G(ix)+ iG(x) = i(G(x)− iG(ix)). To

complete the proof we check equality (6.18). Let x ∈ Cn be a given vector. Take a

real number θ such that F(x)eiθ is nonnegative. Then

|F(x)|= F(eiθ x) = G(eiθ x)≤ ‖eiθ x‖= ‖x‖.

Combining (6.17) with the last inequality, we get (6.18). ⊓⊔

Corollary 6.1. Let x0 ∈ Cn be a given vector. There exists a linear functional F

defined on Cn such that F(x0) = ‖x0‖ and ‖F‖= 1.

Proof. Let us consider the subspace L ⊂ Cn of all vectors of the form αx0, where

α ∈ C, and let us define on this subspace a linear functional f by the next for-

mula: f (αx0) = α‖x0‖. Then, obviously, f (x0) = ‖x0‖ and ‖ f‖ = 1. To conclude

the proof, using the Hahn-Banach Theorem, we construct the norm-preserving ex-

tension of the functional f onto the entire space Cn. ⊓⊔

We can consider the space Cn as a unitary space if we define an inner product

(for example, standard) on it. Using the Riesz Theorem (see p. 125), we see that for

each linear functional f on Cn there exists one and only one vector y ∈Cn such that

f (x) = (x,y) for all x ∈ Cn, and conversely, each vector y ∈ Cn generates the linear

functional: f (x) = (x,y) for all x ∈Cn. Let ‖ ·‖ be a norm on the space Cn. For each

vector y ∈ Cn we put

‖y‖∗ = ‖ f‖= sup
x∈Cn,x 6=0

|(x,y)|
‖x‖ = sup

x∈Cn,‖x‖=1

|(x,y)|. (6.20)

The reader can easily prove that relationship (6.20) defines the norm on the space Cn.

This norm is called dual to the original norm. The next theorem shows that the con-

cept of the duality of norms is mutual.

Theorem 6.5. Let ‖ · ‖ be a norm on the space Cn and let ‖ · ‖∗ be its dual norm.

Then

‖x‖= sup
y∈Cn,‖y‖∗=1

|(x,y)|. (6.21)

Proof. It follows immediately from the definition of the dual norm that for each

nonzero y ∈ Cn the next inequality holds: ‖x‖ ≥ |(x,y)|/‖y‖∗. Using Corollary 6.1,

we see that there exists a vector y such that ‖x‖ = |(x,y)|/‖y‖∗. These arguments

show that equality (6.21) is true. ⊓⊔

In the proof of Theorem 6.5 we have established the following result.

Corollary 6.2. For all x,y ∈ Cn the next inequality is true:

|(x,y)| ≤ ‖x‖‖y‖∗. (6.22)

6.4 Norms on the Space of Matrices 205

Inequality (6.22) is called the generalized Cauchy-Schwarz inequality.

For example, the norms ‖ · ‖p, ‖ · ‖q for p > 1, 1/p+ 1/q = 1 are dual to each

other with respect to the standard inner product on Cn. Indeed, for all x,y ∈ Cn,

by Hölder’s inequality (see (6.2)), we have |(x,y)| ≤ ‖x‖p‖y‖q. Let xk = ρkeiϕk ,

where k = 1,2, . . . ,n. Put yk = ρ p−1
k eiϕk , k = 1,2, . . . ,n. By elementary calculations,

we see that |(x,y)|= ‖x‖p‖y‖q. Therefore,

‖x‖p = sup
y∈Cn,y 6=0

|(x,y)|
‖y‖q

.

Now the reader can easily prove that the norms ‖ · ‖1 and ‖ · ‖∞ are dual to each

other with respect to the standard inner product on the space Cn.

6.4 Norms on the Space of Matrices

As above, we denote by Mm,n the set of all rectangular matrices with m rows, n

columns, and (generally speaking) complex elements. If m = n, we write Mn. If

by the usual way we define on the set Mm,n the operations of matrix addition and

multiplication of a matrix by a scalar, then this set becomes the complex linear space

of dimension mn. On this linear space we introduce a norm, i.e., we associate with

each A ∈ Mm,n a number ‖A‖ such that the following axioms hold:

1. ‖A‖ ≥ 0 for all A ∈ Mm,n; ‖A‖= 0 if and only if A = 0;

2. ‖αA‖= |α|‖A‖ for all A ∈ Mm,n and for all α ∈ C;

3. ‖A+B‖ ≤ ‖A‖+‖B‖ for all A,B ∈ Mm,n.

We say in this case that a vector norm is introduced on the space Mm,n. Clearly, this

norm has all properties that were investigated in the last section for the norms of

vectors.

So-called consistent norms are used often on spaces of matrices. For consistent

norms additionally to axioms 1–3 the next axiom must hold true:

4. ‖AB‖(mp) ≤ ‖A‖(mn)‖B‖(np) for all matrices A ∈ Mm,n,B ∈ Mn,p.

Here subscripts indicate norms on the corresponding spaces of matrices.

Not all vector norms on spaces of matrices are consistent. For example, we put

‖A‖= max
1≤i, j≤n

|ai j| (6.23)

for A ∈ Mn. Obviously, it is a vector norm but it is not a consistent norm on Mn.

Indeed, if

A =

(
1 1

1 1

)
, then AA =

(
2 2

2 2

)
,

206 6 Vector and Matrix Norms

and ‖A‖= 1, ‖AA‖= 2, hence the inequality ‖AA‖ ≤ ‖A‖‖A‖ does not hold.

Let ‖ · ‖ be a consistent norm on Mn and S ∈ Mn be an arbitrary nonsingular

matrix. Then, as the reader can easily prove, the formula

‖A‖(s) = ‖SAS−1‖ for all A ∈ Mn

defines a consistent norm on Mn.

Here are important examples of consistent matrix norms.

1. Let ‖A‖l1 =
n

∑
i, j=1

|ai j| for A ∈ Mn. Evidently, the first three axioms hold. Let us

verify axiom 4. By definition, for A,B ∈ Mn we have

‖AB‖l1 =
n

∑
i, j=1

∣∣∣∣∣
n

∑
k=1

aikbk j

∣∣∣∣∣ ,

therefore,

‖AB‖l1 ≤
n

∑
i, j,k=1

|aik||bk j|.

Adding nonnegative items to the right hand side of the last inequality, we get

‖AB‖l1 ≤
n

∑
i, j,k,m=1

|aik||bm j|.

It remains to note that

n

∑
i, j,k,m=1

|aik||bm j|=
n

∑
i,k

|aik|
n

∑
j,m=1

|bm j|= ‖A‖l1‖B‖l1 .

2. Let ‖A‖E =

(
m,n

∑
i, j=1

|ai j|2
)1/2

for A ∈ Mm,n. This norm is generated by the

standard inner product on the space Cmn. Hence the first three axioms for this norm

hold. Usually, the norm ‖A‖E is called the Euclidean norm or the Frobenius1 norm.

Using the Cauchy-Schwarz inequality (see p. 198), we verify Axiom 4. Let A∈ Mm,n

and B ∈ Mn,p. Then

‖AB‖2
E =

m,p

∑
i, j=1

∣∣∣∣∣
n

∑
k=1

aikbk j

∣∣∣∣∣

2

≤
m,p

∑
i, j=1

n

∑
k=1

|aik|2
n

∑
k=1

|bk j|2

=
m,n

∑
i,k=1

|aik|2
n,p

∑
k, j=1

|bk j|2 = ‖A‖2
E‖B‖2

E .

1 Ferdinand Georg Frobenius (1849–1917) was a German mathematician.

6.4 Norms on the Space of Matrices 207

3. The reader can easily prove that the norm ‖A‖= n max
1≤i, j≤n

|ai j| is consistent on

the space Mm,n.

Let A ∈ Mm,n and let ‖ · ‖(m), ‖ · ‖(n) be some norms on the spaces Cm, Cn, re-

spectively. Then there exists a nonnegative number NA such that

‖Ax‖(m) ≤ NA‖x‖(n) for all x ∈ Cn. (6.24)

Indeed, since any norm on Cn is equivalent to the norm ‖ · ‖∞, i.e.,

c1‖x‖∞ ≤ ‖x‖(n) for all x ∈ Cn,

‖x‖(m) ≤ c2‖x‖∞ for all x ∈ Cm,

where c1, c2 are positive constants independent of x, we see that the following chain

of inequalities holds:

‖Ax‖(m) ≤ c2‖Ax‖∞ = c2 max
1≤i≤m

∣∣∣∣∣
n

∑
j=1

ai jx j

∣∣∣∣∣≤ c2‖x‖∞ max
1≤i≤m

n

∑
j=1

|ai j|

≤ c2

c1
max

1≤i≤m

n

∑
j=1

|ai j|‖x‖(n).

Denote by ν(A) the infimum of the set of all numbers NA that satisfy (6.24). Ev-

idently, we can define the function ν on the space Mm,n by the following equivalent

way:

ν(A) = sup
x∈Cn,x 6=0

‖Ax‖(m)

‖x‖(n)
= sup

x∈Cn,‖x‖(n)=1

‖Ax‖(m). (6.25)

Clearly,

‖Ax‖(m) ≤ ν(A)‖x‖(n) for all x ∈ Cn.

The reader can easily prove that all axioms of a consistent matrix norm hold for

the function ν . Matrix norm (6.25) is called subordinate or induced or an operator

norm.

For any definitions of norms on the spaces Cm, Cn there exists a vector x0 ∈ Cn

such that ‖x0‖(n) = 1 and

‖Ax0‖(m) = sup
x∈Cn,‖x‖(n)=1

‖Ax‖(m),

i.e., we can replace “sup” by “max” in definition (6.25). The proof of this statement

is left to the reader.

It is easy to see that for any definition of a norm on Cn the subordinate norm of

the identity matrix (of order n) is equal to one.

208 6 Vector and Matrix Norms

Not each norm defined on Mn is induced by a vector norm. For example, the

Frobenius norm is not induced by any vector norm, since ‖I‖E =
√

n. Norm (6.23)

is not an operator norm too, since this norm is not consistent on Mn.

Examples of calculations of subordinate matrix norms.

1. Suppose that the norm on the space Cn is defined by the following equality

(see the first example on p. 199 for p = 1): ‖x‖1 =
n

∑
k=1

|xk|. Then the induced matrix

norm is

‖A‖1 = max
x∈Cn,‖x‖1=1

‖Ax‖1.

It is easy to see that for any x ∈ Cn, ‖x‖1 = 1, we have

‖Ax‖1 =
n

∑
i=1

∣∣∣∣∣
n

∑
j=1

ai jx j

∣∣∣∣∣≤
n

∑
i=1

n

∑
j=1

|ai j||x j|=
n

∑
j=1

|x j|
n

∑
i=1

|ai j|

≤ max
1≤ j≤n

n

∑
i=1

|ai j|
n

∑
j=1

|x j|= max
1≤ j≤n

n

∑
i=1

|ai j|.

Suppose that max
1≤ j≤n

n

∑
i=1

|ai j| =
n

∑
i=1

|aik|. Let x̃ be the vector in the space Cn such

that x̃k = 1 and all other coordinates of the vector x̃ are equal to zero. Then,

clearly, ‖x̃‖1 = 1 and ‖Ax̃‖1 =
n

∑
i=1

|aik|. Therefore,

‖A‖1 = max
x∈Cn,‖x‖1=1

‖Ax‖1 = max
1≤ j≤n

n

∑
i=1

|ai j|, (6.26)

and so ‖A‖1 is called the maximum absolute column sum norm of the matrix A.

2. If the norm on the space Cn is defined by the equality ‖x‖∞ = max
k≤1≤n

|xk|, then

for any x ∈ Cn such that ‖x‖∞ = 1 we have

‖Ax‖∞ = max
1≤i≤n

∣∣∣∣∣
n

∑
j=1

ai jx j

∣∣∣∣∣≤ max
1≤i≤n

n

∑
j=1

|ai j||x j|

≤ max
1≤ j≤n

|x j| max
1≤i≤n

n

∑
j=1

|ai j|= max
1≤i≤n

n

∑
j=1

|ai j|.

Suppose that max
1≤i≤1

n

∑
j=1

|ai j|=
n

∑
j=1

|ak j|. Let x̃ ∈ Cn be the vector with components

x̃ j =

{
āk j/|ak j|, ak j 6= 0,

1, ak j = 0,

6.4 Norms on the Space of Matrices 209

where j = 1,2, . . . ,n, and as usual the overline is the symbol of the complex

conjugation. Clearly, ‖x̃‖∞ = 1, and by elementary calculations we see that for

all i = 1,2, . . . ,n the following inequalities hold:

∣∣∣∣∣
n

∑
j=1

ai j x̃ j

∣∣∣∣∣≤
n

∑
j=1

|ai j| ≤
n

∑
j=1

|ak j|,

and for i = k we have ∣∣∣∣∣
n

∑
j=1

ai j x̃ j

∣∣∣∣∣=
n

∑
j=1

|ak j|,

i.e., ‖Ax̃‖∞ = max
1≤i≤1

n

∑
j=1

|ai j|. Therefore,

‖A‖∞ = max
x∈Cn,‖x‖∞=1

‖Ax‖∞ = max
1≤i≤n

n

∑
j=1

|ai j|,

and so ‖A‖∞ is called the maximum absolute row sum norm of the matrix A.

3. Now we introduce the norms on the spaces Cm and Cn that are induced by the

standard inner product, i.e., we set ‖x‖2 = |x|. For any x ∈ Cn we have

‖Ax‖2
2 = (Ax,Ax) = (A∗Ax,x).

The matrix A∗A is Hermitian and non-negative semidefinite. Hence there exists an

orthonormal basis {ek}n
k=1 such that A∗Aek =σ2

k ek, where σ2
k , k = 1,2, . . . ,n, are the

eigenvalues of the matrix A∗A, they all are nonnegative. Expanding x into the finite

series x =
n

∑
k=1

ξkek with respect to the basis {ek}n
k=1 and assuming that ‖x‖2 = 1,

we get
n

∑
k=1

|ξk|2 = 1, ‖Ax‖2
2 =

n

∑
k=1

σ2
k |ξk|2 ≤ max

1≤k≤n
σ2

k . Put now σ j = max
1≤k≤n

σk and

x̃ = e j. Then ‖Ax̃‖2
2 = σ2

j . Thus we see that max
x∈Cn,‖x‖2=1

‖Ax‖2 = max
1≤k≤n

σk, i.e.,

‖A‖2 = max
1≤k≤n

σk. (6.27)

The next special case is interesting for many applications. Let A ∈ Mn be a Her-

mitian matrix, i.e., A = A∗. Then, evidently, σk = |λk(A)|, where k = 1,2, . . . ,n,

and λk(A) is the eigenvalue of the matrix A. Therefore for any Hermitian matrix we

get

‖A‖2 = max
1≤k≤n

|λk(A)|= max
x∈Cn,x 6=0

|(Ax,x)|
(x,x)

= ρ(A),

where ρ(A) is the spectral radius of A (see p. 178). In this connection the norm ‖A‖2

is called usually spectral.

The proof of the following propositions is left to the reader.

210 6 Vector and Matrix Norms

Proposition 6.1. For any matrix A we have (see p. 160)

‖A+‖2 =
1

σr

. (6.28)

Here σr is the minimal singular value of the matrix A.

Proposition 6.2. If the matrix A is invertible, then (see p. 159)

cond(A) = ‖A‖2‖A−1‖2.

Therefore the next notation is often used: cond(A) = cond2(A).
The calculation of eigenvalues of a matrix, generally speaking, is a complica-

ted problem. Hence it is useful to estimate the norm ‖A‖2 using an explicit func-

tion of elements of A. Let us prove that for any matrix A ∈ Mmn the follow-

ing estimate is true: ‖A‖2 ≤ ‖A‖E . Indeed, by elementary calcualtions, we get1

tr(A∗A) =
m,n

∑
i, j=1

|ai j|2. On the other hand, tr(A∗A) =
n

∑
k=1

σ2
k ≥ max

1≤k≤n
σ2

k , hence,

‖A‖2 = max
1≤k≤n

σk ≤
(

m,n

∑
i, j=1

|ai j|2
)1/2

= ‖A‖E . (6.29)

The reader can easily check the following properties.

1. ‖A‖2 = ‖UAV‖2 and ‖A‖E = ‖UAV‖E for any matrix A ∈ Mn and any unitary

matrices U and V .

2. ‖A‖2 = ‖A∗‖2 for any matrix A ∈ Mn.

The value of a consistent matrix norm is useful, particularly, for an estimation

of the spectral radius of the matrix. Namely, for any square matrix A the following

inequality holds:

ρ(A)≤ ‖A‖, (6.30)

where ‖A‖ is any consistent norm of the matrix A. Indeed, let λ , x be an eigenpair

of the matrix A, and let X be a square matrix such that all columns of X are equal to

each other and equal to the vector x. Then AX = λX . Hence,

|λ |‖X‖= ‖AX‖ ≤ ‖A‖‖X‖

for any consistent matrix norm. We also see that ‖X‖ 6= 0, since x is an eigenvector,

which is not equal to zero by definition. Thus for each eigenvalue λ of the matrix A

the following inequality holds: |λ | ≤ ‖A‖. The last inequality is equivalent to (6.30).

Clearly, the next corollary follows from estimate (6.30).

Corollary 6.3. If any consistent matrix norm of the matrix A ∈ Mn is less than one,

then A is a convergent matrix.

1 Here the trace of the matrix A∗A is calculated as the sum of all elements of the leading diagonal

of this matrix, see p. 117.

6.4 Norms on the Space of Matrices 211

Theorem 6.6. For any consistent matrix norm introduced on the space Mn and for

any matrix A ∈ Mn the following equality holds:

ρ(A) = lim
k→∞

‖Ak‖1/k. (6.31)

Proof. If λ is an eigenvalue of the matrix A, then for each integer k>0 the num-

ber λ k is an eigenvalue of the matrix Ak. Therefore, using inequality (6.30), we

get (ρ(A))k=ρ(Ak)≤‖Ak‖, and ρ(A)≤‖Ak‖1/k for each integer k>0. Further, let ε
be a positive number. Then the matrix (ρ(A)+ ε)−1A is convergent, since the mod-

ulus of each eigenvalue of this matrix is less than one. Whence, (ρ(A)+ε)−kAk → 0

as k →∞. Since any norm on Mn is a continuous function (see pp. 199, 205), we get

‖(ρ(A)+ ε)−kAk‖→ 0 as k →∞. Hence there exists N > 0 such that for all k ≥ N

the following inequality holds ‖(ρ(A) + ε)−kAk‖ ≤ 1, and ‖Ak‖1/k ≤ ρ(A) + ε .

Thus for any ε > 0 and for all sufficiently large k the following estimates are true

ρ(A)≤ ‖Ak‖1/k ≤ ρ(A)+ ε . This statement is equivalent to (8.4.3). ⊓⊔

Using (8.4.3), the reader can easily prove that

ρ(A+B)≤ ρ(A)+ρ(B), ρ(AB)≤ ρ(A)ρ(B)

for any permutable matrices A and B.

Theorem 6.7. For any matrix A ∈ Mn we have

ρ(A) = inf
S∈Mn,det(S) 6=0

‖SAS−1‖1 = inf
S∈Mn,det(S) 6=0

‖SAS−1‖∞. (6.32)

Proof. Let us prove the theorem for the norm ‖ · ‖1. For the norm ‖ · ‖∞ all the

arguments are repeated verbatim. Matrices A and SAS−1 are similar. Therefore they

have the same spectrum, and ρ(A) = ρ(SAS−1). Using this and (6.30), we get

ρ(A)≤ ‖SAS−1‖1 for all S ∈ Mn, det(S) 6= 0. (6.33)

By the Schur Theorem, there is a unitary matrix U such that

U∗AU = T, (6.34)

where T is an upper triangular matrix, all eigenvalues λ1,λ2, . . . ,λn of the matrix A

form the leading diagonal of T . Let D = diag(d,d2, . . . ,dn), where d is a positive

number. Set

Q = DT D−1 (6.35)

and compute

212 6 Vector and Matrix Norms

Q =




λ1 d−1t12 d−2t13 . . . d−(n−2)t1,n−1 d−(n−1)t1,n

0 λ2 d−1t23 . . . d−(n−3)t2,n−1 d−(n−2)t2,n

0 0 λ3 . . . d−(n−4)t3,n−1 d−(n−3)t3,n
. .
0 0 0 . . . λn−1 d−1tn−1,n

0 0 0 . . . 0 λn



. (6.36)

Let now ε be a given positive number. Then for d large enough, we can be certain

that the sum of all the absolute values of the entries of each column of the matrix Q

is less than or equal to ρ(A)+ ε . Using (6.34), (6.35), we get SAS−1 = Q, where

S = DU−1, and ‖SAS−1‖1 = ‖Q‖1 ≤ ρ(A) + ε . Since the last inequality can be

achieved by choosing the number d for any positive ε , this together with (6.33)

provide the first equality in (6.32). ⊓⊔

Using Theorem 6.7, the reader can easily prove that for any matrix A ∈ Mn the

following equality holds:

ρ(A) = inf
‖·‖

‖A‖, (6.37)

where the infimum is taken over all consistent matrix norms on Mn, but, generally

speaking, in (6.37) “inf” can not be replaced by “min”.

At the end of this section we consider one important kind of norms on the space

of matrices. These are so called the Ky Fan norms.

Theorem 6.8. Let A ∈ Mm,n, σ1(A) ≥ σ2(A) ≥ ·· · ≥ σq(A) ≥ 0, q = min(m,n), be

the singular values of the matrix A (zeros are also included). Then

‖A‖k,p =

(
k

∑
j=1

σ p
j (A)

)1/p

,

where 1 ≤ k ≤ q, p ≥ 1 are given numbers, is the norm on the space Mm,n. For m = n

the norm ‖A‖k,p is consistent.

Proof. Obviously, in the considered case Axioms 1 and 2, p. 205, hold true. There-

fore we check only the following inequalities:

‖A+B‖k,p ≤ ‖A‖k,p +‖B‖k,p for all A,B ∈ Mm,n, and 1 ≤ k ≤ q, p ≥ 1, (6.38)

‖AB‖k,p ≤ ‖A‖k,p‖B‖k,p for all A,B ∈ Mn, and 1 ≤ k ≤ n, p ≥ 1. (6.39)

Using Theorem 5.7, p. 165, Corollary 5.1, p. 164, and the Minkowski inequality,

p. 198, we get (6.38). Inequality (6.39) follows immediately from Corollary 5.3,

p. 166. ⊓⊔

The norm ‖A‖k,p is called the Ky Fan norm.

Remark 6.1. Since for any matrix A and any unitary matrices U , V of corresponding

dimensions all the singular values of the matrices A and UAV coincide, we can

6.5 The Gap between Two Subspaces of Cn 213

say that the norm ‖A‖k,p is unitary invariant. If k = 1, we get the spectral norm.

If k = q and p = 2, we get the Frobenius norm. For any k > 1 the Ky Fan norm

of the identity matrix is greater than one. Therefore it is not an operator norm. By

Theorem 5.12, p. 168, the norms ‖A‖k,1 =
k

∑
j=1

σ j(A), 1 ≤ k ≤ q, can be calculated

using formulas (5.48) and (5.49), p. 168.

6.5 The Gap between Two Subspaces of Cn

In this section the norm on the space Cn is induced by an inner product, i.e., we

set ‖x‖= |x|. The norm on Mn is the corresponding subordinate matrix norm.

Let L, M be subspaces of the space Cn and let PL, PM be the operators of the

orthogonal projection of Cn onto L and M, respectively (see p. 88). The number

ϑ(L,M) = ‖PL −PM‖

is called the gap between the subspaces L and M. It follows immediately from the

definition that the function ϑ satisfies the properties of a distance (a metric):

1. ϑ(L,M)≥ 0, ϑ(L,M) = 0 if and only if L = M,

2. ϑ(L,M) = ϑ(M,L),
3. ϑ(L,M)≤ ϑ(L,N)+ϑ(N,M) for all subspaces L,M,N of Cn.

The following numbers are useful in the future consideration:

dL,M = max
x∈L,‖x‖=1

‖x−PMx‖, σL,M = min
x∈L,‖x‖=1

‖PMx‖.

They are connected to each other by the equality

d2
L,M = 1−σ2

L,M. (6.40)

Indeed, using the relationships PM = P∗
M , PM = P2

M (see pp. 88, 131), we can write

‖x−PMx‖2 = (x,x)+(PMx,PMx)− (x,PMx)− (PMx,x)

= (x,x)+(PMx,PMx)−2(PMx,PMx) = ‖x‖2 −‖PMx‖2.

Therefore, max
x∈L,‖x‖=1

‖x−PMx‖2 = 1− min
x∈L,‖x‖=1

‖PMx‖2.

The number dL,M can be calculated by the formula dL,M = ‖(I−PM)PL‖. Indeed,

by definition,

‖(I −PM)PL‖= sup
x∈Cn,x 6=0

‖(I −PM)PLx‖
‖x‖ .

Evidently,

214 6 Vector and Matrix Norms

‖(I −PM)PLx‖
‖x‖ ≤ ‖(I −PM)PLx‖

‖PLx‖
if PLx 6= 0. Therefore,

‖(I −PM)PL‖ ≤ sup
y∈L,y 6=0

‖(I −PM)y‖
‖y‖ = dL,M.

On the other hand, for x ∈ L, x 6= 0, we have

‖(I −PM)x‖
‖x‖ =

‖(I −PM)PLx‖
‖x‖ .

Thus,

dL,M = sup
x∈L,x 6=0

‖(I −PM)PLx‖
‖x‖ ≤ sup

x∈Cn,x 6=0

‖(I −PM)PLx‖
‖x‖ = ‖(I −PM)PL‖.

Theorem 6.9. For any subspaces L,M of the space Cn the next equality is true:

‖PL −PM‖= max(dL,M,dM,L).

Proof. Obviously, PL − PM = PL(I − PM)− (I − PL)PM . Hence, using the equal-

ity PL(I −PL) = 0 (see p. 88), for all x ∈ Cn we get

‖(PL −PM)x‖2 = ‖PL(I −PM)x‖2 +‖(I −PL)PMx‖2

= ‖PL(I −PM)(I −PM)x‖2 +‖(I −PL)PMPMx‖2

≤ ‖PL(I −PM)‖2‖(I −PM)x‖2 +‖(I −PL)PM‖2‖PMx‖2

≤ max(‖PL(I −PM)‖2,‖(I −PL)PM‖2)(‖(I −PM)x‖2 +‖PMx‖2)

= max(‖PL(I −PM)‖2,‖(I −PL)PM‖2)‖x‖2.

Note that ‖PL(I−PM)‖= ‖(PL(I−PM))∗‖= ‖(I−PM))PL‖ (see Property 2, p. 210).

Therefore, ‖PL −PM‖ ≤ max(dL,M,dM,L). The converse inequality is also true. In-

deed,

(I −PL)PM = PM −PLPM = P2
M −PLPM = (PM −PL)PM,

and ‖(I −PL)PM‖≤‖PL −PM‖. Analogously, ‖(I −PM)PL‖≤‖PL −PM‖. ⊓⊔

Clearly, the following corollary is true.

Corollary 6.4. For any subspaces L,M ∈ Cn we have

0 ≤ ϑ(L,M)≤ 1.

Theorem 6.10. If ϑ(L,M)< 1, then dimL = dimM.

Proof. Using Theorem 4.3, p. 91, we see that it is enough to show that PL is the

bijective map from M to L. By assumption, ‖PL −PM‖ < 1, therefore the operator

6.5 The Gap between Two Subspaces of Cn 215

I−(PL−PM) is invertible (see Theorem 5.21, p. 180, and Corollary 6.3, p. 210), and

Im(I − (PL −PM)) = Cn. In other words, (I − (PL −PM))Cn = Cn. Acting on both

sides of the last equality by the operator PL, we get PLPMCn = L. Hence, PLM = L,

i.e., the operator PL maps M onto the entire subspace L. To complete the proof

we show that this map is bijective. If we assume the contrary, then there exists a

nonzero vector x0 ∈ M such that PLx0 = 0. Then x0 = PMx0 −PLx0, and therefore,

‖x0‖ ≤ ‖PM −PL‖‖x0‖< ‖x0‖, but this inequality can not be satisfied. ⊓⊔

Theorem 6.11. If dimL = dimM, then dL,M = dM,L.

Proof. First we assume that σL,M = 0, i.e., there exists x∈ L, ‖x‖ = 1, such that

PMx = 0 (in other words, x ∈ M⊥). Now we show that σM,L = 0, i.e., there exists a

vector y ∈ M, ‖y‖= 1, such that PLy = 0. Denote by L⊥
x the orthogonal complement

in L of the one-dimensional subspace spanned by x. Clearly, dimL⊥
x = dimL− 1.

Let (L⊥
x)⊥ be the orthogonal compliment in the space Cn of the subspace L⊥

x . Then

dim(L⊥
x)⊥ = n− dimL+ 1, hence, dim(L⊥

x)⊥ + dimM = n+ 1. Therefore, there

exists a vector y, ‖y‖= 1, that belongs to (L⊥
x)⊥∩M. Since x ∈ M⊥, we see that y is

orthogonal to x, i.e., y∈ L⊥, hence, PLy= 0. Now we note that if σL,M,σM,L = 0, then

dL,M = dM,L = 1 (see (6.40)). Thus we can assume that σL,M > 0. By the definition

of σL,M , we see that there exists a vector x ∈ L, ‖x‖ = 1, such that ‖PMx‖2 = σ2
L,M .

Let us show that PMx−σ2
L,Mx ∈ L⊥. To do that, using the definition of σL,M , we

write

(PM(x+ v),x+ v)≥ σ2
L,M(x+ v,x+ v) for all v ∈ L.

Whence, by elementary calculations, we get

(1−σ2
L,M)(v,v)+(PMx−σ2

L,Mx,v)+(v,PMx−σ2
L,Mx)≥ 0 for all v ∈ L.

If we replace here v by tv, t ∈ R, we obtain

t2(1−σ2
L,M)(v,v)+ t(PMx−σ2

L,Mx,v)+ t(v,PMx−σ2
L,Mx)≥ 0 for all t ∈ R.

(6.41)

It follows from (6.41) that Re(PMx−σ2
L,Mx,v) = 0. Replacing v by iv in (6.41), we

get Im(PMx−σ2
L,Mx,v) = 0. Therefore, (PMx−σ2

L,Mx,v) = 0 for all v ∈ L. In other

words, PMx−σ2
L,Mx ∈ L⊥. Hence, PLPMx−σ2

L,MPLx = PLPMx−σ2
L,Mx = 0. Now let

y=σ−1
L,MPMx. Then y∈M, ‖y‖= 1, PLy=σL,Mx, ‖PLy‖=σL,M , hence, σM,L ≤σL,M .

Analogously, σL,M ≤ σM,L, i.e., σL,M = σM,L. ⊓⊔

Corollary 6.5. If dimL = dimM, then

ϑ(L,M) = ‖PL −PM‖= ‖(I −PM)PL‖= ‖(I −PL)PM‖.

As a conclusion, the reader by himself can give the geometrical interpretation

of the function ϑ and all statements of this section for the subspaces of three-

dimensional Euclidean space V3.

Chapter 7

Elements of the Perturbation Theory

In this chapter we study the influence of perturbations of matrices on the solutions of

such basic problems of linear algebra as calculating eigenvalues and singular values

of operators, constructing the inverse matrix, solving systems of linear algebraic

equations, and solving the linear least squares problem.

7.1 Perturbations in the Symmetric Eigenvalue Problem

Let A and B be Hermitian matrices of order n. Writing the obvious equality

A = B+(A−B),

using inequalities (4.148), p. 142, and inequality (6.30), p. 210, we see that

max
1≤k≤n

|λk(A)−λk(B)| ≤ max
1≤k≤n

|λk(A−B)|, (7.1)

max
1≤k≤n

|λk(A)−λk(B)| ≤ ‖A−B‖, (7.2)

where ‖ · ‖ is any consistent matrix norm. Using, for example, the Frobenius norm

(see p. 206), we get

max
1≤k≤n

|λk(A)−λk(B)| ≤
(

n

∑
i, j=1

|ai j −bi j|2
)1/2

. (7.3)

Inequalities (7.1)–(7.3) usually are called Weyl’s inequalities.

If we put |ai j − bi j| ≤ ε , then max
1≤k≤n

|λk(A)−λk(B)| ≤ nε . It is easy to see that

if A = I and all the elements of the matrix E are equal to ε > 0, then

max
1≤k≤n

|λk(A)−λk(A+E)|= nε,

217

218 7 Elements of the Perturbation Theory

i.e., estimate (7.3) is the best possible for the set of all Hermitian matrices.

A special perturbation of a Hermitian matrix is considered in the next theorem.

Theorem 7.1 (“relative” Weyl’s theorem). Let λ1 ≥ λ2 ≥ ·· · ≥ λn be the eigen-

values of a Hermitian matrix A ∈ Mn, λ̃1 ≥ λ̃2 ≥ ·· · ≥ λ̃n be the eigenvalues of the

matrix X∗AX, where X is an arbitrary nonsingular matrix. Then

|λ̃i −λi| ≤ λi‖I −X∗X‖, i = 1,2, . . . ,n, (7.4)

where ‖ · ‖ is any consistent matrix norm.

Proof. Let us take an integer i ∈ [1,n] and write the obvious equality

X∗(A−λiI)X = H +F,

where H = X∗AX −λiI, F = λi(I −X∗X). It is easy to see that the i-th eigenvalue

of the matrix A−λiI is zero. Using Sylvester’s law of inertia, p. 138, we can easily

check that the i-th eigenvalue of the matrix X∗(A − λiI)X is also zero. The i-th

eigenvalue of the matrix H is λ̃i−λi, hence, using inequality (7.2), we get (7.4). ⊓⊔

Theorem 7.1 shows that if we replace the matrix A by X∗AX , where X is a nonsin-

gular matrix, then all zero eigenvalues are preserved and for all nonzero eigenvalues

the next relative error estimate is true:

|λ̃i −λi|
|λ i|

≤ ‖I −X∗X‖, i = 1,2, . . . ,n.

In the rest of this section we assume that the standard inner product is specified on

the space Cn. The next theorem describes how perturbations of a Hermitian matrix

influence on its eigenspaces.

Theorem 7.2. Let A,B be Hermitian matrices of order n, and let

λ1(A)≥ λ2(A)≥ ·· · ≥ λn(A), λ1(B)≥ λ2(B)≥ ·· · ≥ λn(B)

be their eigenvalues. Let k ∈ [1,n] be a given integer and let λk(A) have multiplicity r

such that λk−1(A) > λk(A) > λk+r(A).
1 Let Lk be the eigenspace (of dimension r)

of the matrix A corresponding to λk(A) and Mk be the subspace of dimension r in

the space Cn spanned by the orthogonal eigenvectors of the matrix B corresponding

to its eigenvalues λk(B), λk+1(B), . . . , λk+r−1(B). Let

gapk(A) = min(λk−1(A)−λk(A),λk(A)−λk+r(A)),

‖A−B‖2 <
gapk(A)

2
. (7.5)

Then

1 For k = 1 and k = n these inequalities are obviously modified.

7.1 Perturbations in the Symmetric Eigenvalue Problem 219

ϑ(Lk,Mk)≤
‖A−B‖2

gapk(A)−‖A−B‖2
< 1. (7.6)

Proof. Let x ∈ Lk, ‖x‖2 = 1. If we write x in the form of the orthogonal decomposi-

tion x = PMk
x+ y, where y ∈ M⊥

k , then ‖x−PMk
x‖2 = ‖y‖2. Evidently,

|((A−B)x,y)| ≤ ‖A−B‖2‖y‖2. (7.7)

On the other hand, by the definition of the vector x, we have

((A−B)x,y) = λk(A)(x,y)− (Bx,y).

Note that (x,y) = (y,y), (Bx,y) = (x,By) = (y,By). We have used that B = B∗ and

that M⊥
k is the invariant subspace of the operator B. Therefore,

((A−B)x,y) = λk(A)(y,y)− (By,y). (7.8)

For y 6= 0 we get

λk(A)(y,y)− (By,y) =

(
λk(A)−

(By,y)

(y,y)

)
‖y‖2

2. (7.9)

By the definition of the subspace M⊥
k ,

(By,y)

(y,y)
≥ λk−1(B),

(By,y)

(y,y)
≤ λk+r(B)

(see Lemma 4.7, p. 140). Now, using inequality (7.2) and condition (7.5), we obtain

∣∣∣∣λk(A)−
(By,y)

(y,y)

∣∣∣∣≥ gapk(A)−‖A−B‖2. (7.10)

Obviously, it follows from (7.5), (7.7)–(7.10) that

‖y‖2 ≤
‖A−B‖2

gapk(A)−‖A−B‖2
< 1. (7.11)

Thus (see also Theorem 6.11, p. 215) the inequalities (7.6) are true. ⊓⊔

Sometimes the next corollary gives a more useful estimate.

Corollary 7.1. Let all the conditions of Theorem 7.2 hold true, and let the multiplic-

ity of the eigenvalue λk(A) be one. Then

ϑ(Lk,Mk)
√

1−ϑ 2(Lk,Mk)≤
‖A−B‖2

gapk(A)
. (7.12)

Proof. Let x ∈ Mk, ‖x‖2 = 1. Writing x in the form of the orthogonal decomposi-

tion x = x̃+ y, where x̃ = PLk
x, y ∈ L⊥

k , and using estimate (7.11), we get

220 7 Elements of the Perturbation Theory

‖x̃‖2 =
√

1−‖y‖2
2 > 0. (7.13)

If we put B = A+E, then we can write

(A+E)(x̃+ y) = λk(B)(x̃+ y). (7.14)

Obviously, Ax̃ = λk(A)x̃. Subtracting term by term these equalities, by elementary

calculations, we obtain

(A−λk(A)I)y = (ηI −E)x, (7.15)

where η = λk(B)− λk(A). Now we calculate the inner product of both sides of

equality (7.14) with x̃. We note that (Ax̃, x̃) = λk(A)(x̃, x̃) and also that (y, x̃) = 0

and (Ay, x̃) = 0, since y,Ay ∈ L⊥
k . As a result we get

η =
(Ex, x̃)

‖x̃‖2
2

. (7.16)

Computing the inner product of both sides of equality (7.15) with y and using (7.16),

by elementary calculations, we get

((A−λk(A)I)y,y) =

(
Ex,

(y,y)

‖x̃‖2
2

x̃− y

)
. (7.17)

As we have seen in the proof of Theorem 7.2,

|((A−λk(A)I)y,y)| ≥ gapk(A)‖y‖2
2. (7.18)

The vectors x̃ and y are orthogonal, hence,

∥∥∥∥
(y,y)

‖x̃‖2
2

x̃− y

∥∥∥∥
2

=

(|(y,y)|2
‖x̃‖2

2

+‖y‖2
2

)1/2

=

(‖y‖2
2

‖x̃‖2
2

+1

)1/2

‖y‖2 =
‖y‖2

‖x̃‖2
. (7.19)

Combining (7.17)–(7.19) and (7.13), finally, we get (7.12). ⊓⊔

Remark 7.1. For one-dimensional subspaces Lk and Mk of a real space we ob-

tain ϑ(Lk,Mk) = sinα , where α is the angle between Lk and Mk (prove it!). There-

fore estimate (7.12) usually is written as follows:

1

2
sin2α ≤ ‖A−B‖2

gapk(A)
.

All estimates, which have been obtained in this section, we can consider as a

priori. Using them, we can estimate the perturbations of eigenvalues and eigen-

vectors by the known perturbations of the original matrix. In some situations so

called a posteriori estimates are useful. They give information about errors using

results of done calculations. Let now a normalized vector x be an approximation

7.1 Perturbations in the Symmetric Eigenvalue Problem 221

of an eigenvector of the matrix A and α be an approximation of the corresponding

eigenvalue. Then the accuracy of calculations can be characterized by the residual

vector r(x,α) = Ax−αx. If the matrix A is Hermitian, then it is easy to see that

min
α∈R

‖r(x,α)‖2 = ‖Ax−ρ(x)x‖2,

where ρ(x) = (Ax,x).1 This means that the number (Ax,x) is in a certain sense the

best approximation of the eigenvalue of the Hermitian matrix A if we know the

approximation x of the corresponding eigenvector.

The next theorem shows that the residual r(x) = Ax−ρ(x)x actually can be used

to estimate the accuracy of solutions of spectral problems.

Theorem 7.3. Let A ∈ Mn be a Hermitian matrix, λ = λi be a simple eigenvalue

of the matrix A, and u be the corresponding normalized eigenvector. Let x ∈ Cn,

‖x‖2 = 1, ρ = (Ax,x) 6= λ , |ρ − λ | < gapk(A), r = Ax− ρx. Let L and M be the

one-dimensional subspaces in Cn spanned by u and x, respectively,

γ = min
µ∈σ(A), µ 6=λ

|ρ −µ |.

Then

ϑ(L,M)≤ ‖r‖2

γ
, |λ −ρ | ≤ ‖r‖2

2

γ
. (7.20)

Proof. Write the vector x in the form of the orthogonal decomposition x = x̃+ y,

where x̃ ∈ L, y ∈ L⊥. Then r = (λ −ρ)x̃+Ay−ρy. Since the vector Ay belongs to

the subspace L⊥, we have

‖r‖2
2 = (λ −ρ)2‖x̃‖2

2 +‖Ay−ρy‖2
2. (7.21)

It is easy to see that

‖Ay−ρy‖2
2 ≥ γ2‖y‖2

2. (7.22)

It follows immediately from (7.21), (7.22) that the first estimate in (7.20) is true.

Further, using the definition of r, we obtain (r,x) = 0, or in detail,

(λ −ρ)‖x̃‖2
2 +((A−ρI)w,w)‖y‖2

2 = 0, (7.23)

where w = ‖y‖−1
2 y, ‖w‖2 = 1. Using equality ‖x̃‖2

2 = 1−‖y‖2
2 and (7.23), by ele-

mentary calculations, we get

‖y‖2
2 =

ρ −λ

((A−λ)w,w)
. (7.24)

It follows from (7.23) that ‖x̃‖2
2 = ((A − ρI)w,w)‖y‖2

2/(ρ − λ). Combining this

with (7.21), after elementary calculations we see that

1 Hint: for a given x write ‖r(x,α)‖2
2 as the quadratic trinomial of α .

222 7 Elements of the Perturbation Theory

‖r‖2
2 = ((A−ρI)w,(A−λ I)w)‖y‖2

2. (7.25)

Equalities (7.25) and (7.24) show that

‖r‖2
2 = |ρ −λ | |((A−ρI)w,(A−λ I)w)|

|((A−λ I)w,w)| . (7.26)

If we represent here w in the form of the expansion with respect to the orthonormal

set of eigenvectors of the matrix A, then we obtain

‖r‖2
2 = |ρ −λ |

∣∣ ∑
j 6=i

(λ j −ρ)(λ j −λi)|c j|2
∣∣

∣∣ ∑
j 6=i

(λ j −λi)|c j|2
∣∣ , (7.27)

where c j, j = 1,2, . . . ,n, j 6= i, are the coefficients of the mentioned expansion.

Obviously, it follows from the assumptions of the theorem that for j 6= i all the

numbers (λ j −ρ)(λ j −λi) are positive. Therefore,

∣∣∣∑
j 6=i

(λ j −ρ)(λ j −λi)|c j|2
∣∣∣≥ γ

∣∣∣∑
j 6=i

(λ j −λi)|c j|2
∣∣∣,

i.e., the second estimate in (7.20) is also true. ⊓⊔

7.2 Perturbations of Singular Values and Singular Vectors

The next theorem follows immediately from Lemma 5.1, p. 165, estimate (7.1),

p. 217, and inequality (5.13), p. 158.

Theorem 7.4. Let A, B ∈ Mm,n be arbitrary matrices, q = min(m,n), and let σ1(A),
σ2(A), . . . , σq(A), σ1(B), σ2(B), . . . , σq(B) be their singular values (here we also

include zeros for the uniformity of notation). Then

max
1≤k≤q

|σk(A)−σk(B)| ≤ max
1≤k≤q

σk(A−B), (7.28)

max
1≤k≤n

|σk(A)−σk(B)| ≤
(

m,n

∑
i, j=1

|ai j −bi j|2
)1/2

. (7.29)

The next theorem, which is analogous to Theorem 7.2, p. 218, is also true.

Theorem 7.5. Let A, B ∈ Mm,n be arbitrary matrices, q = min(m,n), and let σ1(A),
σ2(A), . . . , σq(A), σ1(B), σ2(B), . . . , σq(B) be their singular values ordered by non-

increasing. Let σk(A) be a positive singular value of the matrix A of multiplicity r.

Let Lu,k be the subspace of Cn spanned by the right singular vectors of the matrix A

corresponding to σk(A) and let Lv,k be the subspace spanned by the left singular

7.3 Perturbations of Characteristic Values of Arbitrary Matrices 223

vectors of A corresponding to σk(A). Denote by Mu,k the subspace spanned by the

right singular vectors of the matrix B corresponding to the singular values σk(B),
σk+1(B), . . . , σk+r−1(B), and by Mv,k the subspace spanned by the left singular

vectors of B corresponding to the same singular values. Let

gapk(A) = min(σk−1(A)−σk(A),σk(A)−σk+r(A)),
1

‖A−B‖2 <
gapk(A)

2
.

Then

max(ϑ(Lu,k,Mu,k),ϑ(Lv,k,Mv,k))≤
‖A−B‖2

gapk(A)−‖A−B‖2
< 1.

The proof of this theorem is left to the reader.

7.3 Perturbations of Characteristic Values of Arbitrary Matrices

Let A = {ai j}n
i, j=1 be a square matrix, and let

Ri(A) = ∑
1≤ j≤n, j 6=i

|ai j| for all i = 1,2, . . . ,n,

C j(A) = ∑
1≤i≤n, i 6= j

|ai j| for all j = 1,2, . . . ,n.

Theorem 7.6 (Gershgorin2). Let A be an arbitrary matrix of order n. Then all the

characteristic values of A are located in the union of n discs

GR
i = {z ∈ C : |z−aii| ≤ Ri(A)}, i = 1,2, . . . ,n. (7.30)

Proof. Let (λ ,x) be an eigenpair of the matrix A, and let xi be the element of x that

has the largest absolute value. Evidently, xi 6= 0. Using the definition of an eigenpair,

we get

(aii −λ)xi =− ∑
1≤ j≤n, j 6=i

ai jx j,

therefore, |aii−λ ||xi|≤Ri(A)|xi|, and |aii−λ |≤Ri(A). Thus each characteristic value

of the matrix A belongs to one of the discs GR
i , i=1,2, . . . ,n. ⊓⊔

This theorem is often called the Gershgorin disc theorem. Since A and AT have

the same eigenvalues, they all are located in the union of n discs

1 See the footnote on p. 218.
2 Semyon Aronovich Gershgorin (1901–1933) was a Soviet mathematician.

224 7 Elements of the Perturbation Theory

GC
i = {z ∈ C : |z−aii| ≤Ci(A)}, i = 1,2, . . . ,n. (7.31)

This is the so-called the column sum version of the Gershgorin disc theorem.

Theorem 7.6 can be interpreted as a theorem on perturbations of a diagonal ma-

trix D = diag(a11,a22, . . . ,ann). It shows that if the nondiagonal elements of the

matrix A are small, then its characteristic values are not very different from the

characteristic values of the matrix D.

The next two theorems are called the Bauer-Fike theorems.1

Theorem 7.7. Suppose that for the square matrix A = {ai j}n
i, j=1 there exists a non-

singular matrix V such that

V−1AV = Λ = diag(λ1,λ2, . . . ,λn). (7.32)

Let B = {bi j}n
i, j=1 be an arbitrary square matrix. Then all characteristic values of

the matrix A+B are located in the union of n discs

Gi = {z ∈ C : |z−λi| ≤ ‖B‖‖V‖‖V−1‖}, i = 1,2, . . . ,n. (7.33)

Here ‖ · ‖ is a matrix norm that is induced by any absolute vector norm.

Proof. If (λ ,x) is an eigenpair of A + B, then (λ I − Λ)V−1x = V−1BVV−1x,
whence (see p. 201) we get min

1≤i≤n
|λ −λi|‖V−1x‖ ≤ ‖B‖‖V−1‖‖V‖‖V−1x‖, but we

have V−1x 6= 0. Therefore, min
1≤i≤n

|λ −λi| ≤ ‖B‖‖V−1‖‖V‖. Thus, λ ∈
n⋃

i=1

Gi. ⊓⊔

Theorem 7.8. Suppose that the conditions of Theorem 7.7 hold. Then all the char-

acteristic values of the matrix A+B are located in the union of n discs

Gi = {z ∈ C : |z−λi| ≤ nsi‖B‖2}, i = 1,2, . . . ,n, (7.34)

where si = ‖ui‖2‖vi‖2/|(ui,vi)|, vi is the i-th column of the matrix V , ui is the i-th

column of the matrix U = (V−1)∗, and the inner product (·, ·) is the standard inner

product on the space Cn.

Remark 7.2. It is obvious that (λi,vi), i = 1,2, . . . ,n, are the eigenpairs of the ma-

trix A, and (λ̄i,ui), i= 1,2, . . . ,n, are the eigenpairs of the matrix A∗. Each number si

for i = 1,2, . . . ,n is more than or equal to one. The number si is called the coefficient

of skewness of the corresponding eigenvector vi of the matrix A. If the algebraic mul-

tiplicity of the characteristic value λi of the matrix A is equal to one, then, evidently,

the algebraic multiplicity of the characteristic value λ̄i of the matrix A∗ is equal to

one too. The eigenspaces corresponding to these eigenvalues are one-dimensional,

hence the corresponding coefficient of skewness si is uniquely determined.

Proof of Theorem 7.8. The matrices A+B and Λ +V−1BV = Λ + B̃, were we de-

note B̃ =U∗BV , have the same characteristic values. Using the column sum version

1 Friedrich Ludwig Bauer (1924–2015) was a German mathematician, Charles Theodore Fike

(born 1933) is an American mathematician.

7.3 Perturbations of Characteristic Values of Arbitrary Matrices 225

of the Gershgorin disk theorem, we see that all the characteristic values of the ma-

trix Λ + B̃ are located in the union of n discs

G′
i = {z ∈ C : |z−λi − b̃ii| ≤Ci(B̃)}, i = 1,2, . . . ,n.

Note that |z−λi − b̃ii| ≥ |z−λi|− |b̃ii|, Ci(B̃)+ |b̃ii| = ‖b̃i‖1, where as usual by b̃i

we denote the i-th column of the matrix B̃. Therefore all the characteristic values of

the matrix A+B are located in the union of n discs

G′′
k = {z ∈ C : |z−λk| ≤ ‖b̃k‖1}, k = 1,2, . . . ,n.

Let us estimate ‖b̃k‖1. Consider the vectors tk ∈Cn with the following components:1

t jk =





b̃ jk/|b̃ jk|, b̃ jk 6= 0,

0, b̃ jk = 0.

Trivially, ‖b̃k‖1 = (B̃ik, tk), where ik is the column of the identity matrix. Whence,

using the Cauchy-Schwarz inequality, we get

‖b̃k‖1 = (BVik,Utk)≤ ‖B‖2‖U‖2‖vk‖2‖tk‖2. (7.35)

It is easy to check that ‖tk‖2 ≤ √
n. Further, using estimate (6.29), p. 210, we ob-

tain ‖U‖2 ≤
(

n

∑
k=1

‖uk‖2
2

)1/2

. Obviously, each column of the matrix U is uniquely

determined up to a nonzero scalar factor. Therefore we can normalize them to

get ‖uk‖2 = 1 for all k = 1,2, . . . ,n. Then, evidently, the columns of the ma-

trix V must be normalized so that (vk,uk) = 1 for all k = 1,2, . . . ,n. In this case

we see that ‖vk‖2 = ‖vk‖2‖uk‖2/|(uk,vk)| = sk. Thus, using (7.35), finally, we

get ‖b̃k‖1 ≤ nsk‖B‖2. ⊓⊔
The next theorem helps to compare estimate (7.33) with (7.34).

Theorem 7.9. For any normalization of the columns of the matrix V the following

inequality holds:

‖V‖2‖V−1‖2 ≥ max
1≤k≤n

sk. (7.36)

The columns of the matrix V can be normalized so that

‖V‖2‖V−1‖2 ≤
n

∑
k=1

sk. (7.37)

Proof. Clearly, we have Vik =vk, k=1,2, . . . ,n, and ‖V‖2= sup
‖x‖2=1

‖V x‖2 ≥ ‖vk‖2.

Similarly, we see that ‖V−1‖2 = ‖U‖2 ≥ ‖uk‖2. Therefore inequality (7.36) holds.

Now we normalize the columns of the matrix V so that ‖vk‖2 = s
1/2
k . Then, using

1 By b̃ jk we denote the j-th element of the column b̃k.

226 7 Elements of the Perturbation Theory

equality (vk,uk) = 1, we get ‖uk‖2 = s
1/2
k , k = 1,2, . . . ,n. Obviously, this implies

that ‖V−1‖E = ‖V‖E =

(
n

∑
k=1

sk

)1/2

. Using inequality (6.29), p. 210, we obtain

estimate (7.37). ⊓⊔

Remark 7.3. The matrix V that has columns, which form a basis in the space Cn

that consists of the eigenvectors of the matrix A is not uniquely determined. For

any matrix V we have ‖V‖‖V−1‖ ≥ 1. This inequality becomes the equality if,

for example, the matrix V is unitary and the norm of V is spectral. By Theo-

rem 4.41, p. 135, it follows that a matrix is unitarily similar to a diagonal matrix

if and only if this matrix is normal. Thus, if A is a normal matrix, λi, i = 1,2, . . . ,n,

are all the characteristic values of A, and B is an arbitrary square matrix, then

all the characteristic values of the matrix A + B are located in the union of n

discs Gi = {z ∈ C : |z−λi| ≤ ‖B‖2}, i = 1,2, . . . ,n.

7.4 Perturbations and the Invertibility of a Matrix

Let A ∈ Mn be an invertible matrix, i.e., detA 6= 0, and let B ∈ Mn. The question

arises: what are the sufficient conditions for the matrix B to have the inverse of the

matrix A+B? Since A+B = A(I+A−1B), we see that the matrix A+B is invertible

if and only if the spectrum of the matrix A−1B does not include −1. Therefore we

have the following practically important sufficient conditions of the invertibility of

the matrix A+B.

1. The matrix A+B is invertible if A−1B is convergent, i.e., ρ(A−1B)< 1.

2. The matrix A+B is invertible if ‖A−1B‖< 1.

3. The matrix A+B is invertible if ‖A−1‖‖B‖< 1.

Here and below in this section the norm of a matrix is any consistent norm. The

third condition usually is written in the form

cond(A)
‖B‖
‖A‖ < 1, (7.38)

where cond(A) = ‖A−1‖‖A‖. This number is called the condition number of the

matrix A (compare it with the definition in Subsect. 5.1.1, p. 159). We can interpret

condition (7.38) in the following way: the matrix A+B is invertible if the relative

perturbation of the matrix A, i.e., ‖B‖/‖A‖ is small compared with its condition

number.

Example 7.1. Let A = {ai j}n
i, j=1 be a square matrix. The matrix A is said to be row

diagonally dominant if 1

1 See the notations in Sect. 7.3.

7.4 Perturbations and the Invertibility of a Matrix 227

|aii|> Ri(A) for all i = 1,2, . . . ,n. (7.39)

It is said to be column diagonally dominant if

|aii|>Ci(A) for all i = 1,2, . . . ,n. (7.40)

Let us prove that if the matrix A is row diagonally dominant, then it is nonsingular.

Put D = diag(a11,a22, . . . ,ann). Using condition (7.39), we see that the matrix D

is nonsingular. Writing A in the form A = D+(A−D) and using condition (7.39)

one more time, we get ‖D−1(A−D)‖∞ < 1. Therefore condition 2 holds, and the

matrix A is nonsingular. Since det(A)= det(AT), we see that each column diagonally

dominant matrix is nonsingular too.

The reader can easily prove that if one of conditions (7.39) or (7.40) holds, then

all the leading principal minors of the matrix A are nonzero.

Using Example 7.1, the reader can easily prove the Gershgorin disc theorem,

and, conversely, using the Gershgorin disc theorem, the reader can prove that if a

matrix A is row diagonally dominant, then it is nonsingular.

Theorem 7.10. Let matrices A and Ã = A+B be invertible. Then

‖A−1 − Ã−1‖
‖Ã−1‖ ≤ ‖A−1B‖. (7.41)

If ‖A−1B‖< 1, then

‖Ã−1‖ ≤ ‖A−1‖
1−‖A−1B‖ , (7.42)

‖A−1 − Ã−1‖
‖A−1‖ ≤ ‖A−1B‖

1−‖A−1B‖ . (7.43)

Proof. By assumption, I = (A+B)Ã−1, therefore, A−1 = (I+A−1B)Ã−1. This im-

plies that A−1 − Ã−1 = A−1BÃ−1. Whence, obviously, we get (7.41). Further, we

have Ã−1 = A−1 − A−1BÃ−1, and ‖Ã−1‖ ≤ ‖A−1‖+ ‖A−1B‖‖Ã−1‖. Hence es-

timate (7.42) is true. Finally, estimate (7.43) is an obvious consequence of esti-

mates (7.41), (7.42). ⊓⊔

The next corollary follows immediately from Theorem 7.10.

Corollary 7.2. Let matrices A and Ã = A+B be invertible. Then

‖A−1 − Ã−1‖
‖Ã−1‖ ≤ cond(A)

‖B‖
‖A‖ , (7.44)

If cond(A)(‖B‖/‖A‖)< 1, then

‖Ã−1‖ ≤ ‖A−1‖
1− cond(A)(‖B‖/‖A‖) , (7.45)

228 7 Elements of the Perturbation Theory

‖A−1 − Ã−1‖
‖A−1‖ ≤ cond(A)(‖B‖/‖A‖)

1− cond(A)(‖B‖/‖A‖) . (7.46)

The following Theorem shows that the “distance” between a nonsingular ma-

trix A and the “nearest” singular matrix is characterized by the number 1/cond(A).

Theorem 7.11. Let A be an invertible matrix and A+B be a singular matrix. Then

‖B‖/‖A‖ ≥ 1/cond(A). (7.47)

If the matrix norm is induced by a vector norm, then we can find a matrix B such

that

‖B‖/‖A‖= 1/cond(A) (7.48)

and the matrix A+B is singular.

Proof. As we have seen, if a matrix A is invertible and a matrix A+B is singu-

lar, then the spectrum of the matrix A−1B contains the number −1. Therefore,

ρ(A−1B)≥ 1, but ρ(A−1B)≤ ‖A−1B‖ ≤ ‖A−1‖‖B‖, i.e., we have ‖B‖ ≥ 1/‖A−1‖.

The last inequality is equivalent to (7.47). Now we prove the second part of the

theorem. It follows from the definition of the induced matrix norm that there ex-

ists a vector x such that ‖x‖ = 1, ‖A−1x‖ = ‖A−1‖. Put y = ‖A−1‖−1A−1x. Then

‖y‖= 1, Ay = ‖A−1‖−1x. By Corollary 6.1, p. 204, there exists a linear functional f

on the space Cn such that f (y) = ‖y‖ = 1 and ‖ f‖ = sup
v∈Cn,‖v‖=1

| f (v)| = 1. We

define the matrix B by the action of this matrix on vectors, using the following rela-

tionship: Bv = −(f (v)/‖A−1‖)x for all v ∈ Cn. Clearly, By = −‖A−1‖−1x, hence,

(A+B)y = 0, therefore, det(A+B) = 0. Moreover,

‖B‖= sup
v∈Cn,‖v‖=1

‖Bv‖= ‖A−1‖−1 sup
v∈Cn,‖v‖=1

| f (v)|= ‖A−1‖−1.

The last equality is equivalent to (7.48). ⊓⊔

7.5 The Stability of Systems of Linear Equations

In this section we assume that matrix norms are consistent with vector norms. The

next theorem establishes the connection between the relative perturbations of the

matrix and the right-hand side of the system with the relative perturbations of its

solution. The main role in the estimates obtained below plays the condition number

of the matrix of the system.

Theorem 7.12. Let A be an invertible matrix and let B be a matrix such that

‖A−1B‖< 1. Let x be the solution of the system of equations

Ax = y (7.49)

7.5 The Stability of Systems of Linear Equations 229

and let x̃ be the solution of the system of equations

Ãx̃ = y+b, Ã = A+B. (7.50)

Then
‖x− x̃‖
‖x‖ ≤ cond(A)

1−‖A−1B‖

(‖b‖
‖y‖ +

‖B‖
‖A‖

)
. (7.51)

If we assume additionally that ‖A−1‖‖B‖< 1, then

‖x− x̃‖
‖x‖ ≤ cond(A)

1− cond(A)(‖B‖/‖A‖)

(‖b‖
‖y‖ +

‖B‖
‖A‖

)
. (7.52)

Proof. By assumption, the inverse matrices A−1 and Ã−1 exist, therefore, x = A−1y

and x̃ = Ã−1(y+b). Hence, x̃− x = Ã−1b+(Ã−1 −A−1)y, and

‖x− x̃‖ ≤ ‖Ã−1‖‖b‖+‖Ã−1 −A−1‖‖y‖.

Whence, using (7.42), (7.43) and inequality ‖y‖ ≤ ‖A‖‖x‖, by elementary calcu-

lations, we get (7.51). We note that estimate (7.52) is an obvious consequence

of (7.51). ⊓⊔

In many situations an error estimate based on the residual of the approximate

solution is especially useful. Now we introduce a number, which we use for this es-

timate. Let A be an invertible matrix and let x 6= 0, Ax= y. Put η = ‖A‖‖x‖/‖y‖. Ob-

viously η ≥ 1, and since ‖x‖ ≤ ‖A−1‖‖y‖, we see that η ≤ ‖A‖‖A−1‖= cond(A).
For a vector x̃ ∈ Cn we put r = Ax̃− y. Then x̃− x = A−1r, and

‖x− x̃‖ ≤ ‖A−1‖‖r‖. (7.53)

Therefore,
‖x− x̃‖
‖x‖ ≤ cond(A)

η

‖r‖
‖y‖ , (7.54)

and as a consequence we get

‖x− x̃‖
‖x‖ ≤ cond(A)

‖r‖
‖y‖ .

Estimate (7.54) shows that the relative error is estimated better by the relative

residual of the approximate solution as the number η approximates to cond(A).
Let x̃ be an approximate solution of the system of equations Ax = y. In some

cases, for example, in the so called backward error analysis it is useful to represent

the vector x̃ in the form of the exact solution of the system with a perturbed matrix:

(A+B)x̃ = y. (7.55)

230 7 Elements of the Perturbation Theory

It is natural to seek the matrix B with the minimal norm (induced by a norm of

vectors). The possibility of such choose of the matrix B is justified by the next

theorem.

Theorem 7.13 (Rigal-Gaches). Let x̃ ∈ Cn, x̃ 6= 0, r = Ax̃− y. There exists a ma-

trix B such that equation (7.55) holds and ‖B‖= ‖r‖/‖x̃‖. If we assume additionally

that there exists a matrix D 6= B such that (A+D)x̃ = y, then ‖D‖ ≥ ‖B‖.

Proof. To justify the last assertion it is enough to note that Dx̃ =−r, and therefore,

‖Dx̃‖ = ‖r‖, hence, ‖D‖ ≥ ‖r‖/‖x̃‖. Let us define the matrix B by the relationship

Bv =−(f (v)/‖x̃‖)r for all v ∈ Cn, where f is a linear functional on the space Cn

that satisfies the following conditions: f (x̃) = ‖x̃‖ and ‖ f‖ = 1.1 Then we see that

equation (7.55) holds, and ‖B‖= ‖ f‖‖r‖/‖x̃‖= ‖r‖/‖x̃‖. ⊓⊔

In all previous estimates we assumed that the values of perturbations of the matrix

and the right-hand side of the system were known in sense of some norms. However,

often it is more natural to define componentwise perturbations. Namely, now we

assume that for a given ε > 0 we have

|B| ≤ ε |A|, |b| ≤ ε |y|. (7.56)

Here and below in this section the symbol | · | means that a matrix or a vector, which

consists of the absolute values of its components, is considered. Inequalities (7.56)

are componentwise. Thus estimates (7.56) mean that the relative perturbation of

each element of the matrix and the right-hand side of the system is less than or

equal to ε .

Theorem 7.14 (Bauer-Skeel 2). Let x be the solution of system (7.49) and x̃ be

the solution of system (7.50). We assume that the matrix A is nonsingular, condi-

tions (7.56) hold, and

ε‖|A−1||A|‖< 1. (7.57)

Then

‖x− x̃‖ ≤ ε
‖|A−1|(|A||x|+ |y|)‖

1− ε‖|A−1||A|‖ . (7.58)

Here the vector norm is any monotone norm, and the matrix norm is consistent with

the vector norm.

Proof. Using equations (7.49), (7.50), we get x̃−x=A−1(Bx+b+B(x̃−x)). There-

fore, |x̃− x| ≤ |A−1|(|B||x|+ |b|+ |B||x̃− x|). Whence, using (7.56) and taking into

account the assumed agreements for the vector and matrix norms, we obtain

‖x̃− x‖ ≤ ε‖‖|A−1|(|A||x|+ |y|)‖+ ε‖|A−1||A|‖‖x̃− x‖.

Combining the last inequality with (7.57), we get (7.58). ⊓⊔
1 See the proof of Theorem 7.11.
2 Robert D. Skeel (born 1947) is an American mathematician.

7.6 Perturbations in the Linear Least Squares Problem 231

It is useful to note that if the right-hand side of the system is known exactly,

i.e., b = 0, then instead of (7.58) we get

‖x̃− x‖
‖x‖ ≤ ε‖|A−1||A|‖

1− ε‖|A−1||A|‖ .

This estimate shows the dependence of the relative error of solution on the relative

perturbation of the matrix of the system. For this reason, the number

κBS(A) = ‖|A−1||A|‖

is called the relative condition number of the matrix A or the Bauer-Skeel condition

number.

It is easy to see that under the assumed agreements for vector and matrix

norms κBS(A) ≥ 1 for any matrix A. For any diagonal matrix κBS = 1. Thus the

diagonal systems of equations are ideally conditioned with respect to the perturba-

tions of the matrix.

7.6 Perturbations in the Linear Least Squares Problem

In this section we investigate the stability of the pseudo-solution with respect to

perturbations of the matrix and the right-hand side of the system. The vector norm

in this section is Euclidean. The matrix norm is induced by this norm, i.e., we use

the spectral matrix norm.

Lemma 7.1. Let A,B ∈ Mm,n, rank(A) = rank(B) = r, η = ‖A+‖‖A−B‖< 1.1 Then

‖B+‖ ≤ 1

1−η
‖A+‖. (7.59)

Proof. It follows from (7.28), p. 222, and (6.27), p. 209, that

σr(B)−σr(A)≥−‖A−B‖.

Using (6.28), p. 210, we can write the last inequality in the form

1

‖B+‖ − 1

‖A+‖ ≥ −‖A−B‖.

whence, by elementary calculations, we get (7.59). ⊓⊔

Lemma 7.2. Let A,B ∈ Mm,n, rank(A) = rank(B), PA = AA+, PB = BB+. Then

‖PA(I −PB)‖= ‖PB(I −PA)‖ ≤ ‖A−B‖min(‖A+‖,‖B+‖). (7.60)

1 Let us recall that A+ is the pseudoinverse of A (see Subsect. 4.3.4, p. 129, and Subsect. 5.1.3,

p. 160).

232 7 Elements of the Perturbation Theory

Proof. By construction, PA, PB are the orthogonal projectors defined on Cm (see

Subsect. 5.1.3, p. 161). Therefore the equality ‖PA(I−PB)‖= ‖PB(I−PA)‖ follows

from the results of Sect. 6.5, p. 213. In Sect. 6.5 we have seen also that the following

equality is true: ‖PB(I −PA)‖= ‖(I −PA)PB‖. Now we note that

(I −PA)PB = (I −AA+)PB = (I −AA+)(A+B−A)B+,

but (I −AA+)A = 0 (see Property 5 on p. 161). Hence,

‖PB(I −PA)‖= ‖(I −PA)PB‖= ‖(I −PA)(B−A)B+‖
≤ ‖(B−A)B+‖ ≤ ‖(B−A)‖‖B+‖. (7.61)

Analogously, ‖PA(I −PB)‖ ≤ ‖(B−A)‖‖A+‖. ⊓⊔

Theorem 7.15 (Wedin3). Let A, Ã ∈ Mm,n, m ≥ n, be some matrices of full rank.

Let x be the normal pseudo-solution of system of equations (7.49), x̃ be the normal

pseudo-solution of system (7.50). Let r = y−Ax and r̃ = ỹ− Ãx̃ be the corresponding

residuals. Suppose that ‖A+‖‖B‖< 1. Then

‖x− x̃‖
‖x‖ ≤ κ2(A)

1−κ2(A)(‖B‖/‖A‖)

×
(‖B‖
‖A‖

(
1+κ2(A)

‖r‖
‖A‖‖x‖

)
+

‖b‖
‖y‖

(
1+

‖r‖
‖A‖‖x‖

))
, (7.62)

‖r− r̃‖
‖y‖ ≤

(‖b‖
‖y‖ +2κ2(A)

‖B‖
‖A‖

)
, (7.63)

where κ2(A) = ‖A+‖‖A‖.

Proof. By the definition of the pseudoinverse operator, we have

x̃− x = Ã+(y+b)− x = Ã+(r+Ax+b)− x = Ã+(r+ Ãx+b−Bx)− x.

Since, by hypothesis, rank(Ã) = n, we get Ã+Ã = I (see Property 7 of the pseudoin-

verse operator, p. 161) . Therefore,

x̃− x = Ã+(r+b−Bx). (7.64)

Now we note that, by Property 6, p. 161, we have Ã+r = Ã+ÃÃ+r = Ã+PÃr. We

note also that

PAr = AA+(y−Ax) = A(A+y)−AA+Ax = Ax−Ax = 0, (7.65)

i.e., Ã+r = Ã+PÃ(I −PA)r. Whence, by Lemmas 7.1 and 7.2, we see that

3 Per-Åke Wedin (born 1938) is a Swedish mathematician.

7.6 Perturbations in the Linear Least Squares Problem 233

‖Ã+r‖ ≤ ‖A+‖2

1−‖A+‖‖B‖‖B‖‖r‖= ‖A+‖2‖A‖2

1−‖A+‖‖A‖(‖B‖/‖A‖)
‖B‖‖r‖
‖A‖2‖x‖‖x‖. (7.66)

Analogously, using the evidence inequality ‖y‖ ≤ ‖r‖+‖A‖‖x‖, we get

‖Ã+(b−Bx)‖ ≤ ‖Ã+‖(‖(b‖+‖B‖‖x‖)≤ ‖A+‖
1−‖A+‖‖B‖

(‖b‖
‖x‖ +‖B‖

)
‖x‖

≤ ‖A+‖‖A‖
1−‖A+‖‖A‖(‖B‖/‖A‖

(‖b‖‖r‖
‖y‖‖A‖‖x‖ +

‖b‖
‖y‖ +

‖B‖
‖A‖

)
‖x‖. (7.67)

Combining (7.66), (7.67), and (7.64), we obtain (7.62). Let us estimate r− r̃. Using

the definitions of r and r̃, we get

r̃− r = y+b− (A+B)x̃− y+Ax = b+ Ã(x− x̃)−Bx.

The next equality is true: Ã(x− x̃) =−ÃÃ+(r−Bx+b). Indeed,

ÃÃ+(r−Bx+b) = ÃÃ+(y+b− Ãx) = ÃÃ+ỹ− ÃÃ+Ãx = Ãx̃− Ãx.

Therefore, r̃ − r = (I − ÃÃ+)(b − Bx)− ÃÃ+r. Since I − ÃÃ+ is the projector,

we get ‖r − r̃‖ ≤ ‖b − Bx‖+ ‖ÃÃ+r‖. Remember that r = r − PAr. Hence, we

have ‖ÃÃ+r‖ ≤ ‖PÃ(I −PA)‖‖r‖. Whence, using Lemma 7.2, we obtain the esti-

mate ‖ÃÃ+r‖ ≤ ‖A+‖‖B‖‖r‖. Thus, ‖r− r̃‖ ≤ ‖b‖+‖B‖‖x‖+‖A+‖‖B‖‖r‖. Now

we note that x = A+y, ‖r‖ = min
v∈Cn

‖y−Av‖ ≤ ‖y‖. Finally, using elementary calcu-

lations, we get (7.63). ⊓⊔

Remark 7.4. Inequalities (7.62), (7.63) show that in the estimates of the perturba-

tions of the linear least squares problem the number κ2(A) plays the main role. It

is called the condition number of the linear least squares problem. Note also that if

system of equations (7.49) is solvable, then r = 0, and estimate (7.62) is transformed

to the estimate of form (7.52). Clearly, if A is a square nonsingular matrix, then we

get κ2(A) = cond2(A).

Chapter 8

Solving Systems of Linear Equations

In this chapter we present algorithms and error analysis of numerical methods for

solving linear systems Ax = b with nonsingular square matrices. Here we present

only direct methods. They are called direct, because in the absence of round-off

errors they would give the exact solution of Ax = b after a finite number of steps.

Section 8.1 presents Gaussian elimination algorithms. Section 8.2 analyzes their

round-off errors and presents practical error bounds. Section 8.3 shows how to im-

prove accuracy of the computed solution of Ax = b through the refinement iterative

procedure. In Section 8.4 we discuss the basic special systems of linear equations

(with symmetric positive definite matrices, symmetric indefinite matrices, band ma-

trices) and numerical methods of their solution.

8.1 Algorithms for Gaussian Elimination

In this section we consider numerical algorithms for solving systems of linear equa-

tions with nonsingular matrices based on Gaussian elimination. Gaussian elimina-

tion was already discussed in Section 1.2.5, p. 39.

8.1.1 LU Factorization with Pivoting

As we saw in Section 1.2.5, p. 39, for any nonsingular matrix A of order n by Gaus-

sian elimination with pivoting we can construct unit1 elementary lower triangular

matrices Lk, k = 1,2, . . . ,n, permutation matrices Pk, k = 1,2, . . . ,n, and an upper

triangular matrix U such that

A = P1L−1
1 P2L−1

2 · · ·PnL−1
n U. (8.1)

1 All the diagonal entries of a unit triangular matrix are equal to one.

235

236 Chapter 8. Solving Systems of Linear Equations

If we got representation (8.1), then we can solve the system of linear equations

Ax = b (8.2)

for any right-hand side b by computing the vector

f = LnPn · · ·L1P1b (8.3)

and solving the system

Ux = f (8.4)

with the triangular matrix U . The cost of computing the vector f and solving sys-

tem (8.4) is approximately 2n2 arithmetic operations, which is much cheaper than

constructing representation (8.1) (see Section 1.2.5, p. 39).

Calculating the vector f can be performed by solving the system of linear equa-

tions with a triangular nonsingular matrix. To show this let us analyze the ma-

trix P1L−1
1 P2L−1

2 · · ·PnL−1
n . The matrix P2 differs from the identical matrix by the

permutation of the second column and the i-th column, i ≥ 2 (see the descrip-

tion of Gaussian elimination in Section 1.2.5, p. 39). Therefore the matrix L−1
1 P2

differs from L−1
1 by the permutation of the second column and the i-th column.

Hence, L−1
1 P2 = P2L̂−1

1 , where the matrix L̂−1
1 differs from L−1

1 by the permutation

of the second element and the i-th element in the first column. Thus, we obviously

get

P1L−1
1 P2L−1

2 · · ·PnL−1
n = P1P2 · · ·PnL̃−1

1 L̃−1
2 · · · L̃−1

n ,

where each matrix L̃−1
i , i = 1,2, . . . ,n, can differ from the matrix L−1

i only by per-

mutations of elements in column i.

Now we can write A = PLU , where P = P1P2 · · ·Pn and L = L̃−1
1 L̃−1

2 · · · L̃−1
n is

the unit lower triangular matrix. This factorization of A is called the LU factoriza-

tion with pivoting. If the matrices P, L, and U were constructed, then we can solve

system (8.2) by the following way:

1. Permute elements of b to get b̃ = P−1b = PnPn−1 · · ·P1b.

2. Solve Ly = b̃ with the lower triangular matrix.

3. Solve Ux = y with the upper triangular matrix.

A method for constructing the matrices P, L, U was actually described in Sec-

tion 1.2.5, p. 39. It can be realized by the following algorithm.

Algorithm 8.1. LU factorization with pivoting: calculating the permutation ma-

trix P, the unit lower triangular matrix L, and the nonsingular upper triangular ma-

trix U such that LU = PA for a given nonsingular A.

let P = I, L = I, U = A

for i = 1 to n−1

find m such that |U(m, i)| is the largest entry in |U(i : n, i)|
if m 6= i

swap rows m and i in P

8.1 Algorithms for Gaussian Elimination 237

swap rows m and i in U

if i ≥ 2 swap elements L(m,1 : i−1) and L(i,1 : i−1)
end if

L(i+1 : n, i) =U(i+1 : n, i)/U(i, i)
U(i+1 : n, i+1 : n) =U(i+1 : n, i+1 : n)−L(i+1 : n, i) U(i, i+1 : n)
U(i+1 : n, i) = 0

end for

Obviously, this algorithm can be improved. For example, in Algorithm 8.1 we

observe that when column i of A is used to compute the elements of column i of L

then this column is not used again. Also when row i of A is used to compute row i

of U this row is not used again. This observation allows us to organize the stor-

age arrangement in Algorithm 8.1, overwriting L and U on A (see Question (8.2),

p. 268). Further, to save information on permutations we can use only one vector

with the numbers mi, i = 1,2, . . . ,n, and so on.

The lu function in Matlab expresses a matrix A as the product of two triangular

matrices, one of them is a permutation of a lower triangular matrix and the other

is an upper triangular matrix. [L,U] = lu(A) returns an upper triangular matrix

in U and a permuted lower triangular matrix in L such that A = LU . Return value L

is a product of lower triangular and permutation matrices. [L,U,P] = lu(A)

returns an upper triangular matrix in U , a lower triangular matrix L with a unit

diagonal, and a permutation matrix P, such that PA = LU .

The next algorithm is called forward substitution. We use it to easily solve a

given system Lx = b with a unit lower triangular matrix L.

Algorithm 8.2. Forward substitution: solving Lx = b with a unit lower triangular

matrix L.

x(1) = b(1)
for i = 2 to n

x(i) = b(i)−L(i,1 : (i−1)) x(1 : (i−1))
end for

The last algorithm is called backward substitution.1 Using this algorithm, we

easily solve a given system Ux = b with an upper triangular matrix U .

Algorithm 8.3. Backward substitution: solving Ux = b with a nonsingular upper

triangular matrix U .

x(n) = b(n)/U(n,n)
for i = n−1 to 1

x(i) = (b(i)−U(i,(i+1) : n) x((i+1) : n))/U(i, i)
end for

Note that in Algorithm 8.1 we apply permutations on the rows of the matrix A.

This process is called Gaussian elimination with partial pivoting (GEPP): swap

1 See also (1.119), (1.120), p. 42.

238 Chapter 8. Solving Systems of Linear Equations

rows with numbers mi and i of the matrix A such that |A(mi, i)| will be the largest

entry in |A(i : n, i)|. In the case of the Gaussian elimination with complete pivoting

(GECP) they swap rows mi and i as well as columns ki and i in the matrix A such

that |A(mi,ki)| will be the largest entry in |A(i : n, i : n)|. GEPP is the most common

way to implement Gaussian elimination in practice. GECP is more expensive. It is

almost never used in practice.

8.1.2 The Need for Pivoting

First of all let us describe a class of matrices for which LU factorization can be done

without pivoting. In other words, in this case all the matrices Pi, i = 1,2, . . . ,n, can

be equal to the identical matrix.

Theorem 8.1. Let A be a given square matrix of order n. There exist a unique unit

lower triangular matrix L and a unique nonsingular upper triangular natrix U such

that A= LU if and only if the all leading principal submatrices of A are nonsingular.

Proof. Necessity. The decomposition A = LU may also be written through the block

matrices as
(

A11 A12

A21 A22

)
=

(
L11 0

L21 L22

)(
U11 U12

0 U22

)
=

(
L11U11 L11U12

L21U11 L21U12 +L22U22

)
,

where A11 is a leading principal submatrix of order j, 1 ≤ j ≤ n, as well as L11

and U11. Therefore, detA11 = det(L11U11) = detL11 detU11 = ∏
j
k=1(U11)kk 6= 0,

since L is unit triangular and U is nonsingular.

Sufficiency. The proof is by induction over the order n of the matrix A. For all

matrices of order one we have the obvious decomposition: a11 = l11u11 = 1a11. To

prove that there exists the decomposition for the matrix Ã of order n, we need to find

unique triangular matrices L and U of order (n− 1), unique (n− 1)-by-1 vectors l

and u, and a unique nonzero number η such that the following decomposition holds:

Ã =

(
A b

cT δ

)
=

(
L 0

lT 1

)(
U u

0 η

)
=

(
LU Lu

lTU lT u+η

)
. (8.5)

By the induction hypothesis, there exist unique matrices L and U of order (n− 1)
such that A = LU . Comparing the left and the right hand sides of (8.5), we get

u = L−1b, lT = cTU−1, η = δ − lT u. (8.6)

It follows from (8.6) that u, l,η are unique. By the induction hypothesis, the diagonal

entries of the matrix U are nonzero, since U is nonsingular. Using (8.5), we get

0 6= det Ã = det

(
L 0

lT 1

)
det

(
U u

0 η

)
= η det(U).

8.1 Algorithms for Gaussian Elimination 239

Thus, η 6= 0. ⊓⊔
From Theorem 8.1 we conclude that there are important to applications classes of

matrices for which pivoting is not necessary. For example, all the leading principal

minors of the following matrices are nonzero.

1. Positive definite Hermitian matrices (see Sylvester’s criterion, p. 144).

2. Row diagonally dominant and column diagonally dominant matrices (see p. 227).

Theorem 8.1 says also that LU decomposition of a matrix A without pivoting can

fail even on well-conditioned nonsingular matrices A. This is because j-by- j leading

principal minors of these matrices can be singular. For example, the permutation

matrix P =

(
0 1

1 0

)
is orthogonal, but the first element in the first column of this

matrix is zero. Thus, LU decomposition without pivoting will fail on this matrix.

Now we consider an example showing that pivoting in Gaussian elimination can

significantly reduce the influence of round-off errors. At the same time a result of

refusing of pivoting can be catastrophic.

Example 8.1. Let us consider the system of two equations for two unknowns

Ax = b, (8.7)

where

A =

(
α 1

1 1

)
,

α is a given positive small real number, b = (1,2)T . The solution of this system is

x1 = 1/(1−α)≈ 1, x2 = (1−2α)/(1−α)≈ 1. (8.8)

By elementary calculations, we get

A−1 =

(
−1/(1−α), 1/(1−α)

1/(1−α), −α/(1−α)

)
.

Therefore, it is easy to see that for a small α the next equality holds:

cond∞(A) = ‖A‖∞‖A−1‖∞ ≈ 4,

i.e. the matrix A is very well conditioned, and the impact of round-off errors in

storage of its elements and of the right-hand side on the solution of system (8.7)

must be insignificant.

First, we solve system (8.7) by Gaussian elimination without pivoting. We obtain

L =

(
1 0

1/α 1

)
, U =

(
α 1

0 1−1/α

)
.

The solution of the system Ly = b is y1 = b1 = 1, y2 = b2 − l2,1y1 = 2− 1/α . The

solution of Ux = y is x2 = y2/u2,2, x1 = (y1 − y2u1,2)/u1,1.

240 Chapter 8. Solving Systems of Linear Equations

Let us put α = 10−14 and calculate the matrices L, U and the vectors y, x in

Matlab, using the double precision, by the above formulas:

L =

(
1.000000000000000e+000 0

1.000000000000000e+014 1.000000000000000e+000

)
,

U =

(
1.000000000000000e−014 1.000000000000000e+000

0 −9.999999999999900e+013

)
,

y1 = 1, y2 =−9.999999999999800e+013,

x2 = 9.999999999999900e−001 x1 = 9.992007221626409e−001, (8.9)

LU =

(
1.000000000000000e−014 1.000000000000000e+000

1.000000000000000e+000 1.000000000000000e+000

)
.

If we calculate the solution of system (8.7) directly by formulas (8.8), we obtain

x2 = 9.999999999999900e−001, x1 = 1.000000000000001e+000. (8.10)

Comparing (8.9) and (8.10) we observe that the impact of the round-off errors on

the solution is significant. If we set α = 10−16, then we get

y1 = 1, y2 =−9.999999999999998e+015,

x2 = 9.999999999999998e−001, x1 = 2.220446049250313e+0,

LU =

(
1.000000000000000e−016 1.000000000000000e+000

1.000000000000000e+000 0

)
,

i.e. the influence of the round-off errors is catastrophic. In the considered example

this fact is explained by the following way. When we calculate y2 = 2− 1/α for a

small α , the impact of the first term is lost because of the round-off errors.

Now we use Gaussian elimination with pivoting. For system (8.7) this means that

we have to permute the equations in (8.7) and write:

A =

(
1 1

α 1

)
,

b = (2,1)T . Then

L =

(
1 0

α 1

)
, U =

(
1 1

0 1−α

)
.

In this case for α = 10−14 we get

x2 = 9.999999999999900e−001, x1 = 1.000000000000010e+000,

LU =

(
1.000000000000000e+000 1.000000000000000e+000

1.000000000000000e−014 1.000000000000000e+000

)
.

For α = 10−16 we obtain

8.1 Algorithms for Gaussian Elimination 241

x2 = 9.999999999999999e−001, x1 = 1,

LU =

(
1.000000000000000e+000 1.000000000000000e+000

1.000000000000000e−016 1.000000000000000e+000

)
,

i.e. the impact of the round-off errors is practically absent.

8.1.3 A Numerical Example

Now we illustrate the performance of the Gaussian elimination algorithms by solv-

ing the Dirichlet problem for Poisson’s equation in two dimensions. Clearly, after a

discretization of the problem using finite elements or finite differences we obtain a

system of linear equations, which can be solved by plenty of different methods. In

this section we present first the finite difference discretization of the problem and

show how to construct the system of linear equations from this discretization. Next,

our numerical example illustrates how the Gaussian elimination algorithms can be

used for solving this system.

The model problem is the following Dirichlet1 problem for Poisson’s2 equation:

−△u(x) = f (x) in Ω ,

u = 0 on ∂Ω .
(8.11)

Here f (x) is a given function, u(x) is the unknown function, and the domain Ω
is the unit square Ω = {(x1,x2) ∈ (0,1)× (0,1)}. To solve numerically (8.11) we

first discretize the domain Ω with x1i = ih1 and x2 j = jh2, where h1 = 1/(ni − 1)
and h2 = 1/(n j −1) are the mesh sizes in the directions x1,x2, respectively, ni and n j

are the numbers of discretization points in the directions x1,x2, respectively. Usually,

in computations we have the same mesh size h= h1 = h2. In this example we choose

ni = n j = n with n = N + 2, where N is the number of inner mesh nodes in the

directions x1,x2, respectively.

Indices (i, j) are such that 0 ≤ i, j < n and are associated with every global

node nglob of the finite difference mesh. Global nodes numbers nglob in two-

dimensional case can be computed using the following formula:

nglob = j+ni(i−1). (8.12)

We use the standard finite difference discretization of the Laplace operator ∆u in

two dimensions and obtain the discrete Laplacian ∆ui, j:

∆ui, j =
ui+1, j −2ui, j +ui−1, j

h2
+

ui, j+1 −2ui, j +ui, j−1

h2
, (8.13)

1 Johann Peter Gustav Lejeune Dirichlet (1805 - 1859) was a German mathematician.
2 Siméon Denis Poisson (1781 - 1840) was a French mathematician.

242 Chapter 8. Solving Systems of Linear Equations

where ui, j is the solution at the discrete point (i, j). Using (8.13), we obtain the

following scheme for solution of the problem (8.11):

−
(

ui+1, j −2ui, j +ui−1, j

h2
+

ui, j+1 −2ui, j +ui, j−1

h2

)
= fi, j, (8.14)

where fi, j are the value of the function f at the discrete point (i, j). We observe

that (8.14) can be rewritten as

−(ui+1, j −2ui, j +ui−1, j +ui, j+1 −2ui, j +ui, j−1) = h2 fi, j, (8.15)

or in the more convenient form as

−ui+1, j +4ui, j −ui−1, j −ui, j+1 −ui, j−1 = h2 fi, j. (8.16)

System (8.16) can be written in the form Au = b. The vector b has the compo-

nents bi, j = h2 fi, j. The explicit elements of the matrix A are given by the following

block matrix

A =




AN −IN

−IN

. . .
. . .

. . .
. . . −IN

−IN AN




with blocks AN of order N given by

AN =




4 −1 0 0 · · · 0

−1 4 −1 0 · · · 0

0 −1 4 0 · · · 0

· · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 −1 4



,

which are located on the diagonal of the matrix A, and blocks with the identity ma-

trices −IN of order N on its off-diagonals. The matrix A is symmetric and positive

definite (see Question 8.16, p. 272). Therefore, we can use LU factorization algo-

rithm without pivoting.

Suppose, that we have discretized the two-dimensional domain Ω as described

above, and the number of the inner points in both directions are N = 3. We present

the schematic discretization for the inner nodes of this domain and corresponding

numbering for the global nodes using (8.12) in the following scheme:




a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3


=⇒




n1 n2 n3

n4 n5 n6

n7 n8 n9


=⇒




1 2 3

4 5 6

7 8 9


 . (8.17)

Then the explicit form of the block matrix A will be:

8.1 Algorithms for Gaussian Elimination 243

1

x
1

0.5

u(x
1
,x

2
) with A = 12, n = 20

00
0.2

0.4
0.6

x
2

0.8

1

0

6

5

4

3

2

1

×10 -3

u(
x

1
,x

2
)

×10 -3

0

1

2

3

4

5

x
1

0 0.2 0.4 0.6 0.8 1

x
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u(x

1
,x

2
) with A = 12, n = 20

×10 -3

0

1

2

3

4

5

1

x
1

0.5

u(x
1
,x

2
) with A = 12, N = 40

00
0.2

0.4
0.6

x
2

0.8

6

0

1

2

3

4

5

1

×10 -3

u(
x

1
,x

2
)

×10 -3

0

1

2

3

4

5

x
1

0 0.2 0.4 0.6 0.8 1

x
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u(x

1
,x

2
) with A = 12, N = 40

×10 -3

0

1

2

3

4

5

Fig. 8.1 Solution of problem (8.11) in the example of Section 8.1.3 on the unit square.

A =




4 −1 0 −1 0 0 0 0 0

−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0

0 0 −1 0 −1 4 0 0 −1

0 0 0 −1 0 0 4 −1 0

0 0 0 0 −1 0 −1 4 −1

0 0 0 0 0 −1 0 −1 4




.

Example 8.2. In this example we present the numerical solution of problem (8.11).

We define the right hand side f (x) of (8.11) as

f (x1,x2) = A f exp

(
− (x1 − c1)

2

2s2
1

− (x2 − c2)
2

2s2
2

)
1

a(x1,x2)
. (8.18)

The coefficient a(x1,x2) in (8.18) is given by the following Gaussian function:

244 Chapter 8. Solving Systems of Linear Equations

a(x1,x2) = 1+Aexp

(
− (x1 − c1)

2

2s2
1

− (x2 − c2)
2

2s2
2

)
. (8.19)

Here, A, A f are the amplitudes of these functions, c1,c2 are constants which show

the location of the center of the Gaussian functions, and s1,s2 are constants which

show spreading of the functions in x1 and x2 directions.

We produce the mesh with the points (x1i,x2 j) such that x1i = ih,x2 j = jh

with h = 1/(N + 1), where N is the number of the inner points in x1 and x2 direc-

tions. We take the same number of points in x1 and x2 directions: ni = n j = N + 2.

The linear system of equations Au = f is solved then via the LU factorization of

the matrix A without pivoting. Figure 8.1 shows the results of the numerical simu-

lations for different discretizations of the unit square with the number of the inner

points N = 20, 40 and for A = 12, A f = 1, c1 = c2 = 0.5, s1 = s2 = 1 in (8.81)

and (8.18). The Matlab programs of Section A.1 is available in Appendix for run-

ning of this test.

8.2 Error Analysis

One of the main techniques to compute the error in the computed solution is check-

ing of its stability. This means that we need to check how much computed solution

is changed depending on the change in input data. We will start with derivation of

the perturbation theory in polynomial evaluation.

8.2.1 Round-off Analysis in Polynomial Evaluation

In this section we discuss the stability of polynomial evaluation by Horner’s rule.

Let the polynomial is given by

p(x) =
d

∑
i=0

cix
i,

where ci are the coefficients of the polynomial, d is its degree. For polynomial evalu-

ation we use Horner’s rule noting that the polynomial can be written in an alternative

form as

p(x) = c0 + x(c1 + c2x+ ...cdxd−1)

= c0 + x(c1 + c2(x+ ...cdxd−2))

= c0 + x(c1 + x(....(cd−1 + cdx)...)).

(8.20)

8.2 Error Analysis 245

Using (8.20) this rule can be programmed as the following iterative algorithm for

every mesh point x j ∈ [xle f t ,xright], j ∈ 1,2, ...N, where N is the total number of the

discretization points.

Algorithm 8.4. Horner’s rule for polynomial evaluation at the point x j ∈ [xle f t ,xright], j ∈
1,2, ...N.

0. Initialize pd = cd . Set counter i = d −1.

1. Compute pi = x j pi+1 + ci.

2. Set i = i−1 and go to step 1. Stop if i = 0.

To compute error bounds in the polynomial evaluation we insert a round-off

term 1+ (δ1,2)i for every floating point operation in Algorithm 8.4 to obtain the

following algorithm.

Algorithm 8.5. Error bounds in polynomial evaluation at the point x j ∈ [xle f t ,xright], j ∈
1,2, ...N.

0. Set counter i = d −1 and initialize pd = cd .

1. Compute pi = (x j pi+1(1+(δ1)i)+ ci)(1+(δ2)i), where |(δ1)i|, |(δ2)i| ≤ ε .

2. Set i := i−1 and go to step 1. Stop if i = 0.

In Algorithm 8.5 the number ε is the machine epsilon and we define it as the

maximum relative representation error 0.5b1−p which is measured in a floating point

arithmetic with the base b and the precision p > 0. Table 8.1 presents the values of

the machine epsilon in standard floating point formats.

Table 8.1 The values of machine epsilon in standard floating point formats. Notation ∗ means that

one bit is implicit in precision p. Machine epsilon ε1 is computed accordingly to [23], and machine

epsilon ε2 is computed due to [53].

EEE 754 - 2008 description Base, Precision, Machine eps.1 Machine eps.2

b p ε1 = 0.5b−(p−1) ε2 = b−(p−1)

binary16 half precision 2 11∗ 2−11 = 4.88e−04 2−10 = 9.77e−04

binary32 single precision 2 24∗ 2−24 = 5.96e−08 2−23 = 1.19e−07

binary64 double precision 2 53∗ 2−53 = 1.11e−16 2−52 = 2.22e−16

binary80 extended precision 2 64 2−64 = 5.42e−20 2−63 = 1.08e−19

binary128 quad(ruple) precision 2 113∗ 2−113 = 9.63e−35 2−112 = 1.93e−34

decimal32 single precision decimal 10 7 5×10−7 10−6

decimal64 double precision decimal 10 16 5×10−16 10−15

decimal128 quad(ruple) precision decimal 10 34 5×10−34 10−33

Expanding the expression for pi in Algorithm 8.5, we get the final value of p0:

246 Chapter 8. Solving Systems of Linear Equations

p0 =
d−1

∑
i=0

(
(1+(δ2)i)

i−1

∏
k=0

(1+(δ1)k)(1+(δ2)k)

)
cix

i

+

(
d−1

∏
k=0

(1+(δ1)k)(1+(δ2)k)

)
cdxd . (8.21)

Next, we write the upper and the lower bounds for products of δ = δ1,2 provided

that kε < 1:

(1+δ1) · · ·(1+δk)≤ (1+ ε)k ≤ 1+ kε +O(ε2),

(1+δ1) · · ·(1+δk)≥ (1− ε)k ≥ 1− kε .
(8.22)

Applying the above estimates, we get the following inequality:

1− kε ≤ (1+δ1) · ... · (1+δk)≤ 1+ kε . (8.23)

Using estimate (8.23), we can rewrite (8.21) as

p0 ≈
d

∑
i=0

(1+ δ̃i)cix
i =

d

∑
i=0

c̃ix
i (8.24)

with approximate coefficients c̃i = (1+ δ̃i)ci such that |δ̃i| ≤ 2kε ≤ 2dε . Now we

can write the formula for the computing error ep in the polynomial:

ep := |p0 − p(x)|=
∣∣∣∣∣

d

∑
i=0

(1+ δ̃i)cix
i −

d

∑
i=0

cix
i

∣∣∣∣∣=
∣∣∣∣∣

d

∑
i=0

δ̃icix
i

∣∣∣∣∣

≤ 2
d

∑
i=0

dε |cix
i| ≤ 2dε

d

∑
i=0

|cix
i|= ∆(x), (8.25)

so the true value of the polynomial is in the interval (p−∆ , p+∆).
If we choose δ̃i = ε sign(cix

i), then the error bound above can be attained within

the factor 2d. In this case we can take

cond(p) :=

d

∑
i=0

|cix
i|

∣∣∣∣
d

∑
i=0

cixi

∣∣∣∣
(8.26)

as the relative condition number for the case of polynomial evaluation.

In the following algorithm we use (8.25) to compute the lower bound in polyno-

mial evaluation.

Algorithm 8.6. Computation of the error ∆(x j) in the polynomial evaluation at the

point x j ∈ [xle f t ,xright], j ∈ 1,2, ...N.

8.2 Error Analysis 247

input interval for x
8.7 8.8 8.9 9 9.1 9.2 9.3 9.4

×10 -5

-3

-2

-1

0

1

2

3

Horners rule (8000 points)
exact p(x)=(x - 9) 9

input interval for x
8.7 8.8 8.9 9 9.1 9.2 9.3 9.4

×10 -4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

exact p(x)=(x - 9) 9

upper bound
lower bound

a) b)

input interval for x
8.7 8.8 8.9 9 9.1 9.2 9.3 9.4
0

500

1000

1500

2000

2500

3000

3500

error = abs(bp/P)

input interval for x
8.7 8.8 8.9 9 9.1 9.2 9.3 9.4

-10

-8

-6

-4

-2

0

2

4

6

8

10

log error = -log(abs(bp/P))
 -log(abs((P -(x-9). 9)/P))

c) d)

Fig. 8.2 a) Evaluation of the polynomial p(x) = (x− 9)9 by Horner’s rule (Algorithm 8.4) com-

pared with the exact one polynomial. b) Computed upper and lower bounds for the polynomial

p(x) = (x− 9)9 using Algorithm 8.6. c) Plot of the graph of the estimated relative error e =
∣∣∣ bp

p

∣∣∣.

d) Plot of the graph of the estimated relative error eln = −ln

∣∣∣ bp

p

∣∣∣ (presented in blue color) com-

pared with the computed relative error ecomp = −ln

∣∣∣ p(x)−(x−9)9

p(x)

∣∣∣ (presented in red color). Here,

p(x) is computed by Horner’s rule (Algorithm 8.4) and the exact polynomial (x−9)9 is computed

in Matlab. Input interval for x in this example is x ∈ [8.7,9.3].

0. Set counter i = d −1 and initialize pd = cd , ∆d = |cd |.
1. Compute pi = x j pi+1 + ci, ∆i = |x j|∆i + |ci|.
2. Set i = i−1 and go to step 1. Stop if i = 0.

3. Set ∆(x j) = 2dεb∆i as the error bound at the point x j.

Example 8.3. The Fig. 8.2-a) shows the behavior of the computed solution using

Horner’s rule (Algorithm 8.4) for the evaluation of the polynomial

p(x) = (x−9)9 = x9 −81x8 +2916x7 −61236x6 +826686x5 −7440174x4

+44641044x3 −172186884x2 +387420489x1 −387420489. (8.27)

248 Chapter 8. Solving Systems of Linear Equations

input interval for x
-1 0 1 2 3 4 5 6 7

10

15

20

25

30

35

40

 estimated bound
 computed bound

input interval for x
-5 0 5 10 15 20

10

15

20

25

30

35

40

 estimated bound
 computed bound

a) b)

Fig. 8.3 Plot of the graph of the estimated relative error eln = −ln

∣∣∣ bp

p

∣∣∣ (presented in blue

color) compared with the computed relative error ecomp = −ln

∣∣∣ p(x)−p̃(x)
p(x)

∣∣∣ (here, p̃(x) is com-

puted by Horner’s rule and p(x) is the exact polynomial, which we compute in Matlab): a) for

the polynomial p(x) = (x − 1)2(x − 2)(x − 3)(x − 4)(x − 5) and b) for the polynomial p(x) =
(x−1)2(x−2)(x−3)(x−4)(x−5)(x−7)(x−9)(x−11)(x−15)(x−17).

The Fig. 8.2-b) shows the upper and the lower bounds computed for the polynomial

p(x)= (x−9)9 using Algorithm 8.6. We have performed all our computations taking

ε as the machine epsilon in Algorithm 8.6. Using these figures we observe that

changing the argument x slightly can change computed values drastically.

Actually, we get difficulties when we want to compute p(x) with a high relative

accuracy if p(x) is close to zero. This is because any small changes in ε gives the

infinite relative error given by ε/p(x) = ε/0 what means that our relative condition

number (8.26) is infinite, see also illustration of this statement on Fig. 8.2-c), d).

There is a simple geometric interpretation of this condition number: it tells us how

far p(x) is from a polynomial whose condition number at x is infinite. Now we

introduce the necessary concept and prove the corresponding theorem.

Let p(x) =
d

∑
i=0

aix
i and q(x) =

d

∑
i=0

bix
i are two polynomials. Then the relative

distance dist(p,q) from p(x) to q(x) is defined as the smallest value such that

|ai −bi| ≤ dist(p,q)|ai|, i ≤ 1 ≤ d.

If ai 6= 0, i ≤ 1 ≤ d, the condition above can be rewritten as

max
0≤i≤d

|ai −bi|
|ai|

= dist(p,q), i ≤ 1 ≤ d.

Theorem 8.2. Let a polynomial p(x) =
d

∑
i=0

cix
i is not identically zero and q is an-

other polynomial whose condition number at x is infinite, i.e. q(x) = 0. Then

8.2 Error Analysis 249

min{dist(p,q) : q(x) = 0}=

∣∣∣∣
d

∑
i=0

cix
i

∣∣∣∣
d

∑
i=0

|cixi|
. (8.28)

Proof. To prove this theorem let us write q(x) =
d

∑
i=0

bix
i =

d

∑
i=0

(1+ εi)cix
i such that

dist(p,q) = max
0≤i≤d

|εi|. Then q(x) = 0 implies that

|p(x)|= |q(x)− p(x)|= |
d

∑
i=0

εicix
i| ≤

d

∑
i=0

|εicix
i| ≤ max

0≤i≤d
|εi|

d

∑
i=0

|cix
i|.

Thus,

dist(p,q) = max
0≤i≤d

|εi| ≥
|p(x)|
d

∑
i=0

|cixi|
.

There is a q that is close to p, for example the polynomial q with

εi =
−p(x)
d

∑
i=0

|cixi|
sign(cix

i). ⊓⊔

8.2.2 Error Analysis in Gaussian Elimination

In this section we derive the error analysis in LU decomposition and Gaussian

elimination which is similar to the error analysis of polynomial evaluation of Sec-

tion 8.2.1.

We assume that the matrix A has already been pivoted. We will simplify the error

analysis only for two equations of Algorithm 8.1, one for a jk, j ≤ k and one for

j > k. Let us first analyze what this algorithm is doing with element a jk when j ≤ k.

We observe that this element is repeatedly updated as:

u jk = a jk −
j−1

∑
i=1

l jiuik.

If j > k, then we have

l jk =

a jk −
k−1

∑
i=1

l jiuik

ukk

.

To do round-off error analysis of these two formulas, we use the following expres-

sion for floating point numbers approximations:

250 Chapter 8. Solving Systems of Linear Equations

fl

(
d

∑
i=1

xiyi

)
=

d

∑
i=1

xiyi(1+δi), |δi| ≤ dε , (8.29)

where ε is the machine epsilon or the relative representation error. The maximum

of the relative representation error in a floating point arithmetic with p digits and

base b is 0.5b1−p, see also Table 8.1 for ε in standard floating point formats.

We apply (8.29) to the formula for u jk:

u jk =

(
a jk −

j−1

∑
i=1

l jiuik(1+δi)

)
(1+δ ′)

with |δi| ≤ (j−1)ε and |δ ′| ≤ ε . Expressing a jk, we get:

a jk =
1

1+δ ′ u jkl j j +
j−1

∑
i=1

l jiuik(1+δi)

≤
j

∑
i=1

l jiuik +
j

∑
i=1

l jiuikδi =
j

∑
i=1

l jiuik +E jk, (8.30)

where we have used the fact that l j j = 1 and the assumptions

|δi| ≤ (j−1)ε , 1+δ j :=
1

1+δ ′ .

In the expression above we can bound E jk by

|E jk|=
∣∣∣∣∣

j

∑
i=1

l jiuikδi

∣∣∣∣∣≤
j

∑
i=1

|l ji||uik|nε = nε(|L||U |) jk.

Thus, we get the following estimate for a jk:

a jk ≤
j

∑
i=1

l jiuik +E jk.

We perform the same analysis for the formula for l jk to get:

l jk = (1+δ ′′)



(1+δ ′)(a jk −

k−1

∑
i=1

l jiuik(1+δi))

ukk


 ,

where |δi| ≤ (k−1)ε , |δ ′| ≤ ε and |δ ′′| ≤ ε . Expressing a jk, we get

a jk =
1

(1+δ ′)(1+δ ′′)
ukkl jk +

k−1

∑
i=1

l jiuik(1+δi).

8.2 Error Analysis 251

Denoting 1+δk := 1
(1+δ ′)(1+δ ′′) we can rewrite the previous expression as

a jk ≤
k

∑
i=1

l jiuik +
k

∑
i=1

l jiuikδi ≡
k

∑
i=1

l jiuik +E jk

with |δi| ≤ nε and |E jk| ≤ nε(|L||U |) jk as before. We summarize this error analysis

with the simple formula:

A = LU +E,

where

|E| ≤ nε |L||U |.
Taking norms we get

‖E‖ ≤ nε‖ |L| ‖‖ |U | ‖.
If the norm does not depend on the sign of the entries of the matrix (this is valid for

Frobenius, infinity, one-norms but not for two-norms) we can simplify the expres-

sion above as

‖E‖ ≤ nε‖L‖‖U‖. (8.31)

Thus, in formula (8.31) we have obtained the error estimate in LU decomposi-

tion. The next step is to obtain errors in forward and backward substitutions. We

solve LUx = b via Ly = b and Ux = y. Solving Ly = b gives as a computed solution

ŷ such that (L+δL)ŷ = b where |δL| ≤ nε |L|. The same is true for (U +δU)x̂ = ŷ

with |δU | ≤ nε |U |. Combining both estimates into one we get

b = (L+δL)ŷ = (L+δL)(U +δU)x̂

= (LU +LδU +δLU +δLδU)x̂

= (A−E +LδU +δLU +δLδU)x̂

= (A+δA)x̂,

(8.32)

where δA =−E+LδU +δLU +δLδU. Now we combine all bounds for E,δU,δL

and use the triangle inequality to get

|δA|= |−E +LδU +δLU +δLδU |
≤ |E|+ |L||δU |+ |δL||U |+ |δL||δU |
≤ nε |L||U |+nε |L||U |+nε |L||U |+n2ε2|L||U |
≈ 3nε |L||U |.

(8.33)

Assuming that ‖ |X | ‖= ‖X‖ is true (as before for Frobenius, infinity, one-norms

but not for two-norms) we obtain

‖δA‖ ≤ 3nε‖L‖‖U‖. (8.34)

Thus, the Gaussian elimination is backward stable, if (recall that in this analysis we

have used δb = 0) the following condition holds true:

252 Chapter 8. Solving Systems of Linear Equations

3nε‖L‖‖U‖= O(ε)‖A‖.

We note that GEPP allows to estimate every entry of the matrix L by one in

absolute value, so we need consider only ‖U‖. The pivot growth factor for GEPP is

the number

g =
‖U‖max

‖A‖max

, (8.35)

where ‖A‖max = max
1≤i, j≤n

|ai j|. In other words, the stability is equivalent to g being

small or growing slowly as a function of n.

Let us prove that the bound of the pivot growth factor for GEPP is

g ≤ 2n−1. (8.36)

Indeed, at the first step in GEPP we perform update for elements

ã jk = a jk − l jiuik (8.37)

with |l ji| ≤ 1, |uik|= |aik| ≤ max
r,s

|ars|. Substituting these estimates in (8.37) we ob-

tain that

|ã jk| ≤ 2max
r,s

|ars|. (8.38)

Using estimate (8.38), we conclude that at every n−1 major step of GEPP we can

double the size of the remaining matrix entries. Estimate (8.36) follows from this

observation.

There are practical examples showing that the bound in (8.36) is attainable [23].

Now using the facts that ‖L‖∞ ≤ n and ‖U‖∞ ≤ ng‖A‖∞ and substituting these

estimates together with estimate (8.36) for g in (8.34), we obtain

‖δA‖∞ ≤ 3nε‖L‖∞‖U‖∞ ≤ 3gn3ε‖A‖∞. (8.39)

For example, if ε = 10−7 and the order of the matrix A is n > 120. Then using

equality in (8.36) we can compute that 3gn3ε > 1. We observe that with a such

estimate we loss all precision.

8.2.3 Estimating the Condition Number

Let us recall that in Theorem 7.12, p. 228, we established the connection between

the relative perturbations of the matrix and the right-hand side of the system Ax = b

with the relative perturbations of its solution. The main role in the obtained estimates

plays the condition number cond(A) = ‖A‖‖A−1‖ of A. To compute cond(A) we

need to estimate ‖A−1‖, since ‖A‖ is easy to compute.

If we will compute A−1 explicitly and then compute its norm it would cost 2n3

operations, but the number of operations in Gaussian elimination approximately

8.2 Error Analysis 253

is 2n3/3 (see p. 44). Therefore we will seek a cheaper algorithm for an estimation

of ‖A−1‖. Below we present this algorithm and will call it a condition estimator

or Hager’s algorithm. The algorithm was developed in [45, 50, 51] and has the

following properties:

1. This estimator is guaranteed to produce only a lower bound of ‖A−1‖, not an

upper bound.

2. The cost is O(n2) operations. This is negligible compared to the 2n3/3 cost of

Gaussian elimination if the order n of the matrix A is large.

3. It provides an estimate which is almost always within a factor of 10 of ‖A−1‖
and usually of factor 2 to 3.

The algorithm estimates the one-norm ‖B‖1 of a matrix B, under the condition

that we can compute the products Bx and BT y for arbitrary vectors x and y. Recall

that (see (6.26), p. 208) the norm ‖B‖1 is defined by

‖B‖1 = max
x∈Rn,‖x‖1=1

‖Bx‖1 = max
1≤ j≤n

n

∑
i=1

|bi j|, (8.40)

or as maximum absolute column sum. As we saw on p. 208, the maximum over x is

attained at the vector x = i j0 = (0, . . . ,0,1,0, . . . ,0) with component j0 as the single

nonzero entry, where max j ∑i |bi j| occurs at j = j0. However, direct searching over

all such vectors i j, j = 1, . . . ,n, is too expensive because this means computing

all columns of B = A−1. Since ‖Bx‖1 = max‖x‖1≤1 ‖Bx‖1, we can use the gradient

method to find the maximum of f (x) = ‖Bx‖1 inside the set ‖x‖1 ≤ 1. Here ‖x‖1 ≤ 1

is the convex set of vectors, and f (x) is the convex function. Indeed, if 0 ≤ α ≤ 1,

then

f (αx+(1−α)y) = ‖αBx+(1−α)By‖1

≤ α‖Bx‖1 +(1−α)‖By‖1 = α f (x)+(1−α) f (y). (8.41)

The usage of the gradient method to find the maximum of f (x) (if ∇ f (x) ex-

ists) means that f (y) ≥ f (x) +∇ f (x)(y− x). To compute ∇ f (x) we assume that

all ∑n
j bi jx j 6= 0 in f (x) = ∑n

i |∑n
j |bi jx j|. Let ζi = sign(∑n

j bi jx j) such that ζi = ±1

and f (x) = ∑n
i ∑n

j ζibi jx j. Then ∂ f/∂xk = ∑n
i ζibik and ∇ f = ζ T B = (BT ζ)T .

Algorithm 8.7. Hager’s condition estimator returns a lower bound ‖w‖1 for ‖B‖1.

choose any x such that ‖x‖1 = 1 /∗ e.g. xi = 1/n∗/
repeat

w = Bx, ζ = sign(w), z = BT ζ , /∗ zT =∇ f ∗/
if ‖z‖∞ ≤ zT x then

return ‖w‖1

else

x = i j where |z j|= ‖z‖∞
end if

254 Chapter 8. Solving Systems of Linear Equations

end repeat

Theorem 8.3. The next two statements are true for Algorithm 8.7.

1. If ‖z‖∞ ≤ zT x and ‖w‖1 is returned, then ‖w‖1 = ‖Bx‖1 is a local maximum

of ‖Bx‖1.

2. Otherwise, the algorithm has made progress in maximizing of f (x).

Proof. 1. We have that ‖z‖∞ ≤ zT x. Close to x,

f (x) = ‖Bx‖1 =
n

∑
i

n

∑
j

ζibi jx j

is linear in x and we can use the Taylor series to get

f (y)≈ f (x)+∇ f (x)(y− x) = f (x)+ zT (y− x),

where zT = ∇ f (x). To show that x is a local maximum we need to prove the in-

equality f (y)≤ f (x) or to show that zT (y− x)≤ 0 with ‖y‖1 = 1. We get

zT (y− x) = zT y− zT x =
n

∑
i

ziyi − zT x ≤
n

∑
i

|zi||yi|− zT x

≤ ‖z‖∞‖y‖1 − zT x = ‖z‖∞− zT x ≤ 0. (8.42)

2. In this case ‖z‖∞ > zT x. We choose x̃ = i jsign(z j), where the number j is such

that |z j|= ‖z‖∞. Then

f (x̃) = f (x)+∇ f × (x̃− x) = f (x)+ zT (x̃− x)

= f (x)+ zT x̃− zT x = f (x)+ |z j|− zT x > f (x). (8.43)

The last inequality is true, since ‖z‖∞ > zT x. ⊓⊔

In the example presented below we will test the algorithm (8.7) using the Matlab

program of section A.3.

Example 8.4. We test computation of the Hager’s condition estimator for the matrix

A =




16.5488 14.6149 4.3738 7.0853 2.3420

14.6149 3.4266 29.5580 23.7673 6.8848

4.3738 29.5580 0.1620 3.9291 6.7942

7.0853 23.7673 3.9291 6.5877 25.1377

2.3420 6.8848 6.7942 25.1377 1.4003




(8.44)

using the algorithm (8.7). We run the Matlab program of section A.3 and get fol-

lowing results: the computed one-norm of the matrix (8.44) by the algorithm (8.7)

is 78.2517 which is the same as the computed one-norm using the Matlab command

norm(A,1).

8.2 Error Analysis 255

Remark 8.1. In [51, 52] was tested a slightly improved version of this algorithm on

many random matrices A of order 10, 25, and 50. These matrices had condition

numbers cond(A) = 10, 103, 106, 109. Then using Hager’s algorithm in the worst

case the computed cond(A) underestimated the true cond(A) by a factor 0.44 what

says about efficiency of Hager’s algorithm for computation of cond(A).

8.2.4 Estimating the Relative Condition Number

We also can apply Hager’s algorithm to estimate the relative (or Bauer-Skeel) con-

dition number κBS(A) = ‖|A−1||A|‖∞ presented in Theorem 7.14, p. 230. To do

that we will estimate ‖|A−1|g‖∞, where g is a vector with non-negative entries. We

explain this now. Let e = (1, ...,1) be the vector of all ones. Using properties of the

infinity-norm, we see that ‖X‖∞ = ‖Xe‖∞ if the matrix X has non-negative entries.

Then

κBS(A) = ‖|A−1||A|‖∞ = ‖|A−1||A|e‖∞ = ‖|A−1|g‖∞,

where g = |A|e.

Now we can estimate ‖|A−1|g‖∞. Let G = diag(g1, . . . ,gn) be the diagonal ma-

trix with entries gi on its diagonal. Then g = Ge and thus

‖|A−1|g‖∞ = ‖|A−1|Ge‖∞ = ‖|A−1|G‖∞ = ‖|A−1G|‖∞ = ‖A−1G‖∞. (8.45)

The last equality holds because ‖Y‖∞ = ‖|Y |‖∞ for any matrix Y .

Now we will show how to estimate the infinity norm of the matrix A−1G by

Hager’s algorithm. Applying this algorithm to the matrix (A−1G)T we can estimate

‖(A−1G)T‖1 = ‖A−1G‖∞. Thus, we will apply Hager’s algorithm to ‖(A−1G)T‖1

and in this way compute ‖A−1G‖∞.

8.2.5 Practical Error Bounds

Below we present two practical error bounds for an approximate solution x̃ of the

equation Ax = b. In the first bound we use inequality (7.53), p. 229, to get

error =
‖x̃− x‖∞
‖x̃‖∞

≤ ‖A−1‖∞
‖r‖∞
‖x̃‖∞

, (8.46)

where r = Ax̃−b is the residual . To compute ‖A−1‖∞ we can apply Hager’s algo-

rithm for B = (A−1)T noting that ‖B‖1 = ‖(A−1)T‖1 = ‖A−1‖∞. The second error

bound follows from the inequality

‖x̃− x‖∞ = ‖A−1r‖∞ ≤ ‖|A−1||r|‖∞,

256 Chapter 8. Solving Systems of Linear Equations

where we have used the triangle inequality. This practical error bound has the form

error =
‖x̃− x‖∞
‖x̃‖∞

≤ ‖|A−1||r|‖∞
‖x̃‖∞

. (8.47)

The estimate of ‖|A−1||r|‖∞ can be obtained using Hager’s algorithm with taking

into account (8.45).

Remark 8.2..

1. Error bounds (8.46) and (8.47) can not guaranteed to provide bounds in all cases.

2. The estimate of ‖A−1‖1 from Algorithm 8.7 provides only a lower bound.

3. There is a small probability that the round-off in the evaluation of the residual

r = Ax̃−b can make ‖r‖ artificially small. To take it into account, we add a small

number to |r| and replace |r| with |r|+(n+ 1)ε(|A||x̃|+ |b|) in bound (8.47) or

‖r‖ with ‖r‖+(n+1)ε(‖A‖‖x̃‖+‖b‖) in bound (8.46). This is done by noting

that the round-off in evaluating of r is bounded by

|(Ax̃−b)−fl(Ax̃−b)| ≤ (n+1)ε(|A||x̃|+ |b|). (8.48)

4. The round-off in performing of Gaussian elimination on very ill-conditioned ma-

trices A can get such inaccurate L and U that bound (8.47) can be too low.

8.3 Algorithms for Improving the Accuracy of the Solution

If the error in the computed solution x̃ = x+ δx is large as cond(A)ε we can try

to use Newton’s method to improve the solution. This means that to solve any

equation f (x) = 0 we can construct the iterative procedure xi+1 = xi − f (xi)/ f ′(xi)
and obtain the improved computed solution xi+1. Applying the idea of this method

to f (x) = Ax−b yields the following algorithm:

Algorithm 8.8. Newton’s algorithm.

repeat

r = Axi −b

solve Ad = r to compute d

xi+1 = xi −d

end repeat

If we could compute the residual r = Axi −b in this algorithm exactly and solve

the equation Ad = r exactly, then we could finish the algorithm in one step. Such

solution we expect from Newton’s method which is applied to a linear problem.

However, round-off errors prevent this immediate convergence. Algorithm 8.8 is

useful when A is so ill-conditioned that solving Ad = r (and Ax0 = b) is rather

inaccurate.

8.3 Algorithms for Improving the Accuracy of the Solution 257

Theorem 8.4. Suppose that r = Axi − b in Algorithm 8.8 is computed in double

precision and cond(A)ε < c = 1/(3n3g+1) < 1 where n is the dimension of A

and g is the pivot growth factor given by (8.35). Then Algorithm 8.8 converges as

‖xi −A−1b‖∞
‖A−1b‖∞

= O(ε)

and have the following relaxation property

‖xi+1 − x‖∞ ≤ cond(A)ε

c
‖xi − x‖∞ = ζ‖xi − x‖∞ (8.49)

with the relaxation parameter ζ = cond(A)ε/c < 1.

Proof. Let set here ‖·‖∞ by ‖·‖. Our goal is to show that (8.49) holds. By assump-

tion, ζ < 1, so this inequality implies that the error ‖xi+1 − x‖ decreases monotoni-

cally to zero. We start the proof by estimating the error in the computed residual r.

Using estimate (8.29), we can write

r = fl(Axi −b) = Axi −b+ f , (8.50)

where

| f | ≤ nε2(|A||xi|+ |b|)+ ε |Axi −b| ≈ ε |Axi −b|. (8.51)

Here, as usual, ε is the relative representation error. The ε2 term comes from the

double precision computation of r, and the ε term comes from rounding the double

precision result back to single precision. Since ε2 ≪ ε , we will neglect the ε2 term

in the bound on | f |. Next, from Newton’s method we have

(A+δA)d = r. (8.52)

From bound (8.39) we know that ‖δA‖ ≤ γε‖A‖, where γ = 3n3g, although this

is usually too large in reality. We assume that computations of xi+1 = xi − d in

Algorithm 8.8 are performed exactly. Using (8.52) and substituting here (8.50) with

ignoring all ε2 terms we get

d = (A+δA)−1r = (I +A−1δA)−1A−1r

= (I +A−1δA)−1A−1(Axi −b+ f) = (I +A−1δA)−1(xi − x+A−1 f)

≈ (I −A−1δA)(xi − x+A−1 f)≈ xi − x−A−1δA(xi − x)+A−1 f . (8.53)

Next, subtracting x from both sides of xi+1 = xi −d and using then (8.53) we get

xi+1 − x = xi −d − x = A−1δA(xi − x)−A−1 f . (8.54)

Taking then norms from (8.54), using (8.51) for estimation of f and bound (8.39)

for estimation of ‖δA‖, we see that

258 Chapter 8. Solving Systems of Linear Equations

‖xi+1 − x‖ ≤ ‖A−1δA(xi − x)‖+‖A−1 f‖
≤ ‖A−1‖‖δA‖‖xi − x‖+‖A−1‖ε‖Axi −b‖
≤ ‖A−1‖‖δA‖‖xi − x‖+‖A−1‖ε‖A(xi − x)‖
≤ ‖A−1‖γε‖A‖‖xi − x‖+‖A−1‖‖A‖ε‖xi − x‖

= ‖A−1‖‖A‖ε(γ +1)‖xi − x‖. (8.55)

Let

ζ = ‖A−1‖‖A‖ε(γ +1) = cond(A)ε/c < 1,

then (8.49) fulfills and Newton’s algorithm 8.8 converges. ⊓⊔
Note that the condition number in Theorem 8.4 does not appear in the final er-

ror bound. This means that we compute the answer accurately independent of the

condition number, provided that cond(A)ε is sufficiently less than 1. Usually, c

is too conservative an upper bound, and the algorithm often succeeds even when

cond(A)ε > c.

Sometimes we can not run Algorithm 8.8 with double precision and only compu-

tations with single precision are available. In this case we still can run Algorithm 8.8

and compute the residual r in single precision. However, the theorem 8.4 is not valid

for this case, and we have the following theorem.

Theorem 8.5. Suppose that the residual r = Axi − b in Algorithm 8.8 is computed

in single precision and

‖A−1‖∞‖A‖∞
maxi(|A||x|)i

mini(|A||x|)i

ε < 1.

Then one step of iterative refinement yields x1 such that (A + δA)x1 = b + δb

with |δai j|= O(ε)|ai j| and |δbi|= O(ε)|bi|.
For a proof, see [53] as well as [2], [104]-[106] for details. Theorem 8.5 says that

the componentwise relative backward error is as small as possible. For example, this

means that if A and b are sparse, then δA and δb have the same sparsity structures

as A and b, respectively.

Now we present one more common technique for improving the error in solving

a linear system: equilibration, which yields the following algorithm.

Algorithm 8.9. Choose an appropriate diagonal matrix D to solve DAx=Db instead

of Ax= b. The matrix D is chosen to try to make the condition number of DA smaller

than that of A.

For example, if we choose dii to be the reciprocal of the two-norm of row i of A

would make DA nearly equal to the identity matrix for very ill-conditioned matrices.

In [112] was shown that choosing D this way reduces the condition number of DA

to within a factor of
√

n of its smallest possible value for any diagonal D.

In computations we may also choose two diagonal matrices Drow and Dcol and

solve (DrowADcol)x̄ = Drowb, x = Dcol x̄ and thus, DrowAx = Drowb.

8.4 Special Linear Systems 259

8.4 Special Linear Systems

It is important to exploit any special structure of the matrix to increase speed of

algorithms for linear systems Ax = b and decrease storage of intermediate matrices

and vectors. In this section we will discuss only real matrices, since extension to

complex matrices are straightforward. Matrices A with the following structures will

be considered:

• Symmetric positive definite matrices (s.p.d. matrices),

• Symmetric indefinite matrices,

• Band matrices.

8.4.1 Real Symmetric Positive Definite Matrices

Recall that a real matrix A is called s.p.d. if A = AT and xT Ax > 0 for all x 6= 0.1

In this subsection we show how to solve Ax = b in half the time and half the space

of Gaussian elimination when A is s.p.d.

As we know (see p. 142), if A=AT then A is s.p.d. if and only if all its eigenvalues

are positive. Below we prove some other useful properties of s.p.d. matrices.

Proposition 8.1. If X is nonsingular, then A is s.p.d. if and only if XT AX is s.p.d.

Proof. X nonsingular implies Xx 6= 0 for all x 6= 0, and thus xT XT AXx > 0 for

all x 6= 0. Since is A s.p.d., this implies that XT AX is s.p.d. Use X−1 to deduce that

if XT AX is s.p.d., then A is s.p.d. ⊓⊔

Proposition 8.2. If A is s.p.d. and H = A(j : k, j : k) is any principal submatrix of A,

then H is s.p.d.

Proof. Suppose first that H = A(1 : m,1 : m) is the leading principal submatrix of A.

Then for any given vector y of the size m, the n-vector x = (y,0) satisfies the equal-

ity yT Hy = xT Ax. Since A is s.p.d., xT Ax > 0 for all vectors x 6= 0, then yT Hy > 0

for all vectors y 6= 0, and thus, H is s.p.d. If H is not a leading principal submatrix

of A, let P be a permutation matrix so that H lies in the upper left corner of PT AP.

Then apply Proposition 8.1 to PT AP. ⊓⊔

Proposition 8.3. If A is s.p.d., then all aii > 0, and maxi j |ai j|= maxi aii > 0.

Proof. The first assertion is easy to check (see Property 5, p. 133). Let us prove the

second assertion. Let as usual ik be the k-th standard unit vector. If |akl |= maxi j |ai j|
but k 6= l (this means that we assume that maxi j |ai j| 6= maxi aii), we choose the vec-

tor x = ek − sign(akl)el . Then xT Ax = akk + all − 2|akl | ≤ 0. But this is the contra-

diction to the positive-definiteness of the matrix A, and thus, maxi j |ai j|= maxi aii.

1 See (4.130), p. 133.

260 Chapter 8. Solving Systems of Linear Equations

Proposition 8.4. A is s.p.d. if and only if there is a unique lower triangular nonsin-

gular matrix L, with positive diagonal entries, such that A = LLT . A = LLT is called

the Cholesky1 factorization of A, and L is called the Cholesky factor of A.

Proof. Sufficiency. Assume that there exists a factorization A = LLT with L nonsin-

gular. Then xT Ax = (xT L)(LT x) = ‖LT x‖2
2 > 0 for all x 6= 0, so A is s.p.d.

Necessity. If A is s.p.d., we show that L exists by induction over the dimension n.

If we choose each lii > 0, our construction will determine L uniquely. If n = 1,

choose l11 =
√

a11, which exists since a11 > 0. Let us write

A =

(
a11 A12

AT
12 A22

)

=

(√
a11 0

AT
12√
a11

I

)(
1 0

0 Ã22

)(√
a11

A12√
a11

0 I

)

=

(
a11 A12

AT
12 Ã22 +

AT
12A12

a11

)
.

(8.56)

We observe that the (n−1)-by-(n−1) matrix Ã22 = A22−AT
12A12/a11 is a symmet-

ric matrix. Using Proposition 8.1 and expression (8.56) we conclude that

(
1 0

0 Ã22

)

is s.p.d. By Proposition 8.2, the matrix Ã22 is also s.p.d. Thus, by induction, there is

an L̃ such that Ã22 = L̃L̃T and

A =

(√
a11 0

AT
12√
a11

I

)(
1 0

0 L̃L̃T

)(√
a11

A12√
a11

0 I

)

=

(√
a11 0

AT
12√
a11

L̃

)(√
a11

A12√
a11

0 L̃T

)
= LLT .

(8.57)

⊓⊔

We rewrite Proposition 8.4 as the following algorithm.

Algorithm 8.10. Cholesky algorithm.

for j = 1 to n

l j j = (a j j −∑
j−1
k=1 l2

jk)
1/2

for i = j+1 to n

li j = (ai j −∑
j−1
k=1 likl jk)/l j j

end for

end for

Using this algorithm, we observe that if A is not positive definite, then the algo-

rithm fail by attempting to compute the square root of a negative number in the line

1 André-Louis Cholesky (1875 - 1918) was a French military officer and mathematician.

8.4 Special Linear Systems 261

l j j =(a j j−∑
j−1
k=1 l2

jk)
1/2 or by dividing by zero in the line li j =(ai j−∑

j−1
k=1 likl jk)/l j j.

We conclude that running this algorithm is the cheapest way to test if a symmetric

matrix is positive definite.

In Cholesky algorithm L can overwrite the lower half of A. Only the lower half

of A is referred to by the algorithm, so in fact only n(n+ l)/2 storage is needed in-

stead of n2. The number of flops in Cholesky algorithm is (see Question 8.8, p. 269)

n

∑
j=1

(
2 j+

n

∑
i= j+1

2 j

)
=

1

3
n3 +O(n2). (8.58)

We see that the Cholesky algorithm requires just half the flops of Gaussian elimina-

tion (see p. 44).

Pivoting is not necessary for Cholesky to be numerically stable. We show this

as follows. The same analysis as for Gaussian elimination in section 8.2.2 reveals

that we will have similar formula for error E in Cholesky decomposition as in LU

decomposition:

A = LLT +E,

where error in Cholesky decomposition will be bounded as

|E| ≤ nε |L||LT |.

Taking norms we get

‖E‖ ≤ nε‖ |L| ‖‖ |LT | ‖.
We can rewrite expression above as

‖E‖ ≤ nε‖L‖‖LT‖. (8.59)

Thus, in formula (8.59) we have obtained error estimate in decomposition A = LLT .

The next step is to obtain error in Cholesky algorithm. We again solve LLT x = b

via Ly = b and LT X = y. Solving Ly = b gives as a computed solution ŷ such that

(L + δL)ŷ = b where |δL| ≤ nε |L|. The same is true for (LT + δLT)x̂ = ŷ with

|δLT | ≤ nε |LT |. Combining both estimates into one, we get

b = (L+δL)ŷ = (L+δL)(LT +δLT)x̂

= (LLT +LδLT +δLLT +δLδLT)x̂

= (A−E +LδLT +δLLT +δLδLT)x̂

= (A+δA)x̂,

(8.60)

where δA=−E+LδLT +δLLT +δLδLT . Now we combine all bounds for E, δLT ,

and δL and use triangle inequality to get

262 Chapter 8. Solving Systems of Linear Equations

|δA| ≤ |−E +LδLT +δLLT +δLδLT |
≤ |E|+ |L||δLT |+ |δL||LT |+ |δL||δLT |
≤ nε |L||LT |+nε |L||LT |+nε |L||LT |+n2ε2|L||LT |
≈ 3nε |L||LT |.

(8.61)

Assuming that ‖|X |‖= ‖X‖ is true (as before for Frobenius, infinity, one-norms but

not for two-norms) we obtain

‖δA‖ ≤ 3nε‖L‖‖LT‖. (8.62)

Thus, it follows from (8.62) that the computed solution x̃ satisfies (A+ δA)x̃ = b

with |δA| ≤ 3nε |L||LT |. But by the Cauchy-Schwartz inequality and Proposition 8.3,

we see that for every entry (i, j) of |L||LT | we can write the estimate

(|L||LT |)i j = ∑
k

n|lik||l jk| ≤
√

n

∑
k

l2
ik

√
n

∑
k

l2
jk =

√
aii
√

a j j ≤ max
i j

|a j j|.

Then applying this estimate to all n entries of |L||LT |, we have

‖|L||LT |‖∞ ≤ n‖A‖∞. (8.63)

Substituting (8.63) into (8.62), we get the following estimate:

‖δA‖∞ ≤ 3n2ε‖A‖∞, (8.64)

which says that ‖δA‖∞ have upper bound depending on ‖A‖∞, but not on ‖L‖∞.

This estimate is also valid for Frobenius and one-norms.

8.4.2 Symmetric Indefinite Matrices

Let us consider now indefinite matrices which are neither positive definite nor nega-

tive definite. The question is: if there exist such algorithm which can solve symmet-

ric indefinite linear system of equations and save half the time and half the space? It

turns out is possible with a more complicated pivoting scheme and factorization.

If A is nonsingular, one can show that there exists a permutation matrix P, a unit

lower triangular matrix L, and a block diagonal matrix D with 1-by-1 and 2-by-2

blocks such that PAPT = LDLT . This algorithm is described in [16].

8.4 Special Linear Systems 263

8.4.3 Band Matrices

A matrix A is called a band matrix with lower bandwidth bL and upper bandwidth bU

if ai j = 0 whenever i > j+bL or i < j−bU :

A =




a11 · · · a1,bU+1 0
... a2,bU+2

abL+1,1
. . .

abL+2,2 an−bU ,n

. . .
...

0 an,n−bL
· · · an,n




.

Band matrices arise often in practice and are useful to recognize because their L

and U factors are also “essentially banded”. This makes them cheaper to compute

and store.

Let A be banded with lower bandwidth bL and upper bandwidth bU . Let A = LU

be computed without pivoting. Then L has lower bandwidth bL and U has upper

bandwidth bU . L and U can be computed in about 2nbU bL arithmetic operations

when bU and bL are small compared to n. The space needed is n(bL +bU +1). The

full cost of solving Ax = b is 2nbU bL +2nbU +2nbL.

Let the matrix A be banded with lower bandwidth bL and upper bandwidth bU .

Then after Gaussian elimination with partial pivoting, U is banded with upper band-

width at most bL +bU , and L is “essentially banded” with lower bandwidth bL. This

means that L has at most bL+1 nonzeros in each column and so can be stored in the

same space as a band matrix with lower bandwidth bL.

For the case when L = U = 1 the band matrix A becames a tridiagonal matrix.

There exists a special tridiagonal matrix algorithm known as Thomas1 algorithm

which solves such linear system of equations. This method is simplified form of

Gaussian elimination and was proposed by Gelfand2 and Lokucievsky3 in 1952

and then modified by different researchers. In general this algorithm is stable only

for s.p.d. or for diagonally dominant matrices, see details in [53].

The method is derived as follows. The tridiagonal system of linear equations

Ax = b can be written in the form

ai−1,ixi−1 +ai,ixi +ai+1,ixi+1 = bi, i = 1, ...,n−1. (8.65)

The tridiagonal matrix algorithm is based on the assumption that the solution can be

obtained as

xi = αi+1xi+1 +βi+1, i = n−1, ...,1. (8.66)

Writing (8.66) for i−1 we get:

1 Llewellyn Hilleth Thomas (1903 - 1992) was a British physicist and applied mathematician.
2 Israel Moiseevich Gelfand (1913 - 2009) was a Russian mathematician.
3 Oleg Vyacheslavovich Lokucievsky (1922 - 1990) was a Russian mathematician.

264 Chapter 8. Solving Systems of Linear Equations

xi−1 = αixi +βi

= αi(αi+1xi+1 +βi+1)+βi = αiαi+1xi+1 +αiβi+1 +βi.
(8.67)

Substituting (8.66) and (8.67) into (8.65) we obtain

ai−1,i(αiαi+1xi+1 +αiβi+1 +βi)

+ai,i(αi+1xi+1 +βi+1)+ai+1,ixi+1 = bi, i = 1, ...,n−1.

(8.68)

The equation above can be rewritten also in the form

(ai−1,iαiαi+1 +ai,iαi+1 +ai+1,i)xi+1

+ai−1,iαiβi+1 +ai−1,iβi +ai,iβi+1 −bi = 0, i = 1, ...,n−1.
(8.69)

The equation (8.69) will be fulfilled if we will require that

ai−1,iαiαi+1 +ai,iαi+1 +ai+1,i = 0,

ai−1,iαiβi+1 +ai−1,iβi +ai,iβi+1 −bi = 0.
(8.70)

From (8.70) follows that

αi+1 =− ai+1,i

ai−1,iαi +ai,i
,

βi+1 =
bi −ai−1,iβi

ai−1,iαi +ai,i
.

(8.71)

Starting from i = 1 we can find

α2 =−a2,1

a1,1
,

β2 =
b1

a1,1
.

(8.72)

Then from (8.71) we can obtain all other coefficients αi+1,βi+1, i = 1, ...,n− 1 re-

cursively. By knowing all coefficients αi+1,βi+1, i = 1, ...,n− 1 the solution of the

tridiagonal system of linear equations can be obtained via (8.66).

Band matrices often arise from discretizing of different physical problems in

which mathematical models are usually described by ordinary differential equa-

tion (ODE) or by partial differential equations (PDE).

Example 8.5. Consider the following boundary value problem for the ODE:

y′′(x)− p(x)y′(x)−q(x)y(x) = r(x), x ∈ [a,b], (8.73)

y(a) = α, y(b) = β . (8.74)

We assume q(x) ≥ qm > 0. Equation (8.73) models the heat flow in a long pipe,

for example. To solve it numerically, we discretize it by seeking its solution only

8.4 Special Linear Systems 265

at mesh points xi = a+ ih, i = 0, . . . ,N +1, where h = (b−a)/(N +1) is the mesh

size. Define pi = p(xi), ri = r(xi), and qi = q(xi).
We need to derive equations to solve for our desired approximations yi ≈ y(xi),

where y0 = α and yN+1 = β . To derive these equations, we approximate the deriva-

tive y′(xi) by the following finite difference approximation called central difference:

y′(xi)≈
yi+1 − yi−1

2h
. (8.75)

When the mesh size h gets smaller, then (8.75) approximates y′(xi) more and more

accurately. We can similarly approximate the second derivative by

y′′(xi)≈
yi+1 −2yi + yi−1

h2
. (8.76)

Inserting approximations (8.75), (8.76) into (8.73) yields

yi+1 −2yi + yi−1

h2
− pi

yi+1 − yi−1

2h
−qiyi = ri, 1 ≤ i ≤ N. (8.77)

Multiplying by h2/2 we can rewrite (8.77) in the form of linear system Ay = b with

y =




y1

...

yN



, b =

−h2

2




r1

...

rN




+




(
1
2
+ h

4
p1

)
α

0
...

0(
1
2
− h

4
pN

)
β



, (8.78)

and

A =




a1 −c1

−b2
. . .

. . .

. . .
. . . −cN−1

−bN aN



,

ai = 1+ h2

2
qi,

bi =
1
2

(
1+ h

2
pi

)
,

ci =
1
2

(
1− h

2
pi

)
.

(8.79)

Since by our assumption qi > 0, it follows from (11.36) that ai > 0. For sufficiently

small h < 1 also bi > 0 and ci > 0.

System Ay = b is a nonsymmetric tridiagonal system. We will show how to

change it to a symmetric positive definite tridiagonal system to be able to use

Cholesky decomposition to solve it. Choose the diagonal matrix

D = diag

(
1,

√
c1

b2
,

√
c1c2

b2b3
, . . . ,

√
c1c2 · · ·cN−1

b2b3 · · ·bN

)
.

Then we may change Ay = b to (DAD−1)(Dy) = Db or Ãỹ = b̃, where

266 Chapter 8. Solving Systems of Linear Equations

1

x
1

0.5

u(x
1
,x

2
) with N = 20

00
0.2

0.4
0.6

x
2

0.8

0.14

0

0.02

0.04

0.06

0.08

0.1

0.12

1

u(
x

1
,x

2
)

0

0.02

0.04

0.06

0.08

0.1

0.12

x
1

0 0.2 0.4 0.6 0.8 1

x
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u(x

1
,x

2
) with N = 20

0

0.02

0.04

0.06

0.08

0.1

0.12

1

x
1

0.5

u(x
1
,x

2
) with N = 40

00
0.2

0.4
0.6

x
2

0.8

0.1

0.14

0.12

0.08

0.06

0.04

0.02

0
1

u(
x

1
,x

2
)

0

0.02

0.04

0.06

0.08

0.1

0.12

x
1

0 0.2 0.4 0.6 0.8 1

x
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u(x

1
,x

2
) with N = 40

0

0.02

0.04

0.06

0.08

0.1

0.12

1

x
1

0.5

u(x
1
,x

2
) with N = 60

00
0.2

0.4
0.6

x
2

0.8

0

0.14

0.12

0.1

0.08

0.06

0.04

0.02

1

u(
x

1
,x

2
)

0

0.02

0.04

0.06

0.08

0.1

0.12

x
1

0 0.2 0.4 0.6 0.8 1

x
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u(x

1
,x

2
) with N = 60

0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 8.4 Solution of the Poisson’s equation (8.11) using Cholesky decomposition in the example

of section 8.4.4.

8.4 Special Linear Systems 267

Ã =




a1 −
√

c1b2

−
√

c1b2 a2 −
√

c2b3

−
√

c2b3
. . .

. . .
. . . −

√
cN−1bN

−
√

cN−1bN aN



.

We observe that Ã is symmetric, and it has the same eigenvalues as A because A

and Ã = DAD−1 are similar. Let us prove that Ã is positive definite. By the Gersh-

gorin disc theorem (see Theorem 7.6, p. 223), all the eigenvalues λ of an arbitrary

matrix B are located in the union of the n disks

|λ −bkk| ≤ ∑
j 6=k

|bk j|. (8.80)

We can take the mesh size h so small that for all i we have |h/2pi| < 1 in all non-

diagonal elements of the matrix A. Then

|bi|+ |ci|=
1

2

(
1+

h

2
pi

)
+

1

2

(
1− h

2
pi

)
= 1 < 1+

h2

2
qm ≤ 1+

h2

2
qi = ai.

Thus, using (8.80), we see that all the eigenvalues of A lie inside the disks Di cen-

tered at ai = 1+h2qi/2≥ 1+h2qm/2 with radius Ri = 1. They must all have positive

real parts.

Since Ã is symmetric, its eigenvalues are real and positive, then the matrix Ã is

positive definite. Its smallest eigenvalue is bounded below by qmh2/2. Thus, it can

be solved by Cholesky decomposition.

8.4.4 A Numerical example

In this section we illustrate performance of the Cholesky algorithm on the solution of

Poisson’s equation (8.11) on the unit square {(x1,x2) : 0≤ x1,x2 ≤ 1} with boundary

conditions u= 0 on the boundary of this square. We take now in (8.11) the following

function f (x1,x2) given by two picks of gaussians

f (x1,x2) = 1+A1 exp

(
− (x1 −0.25)2

0.02
− (x2 −0.25)2

0.02

)

+A2 exp

(
− (x1 −0.75)2

0.02
− (x2 −0.75)2

0.02

)
, (8.81)

where A1,A2 are the amplitudes of these two gaussians.

As in the example of Section 8.1.3, we construct the mesh with the points

(x1i,x2 j) such that x1i = ih,x2 j = jh with h = 1/(N + 1), where N is the number

of inner points in x1 and x2 directions, and take the same number of points in x1 and

268 Chapter 8. Solving Systems of Linear Equations

x2 directions: ni = n j = N+2. The linear system of equations Au = f is solved then

via Cholesky factorization (Algorithm 8.10). We can use Cholesky decomposition

since the matrix A is symmetric positive definite (see Question 8.16, p. 272).

Figure 8.4 shows results of numerical simulations for different discretization of

the unit square with number of inner points N = 20, 40, 60 and for A1 = A2 = 10

in (8.81). The Matlab program of Section A.2 is available in Appendix for running

of this test.

Questions

8.1. (Programming)

Solve in Matlab the Poisson’s equation (8.11) on the unit square {(x1,x2) : 0 ≤
x1,x2 ≤ 1} with boundary conditions u = 0 on the boundary of this square and with

function f (x1,x2) given by (8.81) using the lu function and programs of Section

A.1 of Appendix. Compare obtained results with results of Section 8.4.4. Optional:

extend these results to three-dimensional case.

8.2. (Programming)

Improve Algorithm 8.1, overwriting L and U on A, write your own Matlab pro-

gram and test it on your own examples.

8.3. (Programming)

Apply the bisection algorithm (see Algorithm 8.11 below) to find the roots of

the polynomial p(x) = (x−2)9 and of some of your own polynomials, where p(x)
is evaluated using Horner’s rule (Algorithm 8.4). Write your own Matlab program.

Confirm that changing the input interval for x = [xle f t ,xright] slightly changes the

computed root drastically. Modify the algorithm to use the relative condition number

for polynomial evaluation (8.26) to stop bisecting when the round-off error in the

computed value of p(x) gets so large that its sign cannot be determined. Present

your results similarly with results of Figures 8.2.

Hint: use the Matlab function coeffs to compute coefficients of polynomial p(x).

Here we present the bisection algorithm to find roots of the polynomial p(x).
Suppose that the input interval for x where we want to find roots of p(x) = 0 is

x ∈ [xle f t ,xright]. At every iteration this algorithm divides the input interval in two

by computing the midpoint xmiddle = (xle f t + xright)/2 of the input interval as well

as the value of the polynomial p(xmiddle) at that point. Value of the polynomial

p(xmiddle) we will compute using Horner’s rule (Algorithm 8.4). Then if ple f t and

pmid have opposite signs, then the bisection algorithm sets xmiddle as the new value

for xright , and if pright and pmid have opposite signs then the method sets xmiddle as

the new xle f t . If p(xmiddle) = 0 then xmiddle may be taken as the root of polynomial

and algorithm stops.

Algorithm 8.11. Bisection algorithm to find zeros of the polynomial p(x).

8.4 Special Linear Systems 269

0. Initialization: set the left xle f t and the right xright bounds for the input interval

for x ∈ [xle f t ,xright], where we will seek roots of polynomial. Set computational

tolerance tol.

1. Evaluate the polynomial p(x) at the points xle f t and xright to get ple f t = p(xle f t)
and pright = p(xright) using Algorithm 8.4.

Perform steps 2–3 while xright − xle f t > 2tol

2. Compute point xmid = (xle f t + xright)/2 and then pmid = p(xmid), using Algo-

rithm 8.4.

3. Check:

If ple f t pmid < 0 then we have a root at the interval [xle f t ,xmid]. Assign xright = xmid

and pright = pmid .

Else if pright pmid < 0 then we have a root at the interval [xmid ,xright]. Assign

xle f t = xmid and ple f t = pmid .

Else we have found a root at xmid and assign xle f t = xmid ,xright = xmid .

4. Compute the root as (xle f t + xright)/2.

8.4. Write Algorithm 8.1 for the case n = 3. Using Algorithm 8.1 perform LU fac-

torization of the matrix

A =




4 1 1

1 8 1

1 1 16


 .

8.5. Using Cholesky algorithm (Algorithm 8.10) perform factorization A = LLT of

the matrix A in Question 8.4.

8.6. (Programming)

Implement Hager’s Algorithm 8.7 in Matlab. Test it on different matrices. Take,

for example, A = hilb(N) or A = rand(N,N) for different N.

8.7. Let us consider the solution of linear system AX = B where A is n-by-n ma-

trix, B is n-by-m matrix and X is n-by-m unknown matrix. We have two methods to

solve it:

1. Factorization of A = PLU and then using Algorithms of forward and backward

substitution (8.2), (8.3) to find every column of X .

2. Computation of A−1 by Gaussian elimination and then finding of X = A−1B.

Count the number of flops required for every algorithm. Show that the first algorithm

requires fewer flops than the second one.

Hint: use material of section 8.2.2.

8.8. Derive formula (8.58) for operation count in Cholesky decomposition. Hint:

use the formula
n

∑
i=1

i2 =
(n+1)n(2n+1)

6

and the formula of sum of the arithmetic progression

270 Chapter 8. Solving Systems of Linear Equations

n

∑
k=1

ai =
n(a1 +an)

2
.

8.9. Let A be an s.p.d. matrix. Show that |ai j|<√
aiia j j.

8.10. Suppose A is an invertible nonsingular square matrix of order n and u, v are

vectors. Suppose furthermore that 1+ vT A−1u 6= 0. Prove the Sherman-Morrison

formula

(A+uvT)−1 = A−1 − A−1uvT A−1

1+ vT A−1u
.

Here, uvT is the outer product of two vectors u and v.

8.11. Suppose A is invertible square matrix of order n and U,V are n-by-k with k ≤ n

rectangular matrices. Prove the Sherman-Morrison-Woodburg formula which states

that T = I +V T A−1U is nonsingular if and only if A+UV T is nonsingular and

(A+UV T)−1 = A−1 −A−1UT−1V T A−1.

8.12. (Programming)

Similarly with Matlab programs of Sections A.1, A.2 solve the three-dimensional

problem

−△u(x) = f (x) in Ω ,

u = 0 on ∂Ω .
(8.82)

on the unit cube Ω = [0,1]× [0,1]× [0,1]. Choose an appropriate functions f (x).
Hint. We discretize the unit cube Ω with x1i = ih1,x2 j = jh2,x3k = kh3, where

h1 =
1

ni −1
, h2 =

1

n j −1
, h3 =

1

nk −1

are the steps of the discrete finite difference mesh and ni,n j,nk are number of dis-

cretization points in the directions x1,x2,x3, respectively. Indexes (i, j,k) are such

that 0 ≤ i < ni,0 ≤ j < n j,0 ≤ j < nk. Global nodes numbers nglob in the three

dimensional case can be computed as

nglob = j+n j ((i−1)+ni(k−1)) . (8.83)

We take ni = n j = nk = n = N + 2, h1 = h2 = h3 = 1/(n− 1) = 1/(N + 1) and

obtain the following scheme for the solution of Poisson’s equation (8.11) in three

dimensions:

−ui+1, j,k −2ui, j,k +ui−1, j,k

h2
1

− ui, j+1,k −2ui, j,k +ui, j−1,k

h2
2

− ui, j,k+1 −2ui, j,k +ui, j,k−1

h2
3

=
fi, j,k

ai, j,k
,

(8.84)

8.4 Special Linear Systems 271

where ui, j,k, fi, j,k,ai, j,k are values of u, f ,a, respectively, at the discrete point nglob

with indices (i, j,k). We rewrite equation (8.84) with h = h1 = h2 = h3 as

6ui, j,k −ui+1, j,k −ui−1, j,k −ui, j+1,k −ui, j−1,k −ui, j,k+1−ui, j,k−1 = h2 fi, j,k

ai, j,k
. (8.85)

Again, we recognize that scheme (8.85) is the system of linear equations Au = b.

The matrix A is of the size (ni − 2)(n j − 2)(nk − 2) = N3 and on the unit cube is

given by the block matrix

A =




AN −IN ON −IN

. . .

−IN AN −IN

. . .
. . .

. . .
. . .

. . .
. . .

. . .

−IN

. . . −IN AN −IN

. . . −IN ON −IN AN




with zero-blocks ON of order N. Now the blocks AN of the size N-by-N on the main

diagonal of this matrix are given by

AN =




6 −1 0 · · · · · · 0

−1 6 −1 0 · · · 0

0 −1 6 0 · · · 0

· · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 −1 6



.

8.13. (Programming)

Use the Matlab programs of Section A.1, A.2 and solve the problem as in Exam-

ple 8.2 on the L-shaped 2D domain.

8.14. (Programming)

Use formula (8.80) to estimate the eigenvalues of the matrix

A =




10 −1 0 1

0.2 8 0.2 0.2
1 1 2 1

−1 −1 −1 −11


 . (8.86)

Write your own Matlab program to present results similar to Fig. 8.5, which shows

the Gershgorin’s discs together with their centers and the computed eigenvalues λi.

Hint: use Matlab function eigs(A) to compute eigenvalues.

8.15. (Programming)

Use formula (8.80) to estimate the eigenvalues of the matrix

272 Chapter 8. Solving Systems of Linear Equations

−15 −10 −5 0 5 10 15
−3

−2

−1

0

1

2

3

 D(10,2)
 D(8,0.6)
 D(2,3)
D(−11,3)
eigenvalues
centers

Fig. 8.5 Computed and estimated by the Gershgorin disc theorem eigenvalues in Question 8.14.

The computed eigenvalues of A are: λ1 = 9.8218,λ2 = 8.1478,λ3 = 1.8995,λ4 =−10.86.

−2 0 2 4 6 8 10 12 14 16
−8

−6

−4

−2

0

2

4

6

8

 D(7,8)

 D(8,7)

 D(5,3)

D(6,3)

eigenvalues

centers

Fig. 8.6 Computed and estimated by the Gershgorin disc theorem eigenvalues in Question 8.15.

The computed eigenvalues are: λ1 = 12.2249+ 0.0000i, λ2 = 4.4977+ 0.6132i, λ3 = 4.4977−
0.6132i, λ4 = 4.7797+0.0000i.

A =




7 5 2 1

2 8 3 2

1 1 5 1

1 1 1 6


 . (8.87)

Write your own Matlab program to present results similar to Fig. 8.6, which shows

the Gershgorin’s discs together with their centers and the computed eigenvalues λi.

Hint: use Matlab function eigs(A) to compute eigenvalues.

8.16. Prove that the matrix A in the numerical examples of Sections 8.1.3 and 8.4.4

is s.p.d. Hint: prove that for any u, v ∈ R(N+2)2
that equal to zero on the boundary

8.4 Special Linear Systems 273

of the mesh domain we can write

(Au,v) =
N−1

∑
i, j=1

(ui+1, j −ui, j)(vi+1, j − vi, j)+
N−1

∑
i, j=1

(ui, j+1 −ui, j)(vi, j+1 − vi, j).

8.17. (Programming)

Write your own Matlab program and solve numerically the problem of Exam-

ple 8.5 via the solution of the system of linear equations Ay = b with b,A given

in (8.78), (8.79), correspondingly. Use recursive formulas (8.66), (8.71) to obtain

solution of this system.

Chapter 9

Numerical solution of Linear Least Squares
Problems

In this chapter we present methods for numerical solution of linear least squares

problems. Such problems arise in many real-life applications such that curve fitting,

statistical modelling and all kinds of inverse problems, when some model function

appearing in the solution of inverse problem, should be fitted to the measured data.

Usually, different matrix factorizations are applied to solve linear least squares

problems (LLSP). In this chapter we will present following methods for the solution

of LLSP:

1. Method of normal equations,

2. QR decomposition,

3. SVD decomposition.

The method of normal equations is widely used since it is fastest compared to all

other methods for the solution of LLSP. However, this method is least accurate and

can be used only when the condition number of the matrix A is small. Method of

factorization of the matrix A into two matrices Q and R, such that A = QR, where

Q is orthogonal and R is upper triangular, is called QR decomposition. This method

is more accurate than the method of normal equations and is very standard for the

solution of LLSP. Drawback of this method is that costs of it is twice as much as

costs of the method of normal equations. When the matrix A is very ill-conditioned,

for example, when A has not full rank, then matrix factorization called SVD decom-

position is commonly used in this case for the solution of LLSP. However, as QR

decomposition, this method is several times more expensive than method of normal

equations. Another method for the solution of very ill-conditioned LLSP is method

of iterative refinement which iteratively improves the solution of linear system of

equations. This method can be adapted to deal efficiently with sparse matrices, see

[14] for details.

In section 9.1 we present the topic of LLSP and some examples of their typical

application. In section 9.2 we briefly present main methods which solve also nonlin-

ear least squares problem. Different methods for the solution of LLSP are described

in the following sections: the method of normal equations is presented in section 9.3,

QR decomposition is outlined in section 9.4, orthogonalization methods to perform

275

276 Chapter 9. Numerical solution of Linear Least Squares Problems

QR decomposition are described in section 9.5, SVD decomposition is presented

in section 9.6. Rank-deficient least squares problems and how to solve them is dis-

cussed in sections 9.6.1, 9.6.2, respectively. Available software for solution of LLSP

is outlined in section 9.7.

9.1 Linear Least Squares Problems

Suppose that we have a matrix A of the size m×n and the vector b of the size m×1.

The linear least square problem is to find a vector x of the size n× 1 which will

minimize ‖Ax−b‖2. In the case when m = n and the matrix A is nonsingular we can

get solution to this problem as x = A−1b. However, when m > n (more equations

than unknowns) the problem is called overdetermined. Opposite, when m < n (more

unknowns than equations) the problem is called underdetermined.

In real-life applications more widely engineers deal with overdetermined least

squares problems, when number of equations are much larger than number of un-

knowns. This occurs since engineers usually take much more measurements than

necessary to smooth out measurement error and remove noise from data. We will

restrict our considerations to the linear least squares problems. We refer to [14] and

to the next section for the solution of nonlinear least squares problems.

Further we assume that we will deal with overdetermined problems when we

have more equations than unknowns. This means that we will be interested in the

solution of linear system of equations

Ax = b, (9.1)

where A is of the size m×n with m > n, b is vector of the size m, and x is vector of

the size n.

In a general case we are not able to get vector b of the size m as a linear combina-

tion of the n columns of the matrix A and n components of the vector x, or there is no

solution to (9.1) in the usual case. In this chapter we will consider methods which

can minimize the residual r = b−Ax as a function on x in principle in any norm,

but we will use 2-norm because of the convenience from theoretical (relationships

of 2-norm with the inner product and orthogonality, smoothness and strict convex-

ity properties) and computational points of view. Also, because of using 2-norm

method is called least squares. We can write the least squares problem as problem

of the minimizing of the squared residuals

‖r‖2
2 =

m

∑
i=1

r2
i =

m

∑
i=1

(Axi −b)2. (9.2)

In other words, our goal is to find minimum of this residual using least squares:

min
x

‖r‖2
2 = min

x

m

∑
i=1

r2
i = min

x

m

∑
i=1

(Axi −b)2. (9.3)

9.1 Linear Least Squares Problems 277

Example 9.1. Data fitting.

In this example we present the typical application of least squares called data or

curve fitting problem. This problem appear in statistical modelling and experimental

engineering when data are generated by laboratory or other measurements.

Suppose that we have data points (xi,yi), i = 1, ...,m, and our goal is to find the

vector of parameters c of the size n which will fit best to the data yi of the model

function f (xi,c), where f : Rn+1 → R, in the least squares sense:

min
c

m

∑
i=1

(yi − f (xi,c))
2. (9.4)

If the function f (x,c) is linear then we can solve the problem (9.4) using least

squares method. The function f (x,c) is linear if we can write it as a linear com-

bination of the functions φ j(x), j = 1, ...,n as:

f (x,c) = c1φ1(x)+ c2φ2(x)+ ...+ cnφn(x). (9.5)

Functions φ j(x), j = 1, ...,n are called basis functions.

Let now the matrix A will have entries ai j = φ j(xi), i = 1, ...,m; j = 1, ...,n, and

vector b will be such that bi = yi, i= 1, ...,m. Then a linear data fitting problem takes

the form of (9.1) with x = c:

Ac ≈ b (9.6)

Elements of the matrix A are created by basis functions φ j(x), j = 1, ...,n. We will

consider now different examples of choosing basis functions φ j(x), j = 1, ...,n.

Example 9.2. Problem of the fitting to a polynomial.

In the problem of the fitting to a polynomial

f (x,c) =
d

∑
i=1

cix
i−1 (9.7)

of degree d − 1 to data points (xi,yi), i = 1, ...,m, basis functions φ j(x), j = 1, ...,n
can be chosen as φ j(x) = x j−1, j = 1, ...,n. The matrix A constructed by these basis

functions in a polynomial fitting problem is a Vandermonde matrix:

A =




1 x1 x2
1 . . . xd−1

1

1 x2 x2
2 . . . xd−1

2

1 x3 x2
3 . . . xd−1

3
...

...
. . .

. . .
...

1 xm x2
m . . . xd−1

m



. (9.8)

Here, xi, i = 1,,m are discrete points on the interval for x = [xle f t ,xright].
Suppose, that we choose d = 4 in (9.4). Then we can write the polynomial as

278 Chapter 9. Numerical solution of Linear Least Squares Problems

f (x,c) = ∑4
i=1 cix

i−1 = c1 + c2x + c3x2 + c4x3 and our data fitting problem (9.6)

for this polynomial takes the form




1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3
...

...
. . .

...

1 xm x2
m x3

m




·




c1

c2

c3

c4


=




b0

b1

b2

...
bm



. (9.9)

The right hand side of the above system represents measurements or function

which we want to fit. Our goal is to find such coefficients c = {c1,c2,c3,c4} which

will minimize the residual ri = f (xi,c)− bi, i = 1...,m. Since we want minimize

squared 2-norm of the residual, or ‖r‖2
2 = ∑m

i=1 r2
i , then we will solve the linear least

squares problem.

Let us consider an example when the right hand side bi, i = 1, ...m is taken as a

smooth function b = sin(πx/5)+ x/5. Figure 9.1 shows polynomial fitting to the

function b = sin(πx/5)+ x/5 for different d in (9.7) on the interval x ∈ [−10,10].
Using this figure we observe that with increasing of the degree of the polynomial

d − 1 we have better fit to the exact function b = sin(πx/5) + x/5. However, for

the degree of the polynomial more than 18 we get erratic fit to the function, check

this using matlab programs of section A.4. This happens because matrix A becomes

more and more ill-conditioned with increasing of the degree of the polynomial d.

And this is, in turn, because of the linear dependence of the columns in the Vander-

monde’s matrix A.

Example 9.3. Approximation using linear splines.

When we want to solve the problem (9.4) of the approximation to the data vector

yi, i = 1, ...,m with linear splines we use following basis functions φ j(x), j = 1, ...,n,

in (9.5) which are called also hat functions:

φ j(x) =





x−Tj−1

Tj−Tj−1
, Tj−1 ≤ x ≤ Tj,

Tj+1−x

Tj+1−Tj
, Tj ≤ x ≤ Tj+1.

(9.10)

Here, the column j in the matrix A is constructed by the given values of φ j(x) at

points Tj, j = 1, ..,n, which are called conjunction points and are chosen by the user.

Using (9.10) we can conclude that the first basis function is φ1(x) =
T2−x

T2−T1
and the

last one is φn(x) =
x−Tn−1

Tn−Tn−1
.

Figure 9.1 shows approximation of a function b = sin(πx/5)+ x/5 on the inter-

val x ∈ [−10,10] using linear splines with different number n of conjunction points

Tj, j = 1, ...,n. The matlab program of section A.7 is available in Appendix for run-

ning of this test.

9.1 Linear Least Squares Problems 279

x
-10 -5 0 5 10

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

exact function
 computed

x
-10 -5 0 5 10

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

exact function
 computed

a) d=10 b) d=10

x
-10 -5 0 5 10

-3

-2

-1

0

1

2

3

exact function
 computed

x
-10 -5 0 5 10

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

exact function
 computed

c) d=5 d) d=5

x
-10 -5 0 5 10

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

exact function
 computed

x
-10 -5 0 5 10

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

exact function
 computed

e) d=3 f) d=3

Fig. 9.1 Polynomial fitting for different d in (9.7) to the function b = sin(πx/5) + x/5 on the

interval x ∈ [−10,10] using the method of normal equations. On the left figures: fit to the 100

points xi, i = 1, ...,100; on the right figures: fit to the 10 points xi, i = 1, ...,10. Lines with blue

stars represent computed function and with red circles - exact one.

280 Chapter 9. Numerical solution of Linear Least Squares Problems

-10 -5 0 5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

function
approx

-10 -5 0 5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

function
approx

a) n=10 b) n=5

Fig. 9.2 Example 9.3. Polynomial fitting to the function b = sin(πx/5) + x/5 on the interval

x ∈ [−10,10] using linear splines with different number n of conjunction points Tj, j = 1, ...,n in

(9.10). Blue stars represent computed function and red circles - exact one.

Example 9.4. Approximation using bellsplines.

In the case when we want to solve the problem (9.4) using bellsplines, the number

of bellsplines which can be constructed are n+2, and the function f (x,c) in (9.4) is

written as

f (x,c) = c1φ1(x)+ c2φ2(x)+ ...+ cn+2φn+2(x). (9.11)

We define

φ 0
j (x) =

{
1, Tj ≤ x ≤ Tj+1,
0, otherwise.

(9.12)

Then all other basis functions, or bellsplines, φ k
j (x), j = 1, ...,n+ 2;k = 1,2,3 are

defined as follows:

φ k
j (x) = (x−Tk)

φ k−1
j (x)

Tj+k −Tj

+(Tj+k+1 − x)
φ k−1

j+1 (x)

Tj+k+1 −Tj+1
. (9.13)

Here, the column j in the matrix A is constructed by the given values of φ j(x) at

conjunction points Tj, j = 1, ..,n which are chosen by the user. If in (9.13) we obtain

ratio 0/0, then we assign φ k
j (x) = 0. We define additional three points T−2,T−1,T0

at the left side of the input interval as T−2 = T−1 = T0 = T1, and correspondingly

three points Tn+1,Tn+2,Tn+3 on the right side of the interval as Tn = Tn+1 = Tn+2 =
Tn+3. All together we have n+ 6 conjunction points Tj, j = 1, ...,n+ 6. Number of

bellsplines which can be constructed are n+2.

If conjunction points Tj are distributed uniformly, then we can introduce the mesh

size h = Tk+1 −Tk and bellsplines can be written explicitly as

9.2 Nonlinear least squares problems 281

φ j(x) =





1
6
t3 if Tj−2 ≤ x ≤ Tj−1, t = 1

h
(x−Tj−2),

1
6
+ 1

2
(t + t2 − t3) if Tj−1 ≤ x ≤ Tj, t = 1

h
(x−Tj−1),

1
6
+ 1

2
(t + t2 − t3) if Tj ≤ x ≤ Tj+1, t = 1

h
(Tj+1 − x),

1
6
t3 if Tj+1 ≤ x ≤ Tj+2, t =

1
h
(Tj+2 − x).

(9.14)

In the case of uniformly distributed bellsplines we place additional points at the

left side of the input interval as T0 = T1 − h,T−1 = T1 − 2h,T−2T1 − 3h, and corre-

spondingly on the right side of the interval as Tn+1 = Tn +h,Tn+2 = Tn +2h,Tn+3 =
Tn +3h. Then the function f (x,c) in (9.4) will be the following linear combination

of n+2 functions φ j(x) for indices j = 0,1, ...,n+1:

f (x,c) = c1φ0(x)+ c2φ1(x)+ ...+ cn+2φn+1(x). (9.15)

Figure 9.3 shows approximation of a function b= sin(πx/5)+x/5 on the interval

x ∈ [−10,10] using bellsplines. The matlab program of section A.8 is available in

Appendix for running of this test.

9.2 Nonlinear least squares problems

Suppose that for our data points (xi,yi), i = 1, ...,m we want to find the vector of

parameters c = (c1, ...,cn) which will fit best to the data yi, i = 1, ...,m of the model

function f (xi,c), i = 1, ...,m. We consider the case when the model function f :

Rn+1 → R is nonlinear now. Our goal is to find minimum of the residual r = y−
f (x,c) in the least squares sense:

min
c

m

∑
i=1

(yi − f (xi,c))
2. (9.16)

To solve problem (9.16) we can still use the linear least squares method if we can

transform the nonlinear function f (x,c) to the linear one. This can be done if the

function f (x,c) can be represented in the form f (x,c) = Aexpcx,A = const. Then

taking logarithm of f (x,c) we get: ln f = lnA+cx, which is already linear function.

Then linear least squares problem after this transformation can be written as

min
c

m

∑
i=1

(lnyi − ln f (xi,c))
2. (9.17)

Another possibility how to deal with nonlinearity is consider the least squares

problem as an optimization problem. Let us define the residual r : Rn → Rm as

ri(c) = yi − f (xi,c), i = 1, ...,m. (9.18)

Our goal is now minimize the function

282 Chapter 9. Numerical solution of Linear Least Squares Problems

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 number of bellsplines=5

-10 -5 0 5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

exact
B-spline degree 3, QR

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 number of bellsplines=7

-10 -5 0 5 10
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

exact
B-spline degree 3, QR

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 number of bellsplines=9

-10 -5 0 5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

exact
B-spline degree 3, QR

Fig. 9.3 Example 9.4. Polynomial fitting to the function b = sin(πx/5) + x/5 on the interval

x ∈ [−10,10] with different number of bellsplines. Blue stars represent computed function and red

circles - exact one.

9.2 Nonlinear least squares problems 283

F(c) =
1

2
r(c)T r(c) =

1

2
‖r(c)‖2

2. (9.19)

To find minimum of (9.19) we should have

∇F(c) =
∂F(c)

∂ci

= 0, i = 1, ...,m. (9.20)

Direct computations show that the gradient vector ∇F(c) is

∇F(c) =
dF

dc
= JT (c)r(c), (9.21)

where JT is the transposed Jacobian matrix of the residual r(c). For a sufficiently

smooth function F(c) we can write its Taylor expansion as

F(c) = F(c0)+∇F(c0)(c− c0)+O(h2), (9.22)

with |h|= ‖c− c0‖. Since our goal is to find minimum of F(c), then at a minimum

point c∗ we should have ∇F(c∗) = 0. Taking derivative with respect to c from (9.22)

we obtain

H(F(c0))(c− c0)+∇F(c0) = 0, (9.23)

where H denotes the Hessian matrix of the function F(c0). Using (9.21) in (9.23)

we obtain

H(F(c0))(c− c0)+ JT (c0)r(c0) = 0, (9.24)

and from this expression we observe that we have obtained a system of linear equa-

tions

H(F(c0))(c− c0) =−JT (c0)r(c0) (9.25)

which can be solved again using linear least squares method. The Hessian matrix

H(F(c0)) can be obtained from (9.21) as

H(F(c0)) = JT (c0)J(c0)+
m

∑
i=1

ri(c0)H(ri), (9.26)

where H(ri) denotes the Hessian matrix of the residual function ri(c). These m

matrices H(ri) are inconvenient to compute, but since they are multiplied to the

small residuals ri(c0), the second term in (9.26) is often very small at the solution

c0 and this term can be dropped out. Then the system (9.25) is transformed to the

following linear system

JT (c0)J(c0)(c− c0)≈−JT (c0)r(c0), (9.27)

which actually is a system of normal equations for the m× n linear least squares

problem

J(c0)(c− c0)≈−r(c0). (9.28)

284 Chapter 9. Numerical solution of Linear Least Squares Problems

The system (9.27) determines the Gauss-Newton method for the solution of the least

squares problem as an iterative process

ck+1 = ck − [JT (ck)J(ck)]
−1JT (ck)r(ck), (9.29)

where k is the number of iteration.

An alternative to the Gauss-Newton method is the Levenberg1 - Marquardt 2

method which is used for ill-conditioned and rank-deficient problems. This method

is similar to the problem of finding the minimum of the regularized function

F(c) =
1

2
r(c)T r(c)+

1

2
γ(c− c0)

T (c− c0) =
1

2
‖r(c)‖2

2 +
1

2
γ‖c− c0‖2

2, (9.30)

where c0 is a good initial guess for c and γ is a small regularization parameter. To ob-

tain the Levenberg-Marquardt method we repeat all steps which we have performed

for the Gauss-Newton method, see (9.21)-(9.26), but for the functional (9.30).

Finally, in the Levenberg-Marquardt method the linear system which should be

solved at every iteration k is

(JT (ck)J(ck)+ γkI)(ck+1 − ck)≈−JT (ck)r(ck), (9.31)

and the corresponding linear least squares problem is

(
J(ck)√

γkI

)
· (ck+1 − ck)≈

(
−r(ck)

0

)
. (9.32)

In (9.31), (9.32) the γk is iteratively chosen regularization parameter which can be

computed as in [7] or using a trust region approach [13]. We refer to [31, 110] for

diferent techniques of chosing regularization parameter γ in (9.30), and to [74] for

implementation and convergence analysis of this method.

Example 9.5. Let us consider the nonlinear model equation

AeE/T−T0 = y. (9.33)

Our goal is to determine parameters A,E and T0 in this equation by knowing y and

T . We rewrite (9.33) as a nonlinear least squares problem in the form

min
A,E,T0

m

∑
i=1

(yi −AeE/Ti−T0)2. (9.34)

We will show how to obtain from the nonlinear problem (9.34) the linear one. We

take logarithm of (9.33) to get

1 Kenneth Levenberg (1919 - 1973) was an American statistician.
2 Donald W. Marquardt (1929 - 1997) was an American statistician.

9.2 Nonlinear least squares problems 285

lnA+
E

T −T0
= lny. (9.35)

Now multiply both sides of (9.35) by T −T0 to obtain:

lnA(T −T0)+E = lny(T −T0). (9.36)

and rewrite the above equation as

T lnA−T0 lnA+E +T0 lny = T lny. (9.37)

Let now define the vector of parameters c = (c1,c2,c3) with c1 = T0,c2 = lnA,c3 =
E −T0 lnA. Now the problem (9.37) can be written as

c1 lny+ c2T + c3 = T lny, (9.38)

which is already a linear problem. Now we can rewrite (9.38) denoting by f (c,y,T)=
c1 lny+ c2T + c3 as a linear least squares problem in the form

min
c

m

∑
i=1

(Ti lnyi − f (c,yi,Ti))
2. (9.39)

The system of linear equations which is needed to be solved is




lny1 T1 1

lny2 T2 1
...

...
...

lnym Tm 1


 ·




c1

c2

c3


=




T1 lny1

T2 lny2

...

Tm lnym


 (9.40)

Example 9.6. Suppose that the nonlinear model function is given as

f (x,c) = Aec1x +Bec2x, A,B = const. > 0, (9.41)

and our goal is to fit this function using Gauss-Newton method. In other words, we

will use iterative formula (9.28) for iterative update of c = (c1,c2). The residual

function will be

r(c) = y− f (x,c), (9.42)

where y = yi, i = 1, ...,m are data points. First, we compute Jacobian matrix J(c),
where two columns in this matrix will be given by

J(c)i,1 =
∂ ri

∂c1
=−xiAec1xi , i = 1, ...,m,

J(c)i,2 =
∂ ri

∂c2
=−xiBec2xi , i = 1, ...,m.

(9.43)

286 Chapter 9. Numerical solution of Linear Least Squares Problems

If we will take initial guess for the parameters c0 = (c0
1,c

0
2) = (1,0), then we have

to solve the following problem at iteration k = 1:

J(c0)(c1 − c0) =−r(c0), (9.44)

and the next update for parameters c1 = (c1
1,c

1
2) in the Gauss-Newton method can

be computed as

c1 = c0 − [JT (c0)J(c0)]
−1JT (c0)r(c0). (9.45)

Here, r(c0) and J(c0) can be computed explicitly as follows:

r(c0) = yi − f (xi,c
0) = yi − (Ae1·xi +Be0·xi) = yi −Aexi −B, i = 1, ...,m, (9.46)

and noting that c0 = (c0
1,c

0
2) = (1,0) two columns in the Jacobian matrix J(c0) will

be

J(c0)i,1 =−xiAe1·xi =−xiAexi , i = 1, ...,m,

J(c0)i,2 =−xiBe0·xi =−xiB, i = 1, ...,m.
(9.47)

Substituting (9.46), (9.47) into (9.44) yields following linear system of equations




−x1Aex1 −x1B

−x1Aex1 −x2B
...

...

−xmAexm −xmB


 ·
(

c1
1 − c0

1

c1
2 − c0

2

)
=




−y1 −Aex1 −B

−y2 −Aex2 −B
...

−ym −Aexm −B


 (9.48)

which is solved for c1 − c0 using method of normal equations as




−x1Aex1 −x1B

−x1Aex1 −x2B
...

...

−xmAexm −xmB




T

·




−x1Aex1 −x1B

−x1Aex1 −x2B
...

...

−xmAexm −xmB


 ·
(

c1
1 − c0

1

c1
2 − c0

2

)

=




−x1Aex1 −x1B

−x1Aex1 −x2B
...

...

−xmAexm −xmB




T

·




−y1 −Aex1 −B

−y2 −Aex2 −B
...

−ym −Aexm −B




(9.49)

This system can be solved for c1 − c0, and next values for c1 are obtained by using

(9.45) as:

9.3 Method of normal equations 287

(
c1

1

c1
2

)
=

(
c0

1

c0
2

)
+







−x1Aex1 −x1B

−x1Aex1 −x2B
...

...

−xmAexm −xmB




T

·




−x1Aex1 −x1B

−x1Aex1 −x2B
...

...

−xmAexm −xmB







−1

·




−x1Aex1 −x1B

−x1Aex1 −x2B
...

...

−xmAexm −xmB




T

·




−y1 −Aex1 −B

−y2 −Aex2 −B
...

−ym −Aexm −B


 .

(9.50)

9.3 Method of normal equations

The first method which we will consider for the solution of (9.2) will be the method

of normal equations. This method is the fastest but not so accurate as QR or SVD

decompositions. We can apply this method for the solution of the linear least square

problem if the condition number of the matrix A is small.

Since our goal is to minimize the function F(x) = ‖Ax−b‖2
2, then to find mini-

mum of this function and derive the normal equations, we look for the x where the

gradient of

F(x) = ‖r(x)‖2
2 = ‖Ax−b‖2

2 = (Ax−b)T (Ax−b) (9.51)

vanishes, or where ∇F = 0. Considering the standard definition of the Fréchet

derivative we get

0 = lim
h→0

(A(x+h)−b)T (A(x+h)−b)− (Ax−b)T (Ax−b)

‖h‖2

= lim
h→0

2hT (AT Ax−AT b)+hT AT Ah

‖h‖2
.

(9.52)

We observe that the second term
|hT AT Ah|
‖h‖2

≤ ‖A‖2
2‖h‖2

2
‖h‖2

= ‖A‖2
2‖h‖2 → 0 as h → 0.

This means that the term AT Ax−AT b must also be zero, and thus we should have

0 =∇F = 2AT Ax−2AT b. (9.53)

We can conclude that

AT Ax = AT b, (9.54)

which is a symmetric linear system of the n× n equations, commonly called the

system of normal equations.

Using (9.53) we can compute the Hessian matrix H = 2AT A . If the Hessian

matrix H = 2AT A is positive definite, then x is indeed a minimum. This is sufficient

condition for x to be a minimum of (9.51). We can show that the matrix AT A is

288 Chapter 9. Numerical solution of Linear Least Squares Problems

positive definite if, and only if, the columns of A are linearly independent, or when

r(A) = n.

If the matrix A has a full rank (r(A) = n) then the system (9.54) is of the size n-

by-n and is symmetric positive definite system of normal equations. It has the same

solution x as the least squares problem minx ‖Ax−b‖2
2 of the size m-by-n. To solve

system (9.54) one can use Cholesky decomposition

AT A = LLT (9.55)

with L lower triangular matrix. Then the solution of (9.54) will be given by the

solution of triangular system

Ly = AT b,

LT x = y.
(9.56)

However, in practice the method of normal equations can be inaccurate by two

reasons.

• The condition number of AT A is twice more than twice more than the condition

number of the original matrix A:

cond(AT A) = cond(A)2. (9.57)

Thus, the method of normal equations can give a squared condition number even

when the fit to data is good and the residual is small. This makes the computed

solution more sensitive. In this sense the method of normal equations is not sta-

ble.

• Information can be lost during computation of the product of AT A. For example,

take

A =




1 1

δ 0

0 δ


 (9.58)

with 0 < δ <
√

ε in a given floating-point system. In floating-point arithmetics

we can compute AT A:

AT A =

(
1 δ 0

1 0 δ

)
·




1 1

δ 0

0 δ


=

(
1+δ 2 1

1 1+δ 2

)
=

(
1 1

1 1

)
, (9.59)

which is singular matrix in the working precision.

These inconveniences do not make the method of normal equations useless, but

provide motivation to seek more robust methods for linear least squares problems.

9.4 QR Decomposition 289

9.4 QR Decomposition

In this section we consider QR decomposition of the matrix A. QR decomposition

of the matrix A can be computed, for example, using the Gram-Schmidt orthogo-

nalization process [47], see section 9.5.3. QR decomposition of the matrix A means

that the matrix A of the size m-by-n with m ≥ n can be factorized as the product of

an unitary matrix Q of the size m-by-m and an upper triangular matrix R of the size

m-by-n:

A = QR = Q

(
R1

0

)
=
(
Q1,Q2

)(R1

0

)
= Q1R1, (9.60)

where R1 is an upper triangular matrix of the size n-by-n, 0 is a zero matrix of the

size (m− n)-by-n , Q1 is a matrix of the size m-by-n with orthogonal columns, Q2

is of the size m-by-(m−n) with orthogonal columns. We note that (m−n) rows of

an upper triangular matrix R consist of zeroes.

We can consider also alternative definition of QR decomposition:

Theorem 9.1. QR decomposition. Let A be m-by-n with m ≥ n. Suppose that A has

full column rank. Then there exist a unique m-by-n orthogonal matrix Q(QT Q = In)
and a unique n-by-n upper triangular matrix R with positive diagonals rii > 0 such

that A = QR.

Proof. The proof follows from the Gram-Schmidt orthogonalization process [47],

see section 9.5.3. Another proof follows from the QR factorization using House-

holder reflection.

⊓⊔

We now will show how to get the formula for the x which minimizes ‖Ax−b‖2

using three different ways of the decomposition the matrix A into Q and R matrices.

• The first method is such that we choose m−n more orthonormal vectors Q̃ such

that (Q, Q̃) is a square orthogonal matrix, and because of that Q̃T Q = 0. One

example how to choose them is choose any m− n more independent vectors X̃

that we want, and then apply the Gram-Schmidt orthogonalization algorithm 9.4

to the n-by-n nonsingular matrix (Q, X̃)). Using the following property of norms

and matrices

‖QAZ‖2 = ‖A‖2 (9.61)

for any orthogonal or unitary matrices Q,Z and applying it to ‖Ax−b‖2
2, we can

write

290 Chapter 9. Numerical solution of Linear Least Squares Problems

‖r(x)‖2
2 = ‖Ax−b‖2

2 = ‖(Q, Q̃)T (Ax−b)‖2
2

=

∥∥∥∥
(

QT

Q̃T

)
(QRx−b)

∥∥∥∥
2

2

=

∥∥∥∥
(

In×n

O(m−n)×n

)
Rx−

(
QT b

Q̃T b

)∥∥∥∥
2

2

=

∥∥∥∥
(

Rx−QT b

−Q̃T b

)∥∥∥∥
2

2

=
∥∥Rx−QT b

∥∥2

2
+‖Q̃T b‖2

2

≥ ‖Q̃T b‖2
2.

We can solve the triangular linear system Rx−QT b = 0 for x, since A and R have

the same rank, n, and so R is nonsingular and QT b is vector of the size n. Then

x = R−1QT b and the minimum residual norm of ‖Ax−b‖2 is given by ‖Q̃T b‖2.

• The second method is slightly different derivation and it does not use the matrix

Q̃. This method uses adding and subtracting the same term QQT to the expression

for residual r(x) = Ax−b:

r(x) = Ax−b = QRx−b = QRx− (QQT + I −QQT)b
= Q(Rx−QT b)− (I −QQT)b.

Note that the vectors Q(Rx−QT b) and (I −QQT)b are orthogonal, because

(Q(Rx−QT b))T ((I −QQT)b) = (Rx−QT b)T (QT (I −QQT))b

= (Rx−QT b)T (0)b = 0.
(9.62)

Thus, we can use the Pythagorean theorem

‖Ax−b‖2
2 = ‖Q(Rx−QT b)‖2

2 +‖(I −QQT)b‖2
2

= ‖Rx−QT b‖2
2 +‖(I −QQT)b‖2

2.

where we have used property of the norm ‖Qy‖2
2 = ‖y‖2

2. This sum of squares is

minimized when the first term is zero, i.e., x = R−1QT b.

• A third derivation uses the normal equations solution and then QR decomposition

inside this solution:

x = (AT A)−1AT b

= (RT QT QR)−1RT QT b = (RT R)−1RT QT b

= R−1R−T RT QT b = R−1QT b.

9.5 Orthogonalization methods

In this section we will present main orthogonalization methods for the computing

QR factorization of the matrix A which include:

9.5 Orthogonalization methods 291

• Householder transformation (called also reflection),

• Givens transformation (called rotation),

• Gram-Schmidt orthogonalization.

9.5.1 Householder Transformations

A Householder transformation which also called reflection, is a matrix of the form

P = I −2uuT ,

where ‖u‖2 = 1. We can see that P = PT and

P ·PT = (I −2uuT)(I −2uuT) = I −4uuT +4uuT uuT = I.

Using above equations we can conclude that P is a symmetric, orthogonal matrix.

This matrix is called a reflection because Px is reflection of a vector x in the plane

which comes through 0 and is perpendicular to the vector u.

For a given a vector x, we can find a Householder reflection P = I −2uuT which

will zero out all but leave non-zero the first entry of x as:

Px = (c,0, . . . ,0)T = c · e1

with e1 = (1,0, ...,0). We do this using the following procedure. First we apply P to

x to get:

Px = (I −2uuT)x = x−2u(uT x) = c · e1.

From the equation above we get

u =
1

2(uT x)
(x− ce1), (9.63)

i.e., u is a linear combination of x and e1.

Since P is orthogonal matrix we can use the following property of the 2-norm:

‖x‖2 = ‖Px‖2 = |c|. Then the vector u in (9.63) must be parallel to the vector

ũ = x±‖x‖2e1, (9.64)

and thus the vector u can be computed as

u = ũ/‖ũ‖2.

One can verify that as long as ũ 6= 0 choice of sign in (9.64) yields a u satisfying

Px = ce1. We will determine the vector ũ as

ũ = x+ sign(x1)e1,

292 Chapter 9. Numerical solution of Linear Least Squares Problems

and this means that there is no cancellation in computing the first component of u.

Here, x1 is the first coordinate in the vector x after which all other entries of the

vector x in matrix A are 0. Finally, the vector ũ will have the following form

ũ =




x1 + sign(x1) · ‖x‖2

x2

...

xn


 where u =

ũ

‖ũ‖2
.

We denote the procedure of the obtaining the vector u as u = House(x) and use

it in the algorithm 9.2. In computations is more efficient to store ũ instead of u to

save the work of computing u, and use the formula P = I − (2/‖ũ‖2
2)ũũT instead of

P = I −2uuT .

Example 9.7. In this example we show general procedure of the computation of the

QR decomposition of a matrix A of the size 5-by-4 using Householder transforma-

tions. In all matrices below, Pi denotes an orthogonal matrix, x denotes a generic

nonzero entry, and o denotes a zero entry. Thus, for decomposition A = QR we need

perform following steps:

• 1. Choose the matrix P1 such that

A1 ≡ P1A =




x x x x

0 x x x

0 x x x

0 x x x

0 x x x




• 2. Choose the matrix P2 such that

P2 =




1 0 0 0

0

0 P′
2

0

0




and

A2 ≡ P2A1 =




x x x x

0 x x x

0 0 x x

0 0 x x

0 0 x x



.

• 3. Choose

P3 =




1

0

1

0 P′
3




9.5 Orthogonalization methods 293

such that

A3 ≡ P3A2 =




x x x x

0 x x x

0 0 x x

0 0 0 x

0 0 0 x




• 4. Choose

P4 =




1

1 0

1

0 P′
4




such that

R̃ := A4 ≡ P4A3 =




x x x x

0 x x x

0 0 x x

0 0 0 x

0 0 0 0




In this example we have chosen a Householder matrix P′
i , i = 2,3,4 to zero out

the subdiagonal entries in column i. We note that this does not disturb the zeros

which were already introduced in previous columns.

We observe that we have performed decomposition

A4 = P4P3P2P1A. (9.65)

Let us denote the final triangular matrix A4 as R̃ ≡ A4. Then using (9.65) we

observe that the matrix A is obtained via decomposition

A = PT
1 PT

2 PT
3 PT

4 R̃ = QR, (9.66)

which is our desired QR decomposition. Here, the matrix Q is the first four columns

of PT
1 PT

2 PT
3 PT

4 = P1P2P3P4 (since all Pi are symmetric), and R is the first four rows

of R̃.

QR factorization for a matrix A of the size m-by-n is summarized in the algorithm

9.1. In this algorithm by ak is denoted the column with number k of the matrix A.

For simplicity, rescalling procedure is omitted in this algorithm.

Algorithm 9.1. QR factorization using Householder reflections.

for k = 1 to min(m−1,n) /* loop over all columns */

αk =−sign(akk)
√

a2
kk + ...+a2

mk

uk = (0, ...0 akk....amk)
T −αkek

βk = uT
k uk

if βk = 0 then /* skip column k since it is already 0 */

go to the next k

294 Chapter 9. Numerical solution of Linear Least Squares Problems

for j = k to n

γ j = uT
k a j /* a j are elements of column j of A */

a j = a j − 2γ j

βk
uk

end

end

Below we present the algorithm for obtaining QR decomposition using House-

holder transformations in a more general form.

Algorithm 9.2. QR factorization using Householder reflections.

for i = 1 to min(m−1,n)
ui = House(A(i : m, i))
P′

i = I −2uiu
T
i

A(i : m, i : n) = P′
i A(i : m, i : n)

end for

We can discuss some implementation issues of this algorithm. We note that we

never form the matrix Pi explicitly but instead use efficient multiplication

(I −2uiu
T
i)A(i : m, i : n) = A(i : m, i : n)−2ui(u

T
i A(i : m, i : n)).

To store Pi, we need only ui, or ũi and ‖ũi‖. These values can be stored in column

i of A what means that the QR decomposition can be ”overwritten” on A, where Q

is stored in factored form P1, . . . ,Pn−1, and Pi is stored as ũi below the diagonal in

column i of A.

Householder reflections can be applied for the solution of the least squares prob-

lem

Find x subject to min
x

‖Ax−b‖2 (9.67)

To solve (9.67) using QR decomposition of the matrix A, we need to compute

the vector QT b, see details in section 9.4. We can do this computation in a fol-

lowing way: compute QT b using Householder matrices Pi, i = 1, ...,n as QT b =
PnPn−1 · · ·P1b, so we need only keep multiplying b by P1,P2, . . . ,Pn. We summa-

rize this discussion in the following algorithm:

Algorithm 9.3. for i = 1 to n

γ =−2 ·uT
i b(i : m)

b(i : m) = b(i : m)+ γui

end for

The cost of the computing QR decomposition in this way is 2n2m− 2
3
n3, and the

cost of solving the least squares problem using QR decomposition is an additional

O(mn).
In Matlab, the command A\b solves the least squares problem if the matrix A is

of the size m-by-n with m > n. It is also possible to use command (Q,R) = qr(A) in

Matlab to perform the QR decomposition of the matrix A.

9.5 Orthogonalization methods 295

Let us explain now how to perform the Householder transformation u=House(x)
in algorithm 9.2 in more details. First we introduce some notions:

• Let x be an arbitrary real m-dimensional column vector of A such that ‖x‖= |α|
for a scalar α .

• If the Householder algorithm is implemented using floating-point arithmetic,

then α should get the opposite sign as the k-th coordinate of x, where xk is the

pivot element after which all entries in matrix A’s final upper triangular form are

0.

Then to compute the Householder matrix P set

v = x+αe1,

α =−sign(x1)‖x‖,
u =

v

‖v‖ ,

P = I −2uuT ,

(9.68)

where e1 is the vector (1,0, ...,0)T ,‖ · ‖ is the Euclidean norm and I is an m-by-m

identity matrix, x1 is the first component of the vector x. Obtained matrix P is an

m-by-m Householder matrix such that

Px = (α,0, · · · ,0)T .

To transform gradually m-by-n matrix A to upper triangular form, we first multi-

ply A with the first Householder matrix P1. This results in a matrix P1A with zeros

in the left column (except for the first row).

P1A =




α1 ⋆ . . . ⋆
0
... A′

0




This can be repeated for matrix A′ which is obtained from P1A by deleting the first

row and first column, resulting in a Householder matrix P′
2. Note that P′

2 is smaller

than P1. Since we want it really to operate on P1A instead of A′ we need to expand

it to the upper left, or in general:

Pk =

(
Ik−1 0

0 P′
k

)
.

After k iterations of this process, k = min(m−1,n), we obtain the upper triangular

matrix R

R = Pk · · ·P2P1A

Now choosing

Q = PT
1 PT

2 · · ·PT
k ,

296 Chapter 9. Numerical solution of Linear Least Squares Problems

we obtain the QR decomposition of A.

Example 9.8. Let us calculate the QR decomposition of a matrix

A =




12 −51 4

6 167 −68

−4 24 −41




using Householder reflection. First, we need to find a reflection that transforms the

first column of matrix A, the vector x = a1 = (12,6,−4)T , to ‖x‖ e1 = ‖a1‖ e1 =
(14,0,0)T .

Now, using (9.68) we construct the vector

v = x+αe1,

where

α =−sign(x1)‖x‖,
and

u =
v

‖v‖ .

We observe that in our example ‖x‖= ‖x‖2 =
√

122 +62 +(−4)2 = 14,

α =−sign(12)‖x‖=−14 and the vector will be x = a1 = (12,6,−4)T .

Therefore

v = x+αe1 = (−2,6,−4)T = (2)(−1,3,−2)T

and thus u = v
‖v‖ = 1√

14
(−1,3,−2)T . Then the first Householder matrix will be

P1 = I − 2√
14
√

14



−1

3

−2


(−1 3 −2

)

= I − 1

7




1 −3 2

−3 9 −6

2 −6 4




=




6/7 3/7 −2/7

3/7 −2/7 6/7

−2/7 6/7 3/7


 .

We perform multiplication P1A to get the matrix A1:

A1 = P1A =




14 21 −14

0 −49 −14

0 168 −77


 , (9.69)

which is almost a triangular matrix. We only need to zero the (3,2) entry.

9.5 Orthogonalization methods 297

Take the (1,1) minor of (9.69), and then apply the same process again to the

matrix

A′ = M11 =

(
−49 −14

168 −77

)
.

By the same method as above we first need to find a reflection that transforms the

first column of matrix A′, vector x=(−49,168)T , to ‖x‖ e1 =(175,0)T . Here, ‖x‖=√
(−49)2 +1682 = 175,

α =−sign(−49)‖x‖= 175 and x = (−49,168)T .

Therefore,

v = x+αe1 = (−49,168)T +(175,0)T = (126,168)T ,

‖v‖=
√

1262 +1682 =
√

44100 = 210,

u =
v

‖v‖ = (126/210,168/210)T = (3/5,4/5)T .

Then

P′
2 = I −2

(
3/5

4/5

)(
3/5 4/5

)

or

P′
2 = I −2

(
9/25 12/25

12/25 16/25

)
=

(
7/25 −24/25

−24/25 −7/25

)

Finally, we obtain the matrix of the Householder transformation P2 such that

P2 =

(
1 0

0 P′
2

)

to get

P2 =




1 0 0

0 7/25 −24/25

0 −24/25 −7/25


 .

Now, we find

Q = P = PT
1 PT

2 =




6/7 69/175 −58/175

3/7 −158/175 6/175

−2/7 −6/35 −33/35


 .

Thus, we have performed the QR decomposition of the matrix A with matrices Q

and R given by

298 Chapter 9. Numerical solution of Linear Least Squares Problems

Q = PT
1 PT

2 =




0.8571 0.3943 −0.3314

0.4286 −0.9029 0.0343

−0.2857 −0.1714 −0.9429


 ,

R = P2A1 = P2P1A = QT A =




14 21 −14

0 −175 70

0 0 35


 .

We observe that the matrix Q is orthogonal and R is upper triangular, so A = QR

is the required QR-decomposition. To obtain Q and R matrices above we have used

facts that

P2A1 = P2P1A = R,

PT
1 PT

2 P2P1A = PT
1 PT

2 R,

A = PT
1 PT

2 R = QR,

with Q = PT
1 PT

2 .

We can also perform tridiagonalization of the matrix A using Householder reflec-

tion matrix. We follow [12] in the description of this procedure. In the first step of

the tridiagonalization procedure, to form the Householder matrix in every step we

need to determine constants α and r, which are given by formulas

α =−sgn(a21)

√
n

∑
j=2

a2
j1,

r =

√
1

2
(α2 −a21α).

(9.70)

By knowing α and r we can construct the vector v such that

v(1) =




v1

v2

...
vn


 , (9.71)

where v1 = 0,v2 =
a21−α

2r
and

vk =
ak1

2r
for each k = 3,4, ...,n.

Then we can compute the first Householder reflection matrix as

P(1) = I −2v(1)(v(1))T

and obtaing matrix A(1) as

A(1) = P(1)AP(1).

9.5 Orthogonalization methods 299

Using obtained P(1) and A(1) the process of tridiagonalization is repeated for

k = 2,3, ...,n as follows:

α =−sgn(ak+1,k)

√
n

∑
j=k+1

a2
jk,

r =

√
1

2
(α2 −ak+1,kα),

v
(k)
1 = v

(k)
2 = ...= v

(k)
k = 0,

v
(k)
k+1 =

ak+1,k −α

2r
,

v
(k)
j =

a jk

2r
for j = k+2;k+3, ...,n,

P(k) = I −2v(k)(v(k))T ,

A(k+1) = P(k)A(k)P(k).

(9.72)

In (9.72) elements ak+1,k,a jk are entries of matrix A(k).

Example 9.9. In this example, the given matrix A

A =




5 1 0

1 6 3

0 3 7




is transformed to the similar tridiagonal matrix A1 by using Householder Method.

We perform tridiagonalization in a following steps:

• 1. First compute α via (9.70) as

α =−sgn(a21)

√
n

∑
j=2

a2
j1 =−

√
(a2

21 +a2
31) =−

√
(12 +02) =−1.

• 2. Using α we find r via (9.70) as

r =

√
1

2
(α2 −a21α) =

√
1

2
((−1)2 −1 · (−1)) = 1.

• 3. By known α and r construct vector v(1) as in (9.71). Using (9.71) we compute:

v1 = 0,

v2 =
a21 −α

2r
=

1− (−1)

2 ·1 = 1,

v3 =
a31

2r
= 0.

Now we have obtained the vector

300 Chapter 9. Numerical solution of Linear Least Squares Problems

v(1) =




0

1

0


 .

We compute the first Householder matrix P1 as

P(1) = I −2v(1)(v(1))T

and get

P(1) =




1 0 0

0 −1 0

0 0 1


 .

The tridiagonal matrix A(1) is obtained as

A(1) = P(1)AP(1) =




5 −1 0

−1 6 −3

0 −3 7


 .

Example 9.10. In this example, the given matrix A of the size 4-by-4

A =




4 1 −2 2

1 2 0 1

−2 0 3 −2

2 1 −2 −1


 ,

is transformed to the similar tridiagonal matrix A2 using Householder reflections.

Similarly with the example above we perform following steps:

• 1. First compute α via (9.70) as

α =−sgn(a21)

√
n

∑
j=2

a2
j1 = (−1) ·

√
(a2

21 +a2
31 +a2

41)

=−1 · (12 +(−2)2 +22) = (−1) ·
√

1+4+4 =−
√

9 =−3.

• 2. Using α we find r as

r =

√
1

2
(α2 −a21α) =

√
1

2
((−3)2 −1 · (−3)) =

√
6.

• 3. From α and r, construct vector v(1). Using (9.71) we compute:

9.5 Orthogonalization methods 301

v1 = 0,

v2 =
a21 −α

2r
=

1− (−3)

2 ·
√

6
=

2√
6
,

v3 =
a31

2r
=

−2

2 ·
√

6
=

−1√
6
,

v4 =
a41

2r
=

2

2 ·
√

6
=

1√
6
.

Thus, we have found

v(1) =




0
2√
6

−1√
6

1√
6


 .

Now we can compute the first Householder matrix P(1)

P(1) = I −2v(1)(v(1))T = I −2 ·




0
2√
6

−1√
6

1√
6


 ·
(

0 2√
6

−1√
6

1√
6

)

and get

P(1) =




1 0 0 0

0 −1/3 2/3 −2/3

0 2/3 2/3 1/3

0 −2/3 1/3 2/3


 .

After that we compute matrix A(1) as

A(1) = P(1)AP(1)

to get

A(1) = P(1)AP(1) =




4 −3 0 0

−3 10/3 1 4/3

0 1 5/3 −4/3

0 4/3 −4/3 −1


 .

Next, having found A(1) we need construct A(2) and P(2). Using formulas (9.72)

for k = 2 we get:

α =−sgn(a3,2)

√√√√
4

∑
j=3

a2
j,2 =−sgn(1)

√
a2

3,2 +a2
4,2 =−

√
1+

16

9
=−5

3
;

r =

√
1

2
(α2 −a3,2 ·α) =

√
20

9
;

302 Chapter 9. Numerical solution of Linear Least Squares Problems

v
(2)
1 = v

(2)
2 = 0,

v
(2)
3 =

a3,2 −α

2r
=

2√
5
,

v
(2)
4 =

a4,2

2r
=

1√
5
,

and thus new vector v will be: v(2) = (0,0, 2√
5
, 1√

5
)T and the new Householder

matrix P(2) will be

P(2) = I −2v(2)(v(2))T = I −2




0 0 0 0

0 0 0 0

0 0 4/5 2/5

0 0 2/5 1/5


=




1 0 0 0

0 1 0 0

0 0 −3/5 −4/5

0 0 −4/5 3/5


 .

Finally, we obtain the tridiagonal matrix A(2) as

A(2) = P(2)A(1)P(2) =




4 −3 0 0

−3 10/3 −5/3 0

0 −5/3 −33/25 68/75

0 0 68/75 149/75


 .

We observe, that we have performed process of tridiagonalization in 2 steps. The

final result is a tridiagonal symmetric matrix A(2) which is similar to the original

one A.

9.5.2 Givens Rotation

In the previous section we have described Householder transformation which intro-

duce many zeros in a column of matrix at once. But in some situations we need

introduce zeros only one at a time, and in these cases we should use Givens rota-

tions.

A Givens rotation is represented by a matrix of the form

G(i, j,θ) =




1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · −s · · · 0
...

...
. . .

...
...

0 · · · s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1




9.5 Orthogonalization methods 303

where c = cosΘ and s = sinΘ appear at the intersections i-th and j-th rows and

columns. Here, Θ is the angle of rotation. The non-zero elements of Givens matrix

are given by:

gk k = 1 for k 6= i, j,

gi i = c,

g j j = c,

g j i =−s,

gi j = s for i > j.

We note that sign of sine switches for j > i. Orthogonality of matrix G implies

that c2 + s1 = 1. This is true for cosine and sine of any given angle. The product

G(i, j,θ)x represents a counterclockwise rotation of the vector x in the (i, j) plane

of θ radians.

When a Givens rotation matrix G multiplies to another matrix, A, from the left,

GA, only rows i and j of A are affected. Thus we restrict ourself to the solution of

the following problem. Given a and b, find c = cosθ and s = sinθ such that

(
c −s

s c

)(
a

b

)
=

(
r

0

)
.

Explicit calculation of θ is rarely necessary or desirable. Instead we directly seek

c,s, and r. An obvious solution is

r =
√

a2 +b2

c = a/r

s =−b/r.

(9.73)

If |a|> |b| then we work with the tangent of the rotation angle

t = s/c = b/a (9.74)

such that we have following alternative formulas for computation c,s

c = 1/
√

1+ t2,

s =−ct.
(9.75)

If |b|> |a| then we can use cotangent τ of the rotation angle

τ = s/c = a/b (9.76)

and obtain

c = 1/
√

1+ τ2,

s =−cτ .
(9.77)

304 Chapter 9. Numerical solution of Linear Least Squares Problems

Example 9.11. Given the following 3x3 Matrix

A =




6 5 0

5 1 4

0 4 3




we perform two iterations of the Given’s Rotation to bring the matrix to an upper

triangular matrix.

We must zero entries (2,1) and (3,2) of the matrix A. We first make element (2,1)

to be zero and construct a rotation matrix G1:

G1 =




c −s 0

s c 0

0 0 1


 .

We have to perform the following matrix multiplication:

A1 = G1 ·A =




c −s 0

s c 0

0 0 1






6 5 0

5 1 4

0 4 3


 (9.78)

such that (
c −s

s c

)(
6

5

)
=

(
r

0

)
. (9.79)

Now we compute parameters c,s, and r in (9.79) using explicit formulas (9.73):

r =
√

62 +52 = 7.8102,

c = 6/r = 0.7682,

s =−5/r =−0.6402.

Plugging these values for c,s in (9.78) and performing the matrix multiplication

yields a new matrix A1:

A1 =




7.8102 4.4813 2.5607

0 −2.4327 3.0729

0 4 3


 .

The next step will be zero out element (3,2). Using the same idea as before, we

construct a rotation matrix G2:

G2 =




1 0 0

0 c −s

0 s c


 .

We have to perform the following matrix multiplication:

9.5 Orthogonalization methods 305

A2 = G2 ·A1 =




1 0 0

0 c −s

0 s c






7.8102 4.4813 2.5607

0 −2.4327 3.0729

0 4 3




such that (
c −s

s c

)(
−2.4327

4

)
=

(
r

0

)
. (9.80)

Parameters c,s, and r in (9.80) are computed using explicit formulas (9.73):

r =
√
(−2.4327)2 +42 = 4.6817,

c =−2.4327/r =−0.5196,

s =−4/r =−0.8544.

Plugging in these values for c and s and performing matrix multiplication gives us a

new matrix A2 which is also upper triangular matrix R:

R = A2 =




7.8102 4.4813 2.5607

0 4.6817 0.9664

0 0 −4.1843


 .

This new matrix R is the upper triangular matrix which is needed to perform an

iteration of the QR decomposition. Matrix Q is now formed using the transpose of

the rotation matrices as follows

Q = GT
1 GT

2 .

We note that we have performed following computations

G2G1A = R,

GT
1 GT

2 G2G1A = GT
1 GT

2 R

and thus,

A = GT
1 GT

2 R = QR

with

Q = GT
1 GT

2 .

Performing this matrix multiplication yields following matrix Q in the QR decom-

position:

Q =




0.7682 0.3327 0.5470

0.6402 −0.3992 −0.6564

0 0.8544 −0.5196


 .

The Givens rotation can also be applied to zero out any desired component of a m-

vector. We illustrate how to zero out element (4,4) of the matrix A which has size

5-by-5. We construct a Givens matrix

306 Chapter 9. Numerical solution of Linear Least Squares Problems

G(2,4,θ) =




1 0 0 0 0

0 c 0 −s 0

0 0 1 0 0

0 s 0 c 0

0 0 0 0 1




and compute parameters r,c,s from




1 0 0 0 0

0 c 0 −s 0

0 0 1 0 0

0 s 0 c 0

0 0 0 0 1




·




a1

a2

a3

a4

a5




=




a1

r

a3

0

a5



.

Using sequence of a such Givens rotations we can zero out individual entries of

a matrix A and reduce it to the upper triangualar form. Doing so we should avoid

reintroducing nonzero entries into matrix entries that have been zero out before.

This can be done by a number of different reordering. The product of all rotations

will be an orthogonal matrix Q in the QR factorization of the matrix A.

Implementation of a Givens rotation for solving linear least square problem is

about 50 percent more expensive than doing Householder transformation. Givens

rotations also requires more disk space to store c,s,r. Threfore, the Givens rotation

is used in a cases when the matrix A is sparse.

9.5.3 Gram-Schmidt orthogonalization

Gram-Schmidt orthogonalization is one more method for the computing of QR fac-

torization. If we apply Gram-Schmidt to the columns ai of A = (a1,a2, . . . ,an) from

left to right, we get a sequence of orthonormal vectors (if they are orthogonal and

unit vectors) q1 through qn spanning the same space. These orthogonal vectors are

the columns of matrix Q. Gram-Schmidt orthogonalization process also computes

coefficients r ji = qT
j ai expressing each column ai as a linear combination of q1

through qi: ai = ∑i
j=1 r jiq j. The r ji are just the entries of upper triangular matrix R.

More precisely, in Gram-Schmidt orthogonalization process for a given two lin-

early independent vectors a1 and a2 of the size m we want to determine two or-

thonormal vectors q1 and q2 of the size m which span the same subspace as vectors

a1 and a2. To do that we first normalize a1 and obtain q1 = a1/‖a1‖2. Then we sub-

tract from a2 values (qT
1 a2)q1. This is the same as the following m×1 least squares

problem

q1γ ≈ a2. (9.81)

Solution of this problem is given by the method of normal equations as

γ ≈ (qT
1 q1)

−1qT
1 a2 = qT

1 a2. (9.82)

9.5 Orthogonalization methods 307

Then the desired vector q2 is obtained by normalizing the residual vector

r = a2 − (qT
1 a2)q1.

This process called the classical Gram-Schmidt (CGS) orthogonalization procedure

can be extended to any number of vectors a1, ...,ak,1 ≤ k ≤ m, see algorithm 9.4 for

its implementation.

The classical Gram-Schmidt (CGS) procedure is unsatisfactory when imple-

mented in finite-precision arithmetic. This is because otrhogonality among the com-

puted vectors qk will be lost due to rounding error. CGS also requires separate stor-

age for A,Q1 and R since the element ak is used in the inner loop and thus qk cannot

overwrite it (because qk is used in the inner loop). The modified Gram-Schmidt

(MGS) procedure overcomes these difficulties, see algorithm 9.5.

The classical Gram-Schmidt (CGS) and modified Gram-Schmidt (MGS) Algo-

rithms for factoring A = QR are the following:

Algorithm 9.4. The classical Gram-Schmidt (CGS) orthogonalization algorithm.

for k = 1 to n /* loop over columns 1...n */

qk = ak

for j = 1 to k−1

r jk = qT
j ak

qk = qk − r jkq j

end

rkk = ‖qk‖2

if rkk = 0 then stop /* step if linearly dependent */

qk = qk/rkk

end

Algorithm 9.5. Modified Gram-Schmidt (MGS) orthogonalization algorithm.

for k = 1 to n /* loop over columns 1...n */

rkk = ‖ak‖2

if rkk = 0 then stop /* step if linearly dependent */

qk = ak/rkk /* normalize current column */

for j = k+1 to n

rk j = qT
k a j

a j = a j − rk jqk

end

end

If A has full column rank, rkk will not be zero. But thought MGS is more stable

than CGS we still can have a matrix Q being far from orthogonal. This is because

‖QT Q− I‖ can be larger than ε in the case when A is ill-conditioned though the

loss is much less than with a CGS. To avoid this difficulty, when solving the linear

system of equations Ax ≈ b with MGS we should not compute the right hand side

308 Chapter 9. Numerical solution of Linear Least Squares Problems

c1 as c1 = QT
1 b. Much more better is to treat the vector b as an n+1 column and use

MGS to compute the reduced QR factorization for the following augmented matrix

of the size m-by-n+1:
(
Ab
)
=
(
Q1qn+1

)(R c1

0 ρ

)
. (9.83)

Then the solution of the least squares problem can be found as the solution to the

n-by-n triangular linear system Rx = c1.

Orthogonality of the resulting matrix Q1 can also be enhanced by reorthogonal-

ization process. This means that we need repeat orthogonalization procedure for Q1.

This can be considered as a form of iterative refinement. We refer to [14, 53] for a

further reading on this subject.

Example 9.12. Classical Gram-Schmidt (CGS) orthogonalization algorithm for the

solution of the least squares problem

We illustrate CGS algorithm 9.4 on the solution of the following least squares

problem: find x = (x1,x2,x3) subject to minx ‖Ax− y‖2
2 when the matrix A is given

by

A =




1 0 0

0 1 0

0 0 1

−1 1 0

−1 0 1

0 −1 1




and elements of the vector y are y = (1237,1941,2417,711,1177,475). We have

implemented algorithm 9.4 and applied it to the solution of this linear least square

problem. Our QR decomposition of the matrix A is:

Q =




0.577350269189626 0.204124145231932 0.353553390593274

0 0.612372435695794 0.353553390593274

0 0 0.707106781186548

−0.577350269189626 0.408248290463863 −0.000000000000000

−0.577350269189626 −0.204124145231932 0.353553390593274

0 −0.612372435695794 0.353553390593274



,

R =




1.732050807568877 −0.577350269189626 −0.577350269189626

0 1.632993161855452 −0.816496580927726

0 0 1.414213562373095


 .

After performing QR decomposition of A, we solved the linear least squares problem

transformed to the solution of equation Rx = QT y with upper triangular matrix R, by

backward substitution. We have obtained the following solution of the least squares

problem: x = (1236,1943,2416).
The matlab program of section A.4 is available in Appendix for running of this

test.

9.6 Singular Value Decomposition 309

9.6 Singular Value Decomposition

In this section we will show how the Singular Value Decomposition (SVD) of a

matrix A allows reduce a linear least squares problem to a diagonal linear least

squares problem which is easer to solve.

Let us recall that (see Section 5.1.1) the Singular Value Decomposition of matrix

A of the size m-by-n has the form

A =UΣV T , (9.84)

where U is m-by-m orthogonal matrix UTU = I, V is n-by-n orthogonal matrix such

that V TV = I, and Σ is an m-by-n diagonal matrix with elements σi j on its diagonal

such that

σi j =

{
0 for i 6= j,
σi ≥ 0 for i = j.

(9.85)

Elements σi are called singular values of A. They are ordered such that σ1 ≥ ·· · ≥
σn ≥ 0. The columns u1, . . . ,um of U are called left singular vectors. The columns

v1, . . . ,vn of V are called right singular vectors. We note that if m < n, then the SVD

is defined for AT .

An alternative definition of the SVD decomposition is formulated in the follow-

ing theorem.

Theorem 9.2. Let A be an arbitrary m-by-n matrix with m ≥ n. Then SVD decom-

position has the form A = UΣV T , where U is m-by-n and satisfies UTU = I, V is

n-by-n and satisfies V TV = I, and Σ = diag(σ1, . . . ,σn), where σ1 ≥ ·· · ≥ σn ≥ 0.

The columns u1, . . . ,un of U are called left singular vectors. The columns v1, . . . ,vn

of V are called right singular vectors. The σi are called singular values.

Proof. The proof of this theorem is done by induction on m and n. This means that

we assume that the SVD decomposition exists for matrices of the size (m− 1)-by-

(n− 1), and our goal is to prove that the SVD decomposition exists also for the

matrix of the size for m-by-n. In this proof we assume A 6= 0. If A = 0 we can take

Σ = 0 and let U and V be arbitrary orthogonal matrices.

Since m ≥ n let us consider the case n = 1 and write the SVD decomposition as

A =UΣV T with U = A/‖A‖2, Σ = ‖A‖2 and V = 1.

To apply the induction, we choose the vector υ so ‖υ‖2 = 1 and ‖A‖2 = ‖Aυ‖2 >
0. Such a vector υ exists by the definition of the two-norm of the matrix A: ‖A‖2 =
max‖υ‖2=1 ‖Aυ‖2. Let us define u = Aυ

‖Aυ‖2
, which is a unit vector. We choose now

two matrices Ũ and Ṽ so that U = (u,Ũ) is an m-by-m orthogonal matrix, and

V = (υ ,Ṽ) is an n-by-n orthogonal matrix. We now multiply the matrix A from the

left side to the matrix UT and from the right side to the matrix V to get:

UT AV =

(
uT

ŨT

)
·A · (υ Ṽ) =

(
uT Aυ uT AṼ

ŨT Aυ ŨT AṼ

)
.

Since the vector u is chosen as u = Aυ
‖Aυ‖2

then we observe that

310 Chapter 9. Numerical solution of Linear Least Squares Problems

uT Aυ =
(Aυ)T (Aυ)

‖Aυ‖2
=

‖Aυ‖2
2

‖Aυ‖2
= ‖Aυ‖2 = ‖A‖2 ≡ σ .

Next, we also observe that the following block is zero: ŨT Aυ = ŨT u‖Aυ‖2 = 0.

We want to prove that the block uT AṼ will be zero also: uT AṼ = 0. To do that

we consider ‖(σ |uT AṼ)‖2. We observe that ‖(σ |uT AṼ)‖2 > σ and ‖(1,0, . . . ,0) =
UT AV‖2 = ‖(σ |uT AṼ)‖2. Then using properties of two-norm we can write that σ =
‖A‖2 = ‖UT AV‖2 ≥ ‖(1,0, . . . ,0)UT AV‖2 = ‖(σ |uT AṼ)‖2 > σ , a contradiction.

Collecting our observations above for blocks uT Aυ ,uT AṼ and ŨT Aυ we can

rewrite the expresssion for UT AV as

UT AV =

(
σ 0

0 ŨT AṼ

)
=

(
σ 0

0 Ã

)
. (9.86)

Now we use the induction hypothesis for Ã to obtain the matrix Ã = U1Σ1V T
1 ,

where U1 is the matrix of the size (m− 1)-by-(n− 1), Σ1 is the matrix of the size

(n−1)-by-(n−1), and V1 is the matrix of the size (n−1)-by-(n−1). Thus, we can

rewrite (9.86) as

UT AV =

(
σ 0

0 U1Σ1V T
1

)
=

(
1 0

0 U1

) (
σ 0

0 Σ1

) (
1 0

0 V1

)T

.

Multiplying now the above equation by the matrix U from the left side and by the

matrix V T from the right side, we obtain the desired SVD decomposition of the

matrix A:

A =

(
U

(
1 0

0 U1

))
·
(

σ 0

0 Σ1

)
·
(

V

(
1 0

0 V1

))T

.

⊓⊔
The following theorems present important properties of the SVD decomposition

which usually are very important in computations. We note that analogous results

holds also for the matrix A, when m < n, only considering AT instead of A.

Theorem 9.3. Let A=UΣV T be the SVD of the m-by-n matrix A, where m≥ n. Sup-

pose that A is symmetric, with eigenvalues λi and orthonormal eigenvectors ui. This

means that A = UΛUT is an eigendecomposition of A, with Λ = diag(λ1, . . . ,λn),
and U = (u1, . . . ,un), and UUT = I. Then an SVD of A is A=UΣV T , where σi = |λi|
and υi = sign(λi)ui , where sign(0) = 1.

Proof. Suppose that A is symmetric, with eigenvalues λi and orthonormal eigen-

vectors ui. This means that A = UΛUT is an eigendecomposition of A, with

Λ = diag(λ1, . . . ,λn), and U = (u1, . . . ,un), and UUT = I. Then an SVD of A is

A =UΣV T , where σi = |λi| and υi = sign(λi)ui , where sign(0) = 1. This is true by

the definition of the SVD. ⊓⊔
Theorem 9.4. Let A = UΣV T be the SVD of the m-by- n matrix A, where m ≥ n.

Then the eigenvalues of the symmetric matrix AT A are σ2
i . The right singular vectors

υi are corresponding orthonormal eigenvectors.

9.6 Singular Value Decomposition 311

Proof. Let us consider the SVD decomposition of A =UΣV T and write it for AT A:

AT A =V ΣUTUΣV T =V Σ 2V T . (9.87)

We observe that by definition of the eigendecomposition the above decomposition

is an eigendecomposition of AT A. In this decomposition, the columns of V are the

eigenvectors and the diagonal entries of Σ 2 are the eigenvalues. ⊓⊔

Theorem 9.5. Let A = UΣV T be the SVD of the m-by- n matrix A, where m ≥ n.

Then the eigenvalues of the symmetric matrix AAT are σ2
i and m− n zeroes. The

left singular vectors ui are corresponding orthonormal eigenvectors for the eigen-

values σ2
i . We can take any m− n other orthogonal vectors as eigenvectors for the

eigenvalue 0.

Proof. Choose an m-by-(m− n) matrix Ũ so that (U,Ũ) is square and orthogonal.

Then we can write

AAT =UΣV TV ΣUT =UΣ 2UT =
(

U,Ũ
)
·
(

Σ 2 0

0 0

)
·
(

U,Ũ
)T

.

We observe that the above decomposition is an eigendecomposition of AAT . ⊓⊔

Theorem 9.6. Let A = UΣV T be the SVD of the m-by- n matrix A, where m ≥ n.

Let the matrix H is constructed such that H =

(
0 AT

A 0

)
, where A is square and

A = UΣV T is the SVD of A. Let Σ = diag(σ1, . . . ,σn), U = (u1, . . . ,un), and

V = (υ1, . . . ,υn). Then the 2n eigenvalues of H are ±σi, with corresponding unit

eigenvectors 1√
2

(
υi

±ui

)
.

Proof. The proof of this theorem is an exercise 1 of section 9.7. ⊓⊔

Theorem 9.7. Let A =UΣV T be the SVD of the m-by- n matrix A, where m ≥ n. If

A has a full rank, then the solution of a linear least squares problem

min
x

‖r(x)‖2 = min
x

‖Ax−b‖2 (9.88)

is x =V Σ−1UT b.

Proof. Let us consider the two-norm of the residual ‖r(x)‖2
2 = ‖Ax−b‖2

2 = ‖UΣV T x−
b‖2

2. Since A has full rank, then Σ also has full rank, and thus Σ is invertible. Now let

us construct the matrix (U,Ũ) which will be square and orthogonal. We can write

‖UΣV T x−b‖2
2 =

∥∥∥∥
(

UT

ŨT

)
(UΣV T x−b)

∥∥∥∥
2

2

=

∥∥∥∥
(

ΣV T x−UT b

−ŨT b

)∥∥∥∥
2

2

= ‖ΣV T x−UT b‖2
2 +‖ŨT b‖2

2.

312 Chapter 9. Numerical solution of Linear Least Squares Problems

We observe that by making the first term zero ΣV T x = UT b we will find the

minimum of the least square problem given by x =V Σ−1UT b. ⊓⊔

Theorem 9.8. Let A = UΣV T be the SVD of the m-by- n matrix A, where m ≥ n.

‖A‖2 = σ1. If A is square and nonsingular, then ‖A−1‖−1
2 = σn and ‖A‖2 ·‖A−1‖2 =

σ1
σn

.

The assertion was proven in Section 6.4, p. 205

Theorem 9.9. Let A = UΣV T be the SVD of the m-by- n matrix A, where m ≥ n.

Assume that σ1 ≥ ·· · ≥ σr > σr+1 = · · ·= σn = 0. Then the rank of A is r. The null

space of A, i.e., the subspace of vectors υ such that Aυ = 0, is the space spanned

by columns r + 1 through r of V : span(υr+1, . . . ,υn). The range space of A, the

subspace of vectors of the form Aw for all w, is the space spanned by columns 1

through r of U : span(u1, . . . ,ur).

Proof. Let us choose an m-by-(m− n) matrix Ũ so that the m-by-m matrix Û =
(U,Ũ) is orthogonal. Since Û and V are nonsingular, A and

ÛT AV =

(
Σ n×n

0(m−n)×n

)
≡ Σ̂ (9.89)

have the same rank r. We can claim it using our assumption about entries of the

matrix Σ .

Values of υ are in the null space of A if and only if V T υ is in the null space of

ÛT AV = Σ̂ . This is because Aυ = 0 if and only if ÛT AV (V T υ) = 0.

But the null space of Σ̂ is spanned by columns r + 1 through n of the n-by-n

identity matrix In. This meanst tnat the null space of A is spanned by V times these

columns, i.e., υr+1 through υn.

Similarly, we can show that the range space of A is the same as Û times the range

space of ÛT AV = Σ̂ , i.e., Û times the first r columns of Im, or u1 through ur. ⊓⊔

Theorem 9.10. Let A = UΣV T be the SVD of the m-by- n matrix A, where m ≥ n.

Let Bn−1 be the unit sphere in Rn: Bn−1 = {x ∈ Rn : ‖x‖2 = 1}. Let A ·Bn−1 be the

image of Bn−1 under A: A ·Bn−1 = {Ax : x ∈ Rn and‖x‖2 = 1}. Then A ·Bn−1 is an

ellipsoid centered at the origin of Rm, with principal axes σiui.

Proof. We construct the set A ·Bn−1 by multiplying A = UΣV T by Bn−1 step-by-

step. Let us assume for simplicity that A is square and nonsingular. Since V is or-

thogonal and thus maps unit vectors to other unit vectors, we can write

V T ·Bn−1 = Bn−1. (9.90)

Now consider the product ΣBn−1. Since υ ∈ Bn−1 if and only if ‖υ‖2 = 1, then

w ∈ ΣBn−1 if and only if ‖Σ−1w‖2 = 1 or

n

∑
i=1

(wi/σi)
2 = 1. (9.91)

9.6 Singular Value Decomposition 313

Equation above defines an ellipsoid with principal axes σiei, where ei is the i-th

column of the identity matrix. Finally, multiplying each w = Συ by U just rotates

the ellipse so that each ei becomes ui the i-th column of U . ⊓⊔

Theorem 9.11. Let A = UΣV T be the SVD of the m-by- n matrix A, where m ≥ n.

Write V = (υ1,υ2, . . . ,υn) and U = (u1,u2, . . . ,un), so A =UΣV T = ∑n
i=1 σiuiυ

T
i (a

sum of rank-1 matrices). Then a matrix of rank k < n closest to A (measured with

‖ · ‖2) is Ak = ∑k
i=1 σiuiυ

T
i and ‖A−Ak‖2 = σk+1. We may also write Ak =UΣkV

T

where Σk = diag(σ1, . . . ,σk,0, . . . ,0).

Proof. The matrix Ak has rank k by construction. We can write the difference ‖A−
Ak‖2 as

‖A−Ak‖2 =

∥∥∥∥∥
n

∑
i=k+1

σiuiυ
T
i

∥∥∥∥∥=

∥∥∥∥∥∥∥∥∥

U




0

σk+1

. . .

σn


V T

∥∥∥∥∥∥∥∥∥
2

= σk+1. (9.92)

We need to show now that there is no another matrix which will be closer to the

matrix A than the matrix Ak. Let B be any matrix of rank k such that its null space has

dimension n− k. The space spanned by {υ1, ...,υk+1} has dimension k+ 1. Since

the sum of their dimensions is (n−k)+(k+1)> n, these two spaces must overlap.

Let h be a unit vector in their intersection. Then

‖A−B‖2
2 ≥ ‖(A−B)h‖2

2 = ‖Ah‖2
2 =

∥∥UΣV T h
∥∥2

2

=
∥∥Σ(V T h)

∥∥2

2

≥ σ2
k+1

∥∥V T h
∥∥2

2

= σ2
k+1.�

Comparing the obtained expression ‖A−B‖2
2 ≥ σ2

k+1 with (9.92) we observe that

‖A−Ak‖2
2 = σ2

k+1, and thus Ak is best approximation to A. ⊓⊔

Example 9.13. Image compression using SVD.

In this example we will demonstrate how to perform image compression using

the standard library in matlab with demos pictures. For example, we can load image

clown.mat:

load clown.mat

The resulted image will be readed into the array X . The size of this array will be

(in pixels):

> Size(X) = m×n = 320×200

Now we can simply use the svd command to perform SVD decomposition of the

matrix X :

> [U,S,V] = svd(X);
> colormap(map);

314 Chapter 9. Numerical solution of Linear Least Squares Problems

For example, to see rank k = 20 of this image, we write:

> k = 20;

> image(U(:,1 : k)∗S(1 : k,1 : k)∗V (:,1 : k)′);

Example 9.14. Image compression using SVD.

This is another example how to compress an image in jpg-format which you can

produce using any digital camera and then download in Matlab. To read any image

from graphics file (for example, from any file in jpg format) named File.jpg, you

should write in the command line in Matlab:

> A = imread(′File. jpg′);
Then if you will write

> size(A)
you will get the size of the obtained matrix A from your image. For the example

of the image of Figure 9.6 we have obtained

> size(A)
> ans = 2181713

Thus, the matrix of image of Figure 9.6 is of the size m-by-n with m = 218,n =
171. We have obtained three-dimensional array A since the file of Figure 9.6 con-

tained a color image and the command imread returned value for A as an m-by-n-

by-3 array. We are not able simply use the svd command in matlab for a such matrix

A. If we will try to apply svd on a such A, we will get the following error message:

> [U3,S3,V 3] = svd(A(:, :,3));
Undefined function ’svd’ for input arguments of type ’uint8’.

To avoid this error message, we need convert A from ’uint8’ format to the double

format using the following command:

> DDA = im2double(A);
Then size of the matrix DDA will be m-by-n- by-3. On the next step we perform

SVD decomposition for every 3 entries of DDA:

> [U1,S1,V 1] = svd(DDA(:, :,1));
> [U2,S2,V 2] = svd(DDA(:, :,2));
> [U3,S3,V 3] = svd(DDA(:, :,3));
Finally, we can perform the image compression for different rank k approxima-

tion. For example, let us choose rank k = 15. Then using the following commands

we can compute new approximated matrices svd1, svd2, svd3:

> svd1 =U1(:,1 : k)∗S1(1 : k,1 : k)∗V 1(:,1 : k)′;
> svd2 =U2(:,1 : k)∗S2(1 : k,1 : k)∗V 2(:,1 : k)′;
> svd3 =U3(:,1 : k)∗S3(1 : k,1 : k)∗V 3(:,1 : k)′;
Now to obtain different compressed images which are similar to the images of

Figure 9.6, we write:

> DDAnew = zeros(size(DDA));
> DDAnew(:, :,1) = svd1;

> DDAnew(:, :,2) = svd2;

> DDAnew(:, :,3) = svd3;

Then to see approximated image we use the following command:

> image(DDAnew);

9.6 Singular Value Decomposition 315

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

180

200

a) Original image b) Rank k=15 approximation

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

180

200

c) Rank k=10 approximation d) Rank k=6 approximation

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

180

200

e) Rank k=5 approximation f) Rank k=4 approximation

Fig. 9.4 Example 9.14. Image compression using the SVD decomposition for different rank k ap-

proximations.

316 Chapter 9. Numerical solution of Linear Least Squares Problems

9.6.1 Rank-deficient Least Squares Problems

In all our considerations above we have assumed that a matrix A has a full column

rank, or r(A) = n. if A has a linear dependent columns such that r(A) < n, then

it is still possible perform QR factorization but the matrix R will be singular. This

means that many vectors can give minimal norm ‖Ax− b‖2 and the least squares

solution is not unique. This can happen in the case of unsufficient data collection,

digital image restoration, computing inverse Laplace transform - in other words, in

ill-posed problems [110].

The next proposition says that in the case of nearly rank-defficient matrix A the

least squares solution is not unique.

Proposition 9.1. Let A be m by n with m ≥ n and rank A = r < n. Then there is an

n− r dimensional set of vectors that minimize ‖Ax−b‖2.

Proof. Let Az = 0. Then if x minimizes ‖Ax−b‖2 then x+ z also minimizes ‖A(x+
z)−b‖2.

This means that the least-squares solution is not unique.

⊓⊔

Below we define the Moore1 - Penrose2 pseudoinverse A+ for a full rank matrix

A. The pseudoinverse allows write the solution of the full rank overdetermined least

squares problem minx ‖Ax−b‖2 in a simple way as x = A+b.

Suppose that A is m by n with m > n and has full rank with A = QR = UΣV T

being a QR and SVD decompositions of A, respectively. Then

A+ ≡ (AT A)−1AT = R−1QT =V Σ−1UT

is called the Moore-Penrose pseudoinverse of A. If m < n then A+ ≡ AT (AAT)−1.

If A is square and has a full rank then the solution of the full rank overdetermined

least squares problem minx ‖Ax−b‖2 reduces to x = A−1b. The A+ is computed as

function pinv(A) in Matlab.

In the case of a rank-deficient matrix A we have the following definition of the

Moore-Penrose pseudoinverse A+.

Suppose that A is m by n with m > n and is rank-deficient with rank r < n. Let

A =UΣV T =U1Σ1V T
1 being a SVD decompositions of A such that

A = (U1,U2)

(
Σ1 0

0 0

)
(V1,V2)

T =U1Σ1V T
1 .

Here, size(Σ1) = r× r and is nonsingular, U1 and V1 have r columns. Then

A+ ≡V1Σ−1
1 UT

1

1 Eliakim Hastings Moore (1862 - 1932) was an American mathematician.
2 Sir Roger Penrose (born 1931) is an English mathematical physicist, mathematician and philoso-

pher of science.

9.6 Singular Value Decomposition 317

is called the Moore-Penrose pseudoinverse for rank-deficient A.

The solution of the least-squares problem is always x = A+b. The next propo-

sition states that if A is nearly rank deficient then the solution x of Ax = b will be

ill-conditioned and very large.

Proposition 9.2. Let σmin > 0 is the smallest singular value of the nearly rank defi-

cient A. Then

• 1. If x minimizes ‖Ax− b‖2, then ‖x‖2 ≥ |uT
n b|

σmin
where un is the last column of U

in SVD decomposition of A =UΣV T .

• 2. Changing b to b+ δb can change x to x+ δx where ‖δx‖2 can be estimated

as
‖δb‖2
σmin

, or the solution is very ill-conditioned.

Proof. 1. By theorem 9.7 we have that for the case of full-rank matrix A the solution

of Ax = b is given by x = (UΣV T)−1b =V Σ−1UT b. The matrix A+ =V Σ−1UT

is Moore-Penrose pseodoinverse of A. Thus, we can write also this solution as

x =V Σ−1UT b = A+b.

Then taking norms from both sides of above expression we have:

‖x‖2 = ‖Σ−1UT b‖2 ≥ |(Σ−1UT b)n|=
|uT

n b|
σmin

, (9.93)

where |(Σ−1UT b)n| is the n-th column of this product.

2. We apply now (9.93) for ‖x+δx‖ instead of ‖x‖ to get:

‖x+δx‖2 = ‖Σ−1UT (b+δb)‖2 ≥ |(Σ−1UT (b+δb))n|

=
|uT

n (b+δb)|
σmin

=
|uT

n b+uT
n δb|

σmin

.
(9.94)

We observe that

|uT
n b|

σmin

+
|uT

n δb|
σmin

≤ ‖x+δx‖2 ≤ ‖x‖2 +‖δx‖2.

Choosing δb parallel to un and applying again (9.93) for estimation of ‖x‖2 we

have

‖δx‖2 ≥
‖δb‖2

σmin

. (9.95)

⊓⊔

In the next proposition we prove that the minimum norm solution x is unique and

may be well-conditioned if the smallest nonzero singular value in Σ is not too small.

Proposition 9.3. Let matrix A is exactly singular and x minimizes ‖Ax− b‖2. Let

A =UΣV T have rank r < n. Write SVD decomposition of A as

318 Chapter 9. Numerical solution of Linear Least Squares Problems

A = (U1,U2)

(
Σ1 0

0 0

)
(V1,V2)

T =U1Σ1V T
1 .

Here, size(Σ1) = r× r and is nonsingular, U1 and V1 have r columns. Let σ =
σmin(Σ1). Then

• 1. All solutions x can be written as x =V1Σ−1
1 UT

1 +V3z.

• 2. The solution x has minimal norm ‖x‖2 when z = 0. Then x = V1Σ−1
1 UT

1 and

‖x‖2 ≤ ‖b‖2
σ .

• 3. Changing b to b+δb can change x as
‖δb‖2

σ .

Proof. We choose the matrix Ũ such that (U,Ũ) = (U1,U2,Ũ) be an m×m orthog-

onal matrix. Then using the property of the norm we can write

‖Ax−b‖2
2 = ‖(U1,U2,Ũ)T (Ax−b)‖2

2

=

∣∣∣∣∣∣

∣∣∣∣∣∣




UT
1

UT
2

ŨT


(U1Σ1V T

1 x−b)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

2

=

∣∣∣∣∣∣

∣∣∣∣∣∣




Ir×r

Om×(n−r)

0m×m−n


(Σ1V T

1 x− (U1,U2,Ũ)T ·b)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

2

=

∣∣∣∣∣∣

∣∣∣∣∣∣




Σ1V T
1 x−UT

1 b

−UT
2 b

−ŨT b




∣∣∣∣∣∣

∣∣∣∣∣∣

2

2

= ‖Σ1V T
1 x−UT

1 b‖2
2 +‖UT

2 b‖2
2 +‖ŨT b‖2

2.

To prove part 1 we observe that ‖Ax−b‖2 is minimized when Σ1V T
1 x−UT

1 b = 0.

Using proposition 3.1 we can also write that the vector x = (Σ1V T
1)−1UT

1 b+V3z or

x = V1Σ−1
1 UT

1 b+V3z is also solution of this minimization problem, where V3z =
V T

1 V2z = 0 since columns of V1 and V2 are orthogonal.

To prove part 2 we note that since columns of V1 and V2 are orthogonal, then by

Pythagorean theorem we have that

‖x‖2
2 = ‖V1Σ−1

1 UT
1 b‖2 +‖V3z‖2 (9.96)

which is minimized for z = 0.

For proof of part 3 we change b to δb in (9.96) to get

‖V1Σ−1
1 UT

1 δb‖2 ≤ ‖V1Σ−1
1 UT

1 ‖2 · ‖δb‖2 = ‖Σ−1
1 ‖2 · ‖δb‖2 =

‖δb‖2

σ
, (9.97)

where σ is the smallest nonzero singular value of A. In this proof we used properties

of the norm: ‖QAZ‖2 = ‖A‖2 if Q,A are orthogonal.

⊓⊔

9.6 Singular Value Decomposition 319

9.6.2 How to solve rank-deficient least squares problems

In this section we discuss how to solve rank-deficient least squares problems using

QR decomposition with pivoting. QR decomposition with pivoting is cheaper but

can be less accurate than SVD technique for solution of rank-deficient least squares

problems. If A has a rank r < n with independent r columns QR decomposition can

look like that

A = QR = Q ·




R11 R12

0 0

0 0


 (9.98)

with nonzingular R11 is of the size r× r and R12 is of the size r× (n− r). We can

try to get matrix

R =




R11 R12

0 R22

0 0


 , (9.99)

where elements of R22 are very small and are of the order ε‖A‖2. If we set R22 = 0

and choose (Q, Q̃), which is square and orthogonal, then we will minimize

‖Ax−b‖2
2 =

∥∥∥∥
(

QT

Q̃T

)
(Ax−b)

∥∥∥∥
2

2

=

∥∥∥∥
(

QT

Q̃T

)
(QRx−b)

∥∥∥∥
2

2

=

∥∥∥∥
(

Rx−QT b

−Q̃T b

)∥∥∥∥
2

2

= ‖Rx−QT b‖2
2 +‖Q̃T b‖2

2.

(9.100)

Here we again used properties of the norm: ‖QAZ‖2 = ‖A‖2 if Q,A are orthogonal.

Let us now decompose Q = (Q1,Q2) with x = (x1,x2)
T and

R =

(
R11 R12

0 0

)
(9.101)

such that equation (9.100) becomes

‖Ax−b‖2
2 =

∥∥∥∥
(

R11 R12

0 0

)
·
(

x1

x2

)
−
(

QT
1 b

QT
2 b

)∥∥∥∥
2

2

+‖Q̃T b‖2
2

= ‖R11x1 +R12x2 −QT
1 b‖2

2 +‖QT
2 b‖2

2 +‖Q̃T b‖2
2.

(9.102)

We take now derivative with respect to x to get (‖Ax− b‖2
2)

′
x = 0. We see that

minimum is achieved when

x =

(
R−1

11 (QT
1 b−R12x2)

x2

)
(9.103)

320 Chapter 9. Numerical solution of Linear Least Squares Problems

for any vector x2. If R11 is well-conditioned and R−1
11 R12 is small than the choice

x2 = 0 will be good one.

The described method is not reliable for all rank-deficient least squares problems.

This is because R can be nearly rank deficient for the case when we can not construct

R22 which has all small elements. In this case can help QR decomposition with

column pivoting: we factorize AP = QR with permutation matrix P. To compute

this permutation we do as follows:

• 1. In all columns from 1 to n at step i we select from the unfinished decomposition

of part A in columns i to n and rows i to m the column with largest norm, and

exchange it with i-th column.

• 2. Then compute usual Householder transformation to zero out column i in en-

tries i+1 to m.

A lot of research is devoted to more advanced algorithms called rank-revealing

QR algorithms which detects rank faster and more efficient, see [15, 18] for details.

Table 1. Software for linear least squares problems (LLSP).

package factorization solution of LLSP rank-deficient LLSP

MATLAB qr \ svd

FMM [58] svd svd

IMSL lqrrr lqrsl lsqrr

KMN [61] sqrls sqrls ssvdc

LAPACK [3] sqeqrf sormqr/strtrs sgeqpf/stzrqf

Lawson & Hanson [68] hft hs1 hfti

LINPACK [69] sqrdc sqrsl sqrst

NAPACK [88] qr over sing/rsolve

NUMAL [89] lsqortdec lsqsol solovr

SOL [114] hredl qrvslv mnlnls

9.7 Software for the solution of linear least squares problems

We list available packages and routines which solve linear least squares problems

in table 1. Usually, we use MATLAB for implementation of the solution of least

squares problems. Here, the backslash \ is used for the solution of squares and

rectangular linear systems of the form Ax = b. The solution is given as x = A\b.

The QR decomposition of a matrix A in MATLAB is computed as function [Q,R] =
qr(A) and the svd decomposition - as the function [U,S,V] = svd(A).

Many statistical packages such that BMDP, Minitab, Omnitab, S, S-plus, SAS,

SPSS as well as statistical toolbox in MATLAB have extensive software for solving

least squares problems.

Programs of Sections A.4 - A.8 in Appendix solve linear least squares problem

of polynomial fitting, see questions 1 - 4 for details.

9.7 Software for the solution of linear least squares problems 321

Questions

9.1. (Programming)

Solve the least squares problem minc ‖Ac−y‖2 of the example 9.2 by the method

of normal equations and QR decomposition (either algorithm 9.4 or 9.5). Matrix A

in this least square problem is a Vandermonde matrix (9.8). This means that columns

of the matrix A are powers of the vector x such that y(x) = ∑d
i=0 cix

i−1, d is degree

of the polynomial and (xi,yi), i = 1, ...,m.

Use your own code or programs of section A.4. Show that we get erratic fit to the

function for the degree of the polynomial more than 18. Compare both methods for

different d by computing the relative error e

e =
‖y− y∗‖2

‖y∗‖2
. (9.104)

Here, y∗i are the exact values of the function and yi -computed. Report results in a

table for different discretizations of the interval for x and different d.

9.2. (Programming)

Solve the least squares problem

min
c

m

∑
i=1

(yi − f (xi,c))
2 (9.105)

of the example 9.2 using approximation of function f (xi,c) by linear splines, see

example 9.3.

9.3. (Programming)

Solve the least squares problem

min
c

m

∑
i=1

(yi − f (xi,c))
2 (9.106)

of the example 9.2 using approximation of function f (xi,c) by bellsplines, see ex-

ample 9.4.

9.4. (Programming)

Solve the problem of the fitting a polynomial p(x) = ∑d
i=0 cix

i−1 of degree d to

data points (xi,yi), i = 1, ...,m in the plane by the method of normal equations and

QR decomposition (either algorithm 9.4 or 9.5). Choose the degree of polynomial

d = 5 and then d = 14, the interval for x ∈ [0,1], discretize it by N points and com-

pute discrete values of y(x) as yi = y(xi) = p(xi). Our goal is to recover coefficients

ci of the polynomial p(x) = ∑d
i=0 cix

i−1 by solving the system

Ac = y (9.107)

using the method of normal equations and QR decomposition (algorithm 9.4 or 9.5).

Here, columns of the matrix A are powers of the vector x which create Vandermonde

322 Chapter 9. Numerical solution of Linear Least Squares Problems

matrix (9.8). Compare both methods for d = 5 and then for d = 14 by computing

the relative error e

e =
‖c− c∗‖2

‖c∗‖2
. (9.108)

Here, c∗i are the exact values of the computed coefficients ci.

Hints:

• Compute first values of the right hand side of (9.107) - vector yi - at the points

xi, i = 1,,m with known values of coefficients ci. Take exact values ci = 1.

• Matrix A is a Vandermonde matrix:

A =




1 x1 x2
1 . . . xd

1

1 x2 x2
2 . . . xd

2

1 x3 x2
3 . . . xd

3
...

...
...

. . .
...

1 xm x2
m . . . xd

m



. (9.109)

Here, xi, i = 1,,m are points on the interval x ∈ [0,1], d is degree of the poly-

nomial.

• Use method of normal equations and QR decomposition to solve the resulting

system Ax = y. Compare results in a table by computing the relative error (12.24)

for both methods for different discretizations of the interval x ∈ [0,1].

9.5. Prove theorem 9.6, i.e.

Let H =

(
0 AT

A 0

)
, where A is square and A = UΣV T is the SVD of A. Let Σ =

diag(σ1, . . . ,σn), U = (u1, . . . ,un), and V = (υ1, . . . ,υn). Then the 2n eigenvalues

of H are ±σi, with corresponding unit eigenvectors 1√
2

(
υi

±ui

)
.

Let H =

(
0 AT

A 0

)
, where A is square and A = UΣV T is its SVD. Let Σ =

diag(σ1, . . . ,σn), U = (u1, . . . ,un), and V = (v1, . . . ,vn). Prove that the 2n eigen-

values of H are ±σi, with corresponding unit eigenvectors
1√
2

(
vi

±ui

)
. Extend to

the case of rectangular A.

9.6. (Programming)

We define the covariance matrix for the m-by-n least square problem minx ‖Ax−
b‖2 by

δ 2(AT A)−1, (9.110)

where

δ 2 =
‖b−Ax‖2

2

m−n
(9.111)

at the least squares solution x.

Inverse of the covariance matrix can not be computed explicitly. Instead, for com-

putation AT A we use

9.7 Software for the solution of linear least squares problems 323

(AT A)−1 = (RT R)−1, (9.112)

where R is the upper triangular matrix in the QR decomposition of A.

Implement computation of the covariance matrix (9.110) using only computed

R, and use then (9.112). Test on some examples that it gives the same result as the

computing (AT A)−1.

9.7. Let the matrix A is defined as

A =




5 4 3

4 6 1

3 1 7


 . (9.113)

1. Transform the matrix A to the tridiagonal form using Householder reflection.

Describe all steps of this transformation.

2. Transform the matrix A to the tridiagonal form using Given’s rotation. Describe

step-by-step this procedure.

9.8. Let us consider weighted least squares problem. In cases when some entries

of Ax− b are more important than other components, we can use scale factors di

to weight them. Then instead of the solution minx ‖Ax− b‖2 we are interested in

the solution minx ‖D(Ax− b)‖2. Here, D is a diagonal matrix with entries di on its

diagonal.

Derive the method of normal equations for this problem.

9.9. Let A is of the size m-by-n with SVD A = UΣV T . Compute the SVDs of the

following matrices in terms of U,Σ , and V :

1. (AT A)−1,

2. (AT A)−1AT ,

3. A(AT A)−1,

4. A(AT A)−1AT .

9.10. Assume that have three data points (xi,yi) = (0,1),(1,2),(3,3) and we want

fit them by polynomial y = c0 + c1x.

1. Formulate the overdetermined linear system for the least squares problem.

2. Write corresponding normal equations.

3. Compute the least squares solution using Cholesky factorization.

9.11. Let A is of the size n-by-n. Prove that:

1. AT = A,

2. AT A = I,

3. A2 = I.

How called a nontrivial class of matrices that have all these properties? Give an

example of 3-by-3 matrix which has all these 3 properties (other than I or permuta-

tion of it).

324 Chapter 9. Numerical solution of Linear Least Squares Problems

9.12. Show that if the vector u 6= 0 then the matrix

P = I −2
uuT

uT u

is orthogonal and symmetric.

9.13. Let a be any nonzero vector such that u = a−αe1 with α =±‖a‖2 and

P = I −2
uuT

uT u
.

Show that Pa = αe1.

9.14. Prove that the pseudeinverse A+ of a matrix A of the size m-by-n satisfies the

following Moore-Penrose conditions:

1. AA+A = A,

2. A+AA+ = A+,

3. (AA+)T = AA+,

4. (A+A)T = A+A.

9.15. Let A+ is the pseudeinverse of a matrix A of the size m-by-n. Prove:

1. If m = n and A is nonsingular, then A+ = A−1.

2. If m > n and A has rank n, then A+ = (AT A)−1AT .

3. If m < n and A has rank m, then A+ = AT (AAT)−1.

9.16. (Programming)

Consider the nonlinear Vogel-Fulcher-Tammans equation of some chemical re-

action

y(T) = A · exp
− E

T−T0 .

Determine parameters A,E,T0 which are positive constants by knowing T (it is tem-

perature in the model equation (in Kelvin)) and output data y(T).
Hint: Transform first the nonlinear function y(T) to the linear one and solve

then linear least squares problem. Discretize T by N points and compute discrete

values of y(T) as yi = y(Ti) for the known values of parameters A,E,T0. Then forget

about these parameters (we will call them exact parameters A∗,E∗,T∗
0) and solve

the linear least squares problem using the method of normal equations (optionally

QR decomposition) in order to recover these exact parameters.

Try add random noise δ to data y(T) using the formula yσ (T) = y(T)(1+δα),
where α ∈ (−1,1) is randomly distributed number and δ is the noise level (if noise

in data is 5%, then δ = 0.05).

Analyze obtained results by computing the relative errors eA,eE ,eT0
in the com-

puted parameters as:

9.7 Software for the solution of linear least squares problems 325

eA =
||A−A∗||2
||A∗||2

,

eE =
||E −E∗||2
||E∗||2

,

eT0
=

||T0 −T∗
0 ||2

||T∗
0 ||2

.

(9.114)

Here, A∗,E∗,T∗
0 are exact values and A,E,T0 are computed one.

9.17. (Programming)

Suppose that the nonlinear model function is given as

f (x,c) = Aec1x +Bec2x, A,B = const. > 0, (9.115)

and our goal is to fit this function using Gauss-Newton method. In other words, we

want to use following formula for iterative update of c = (c1,c2):

ck+1 = ck − [JT (ck)J(ck)]
−1JT (ck)r(ck), (9.116)

where k is the number of iteration and J(ck) is the Jacobian matrix of the residual

r(ck), for iterative update of c = (c1,c2). We define the residual function

r(c) = y− f (x,c), (9.117)

where y = yi, i = 1, ...,m are known data points (use information in the Question 15

to generate data y = yi, i = 1, ...,m).

Add random noise δ to data y = yi, i = 1, ...,m using the formula yσ (x,c) =
f (x,c)(1+ δα), where α ∈ (−1,1) is randomly distributed number and δ is the

noise level (if noise in data is 5%, then δ = 0.05).

Analyze obtained results by computing the relative errors ec in the computed

parameters c = (c1,c2) as:

ec =
||c− c∗||2
||c∗||2

. (9.118)

Here, c∗ are exact values and c are computed one.

Chapter 10

Algorithms for the Nonsymmetric Eigenvalue
Problem

In this chapter we will present main algorithms for solving the nonsymmetric eigen-

value problem using direct methods. Direct methods are usually applied on dense

matrices, and iterative methods such as Rayleigh-Ritz method, Lanczos algorithm

are applied on sparse matrices. Iterative methods usually can compute not all but

some subset of the eigenvalues and eigenvectors, and their convergence depends on

the structure of the matrix. We will start with the analysis of the simplest direct

method called the power method and then continue to consider more complicated

methods like inverse iteration, orthogonal iteration, QR iteration and QR iteration

with shifts, Hessenberg reduction. To simplify our presentation in this chapter we

will assume that the matrix A is real. We will illustrate the performance of every

method by Matlab programs which are available in Appendix A. We will test these

programs on examples of computing of eigenvalues and eigenvectors for different

kind of matrices such that matrices with real and complex eigenvalues, matrices

with different numbers of multiplicity of eigenvalues and etc.

10.1 Power Method

This method can find only the largest absolute eigenvalue and the corresponding

eigenvector for the matrix A.

Algorithm 10.1. The power method.

0. Set i = 0 and initialize x0.

1. Compute yi+1 = Axi.

2. Compute the approximate normalized eigenvector as xi+1 = yi+1/‖yi+1‖.1

3. Compute the approximate eigenvalue λ̃i+1 = xT
i+1Axi+1.

1 In this chapter the norm of vectors is ‖ · ‖2 defined on p. 199.

327

328 10 Algorithms for the Nonsymmetric Eigenvalue Problem

4. Stop updating the approximate eigenvalue and set λ̃M = λ̃i+1, M = i+ 1, if ei-

ther |λ̃i+1− λ̃i| ≤ θ or the absolute values of differences |λ̃i+1− λ̃i| are stabilized.

Here θ is a tolerance number. Otherwise, set i = i+1 and go to step 1.

Theorem 10.1. Let A be a diagonalizable matrix,1 i.e., A = SΛS−1, where the ma-

trix Λ is diag(λ1,λ2, . . . ,λn) and the eigenvalues satisfy the inequalities

|λ1|> |λ2| ≥ · · · ≥ |λn|.

Write the matrix S = (s1,s2, . . . ,sn), where the columns si are the corresponding

eigenvectors and also satisfy ‖si‖= 1. Then the approximate eigenvector computed

at step 2 of Algorithm 10.1 converges to the eigenvector s1, which corresponds to λ1,

and the approximate eigenvalue converges to λ1.

Proof. First we will proof the theorem for the case when A is a diagonal matrix.

Let A = diag(λ1, ...,λn), with |λ1| > |λ2| ≥ · · · ≥ |λn|. In this case the eigenvec-

tors of A are columns i1, i2,. . . , in of the identity matrix I. We note that the fac-

tors 1/‖yi+1‖ at step 2 of Algorithm 10.1 scale xi+1 to be a unit vector and do not

change its direction. Then xi can also be written as xi = Aix0/‖Aix0‖. Let us write

the vector x0 in the form x0 = S(S−1x0) = S((x
(0)
1 , . . . ,x

(0)
n)T) where the matrix S = I

and x0 = (x
(0)
1 , . . . ,x

(0)
n)T . Assuming that x

(0)
1 6= 0, we get

Aix0 ≡ Ai




x
(0)
1

x
(0)
2
...

x
(0)
n




=




x
(0)
1 λ i

1

x
(0)
2 λ i

2
...

x
(0)
n λ i

n




= x
(0)
1 λ i

1




1(
x
(0)
2 /x

(0)
1

)
(λ2/λ1)

i

...(
x
(0)
n /x

(0)
1

)
(λn/λ1)

i



. (10.1)

Using (10.1) we observe that all the fractions |λ j/λ1|< 1. At every i-th iteration Aix0

becomes more nearly parallel to i1 such that xi = Aix0/‖Aix0‖ will be closer to ±i1
which is the eigenvector corresponding to the largest eigenvalue λ1. Since xi con-

verges to ±i1, then computed eigenvalue λ̃i = xT
i Axi converges to the largest eigen-

value λ1.

Consider now the general case when the matrix A = SΛS−1 is diagonalizable.

We write again the vector x0 as x0 = S(S−1x0) = S((x
(0)
1 , . . . ,x

(0)
n)T) to get

Ai = (SΛS−1) · · ·(SΛS−1)︸ ︷︷ ︸
i times

= SΛ iS−1.

Here we have used the fact that all S−1S pairs cancel. Because of that we can write

1 See Section 4.2.3, p. 114.

10.1 Power Method 329

Aix0 = (SΛ iS−1)S




x
(0)
1

x
(0)
2
...

x
(0)
n




= S




x
(0)
1 λ i

1

x
(0)
2 λ i

2
...

x
(0)
n λ i

n




= x
(0)
1 λ i

1S




1(
x
(0)
2 /x

(0)
1

)
(λ2/λ1)

i

...(
x
(0)
n /x

(0)
1

)
(λn/λ1)

i



.

Similarly with the first case, the vector in brackets converges to i1 = (1,0, ...,0),
so Aix0 gets closer and closer to a multiple of Si1 = s1, the eigenvector corresponding

to λ1. Therefore, λ̃i = xT
i Axi converges to sT

1 As1 = sT
1 λ1s1 = λ1. ⊓⊔

Remark 10.1..

1. One of the drawbacks of the power method is the assumption that the ele-

ment x
(0)
1 6= 0, i.e., that x0 is not from the invariant subspace span{s2, . . . ,sn}.1

If x0 is chosen as a random vector, this is true with very high probability.

2. A major drawback is that the power method converges only to the eigenvalue of

the largest absolute magnitude. Theorem 10.1 states that the power method con-

verges under the assumption that the largest eigenvalue is distinct by the absolute

value from other eigenvalues of the matrix.

3. The rate of convergence depends on the ratios |λ2/λ1| ≥ · · · ≥ |λn/λ1|. If the

ratios |λ2/λ1| ≥ · · · ≥ |λn/λ1| are much smaller than 1 then we will get faster

convergence, otherwise convergence will be slower.

Below we present some examples, which illustrate convergence of the power

method for different kind of matrices A. As an initial guess for approximate eigen-

vector x0 we take normalized randomly distributed numbers on the interval (0,1).
The Matlab programs of Section A.9 in Appendix are available for running of all

tests of this section.

Example 10.1. In this example we test the matrix

A =




5 0 0

0 2 0

0 0 −5




with the exact eigenvalues 5, 2, and −5. The power method can converge as to the

exact first eigenvalue 5, as well as to the completely erroneous eigenvalue, test the

Matlab program of Section A.9. This is because two eigenvalues of this matrix, 5

and −5, have the same absolute values: |5| = | − 5|, as well as because the initial

guess x
(0)
1 in the matlab program is chosen randomly. Thus, assumptions 1,2 of

Remark 10.1 about the convergence of the power method are not fulfilled.

Example 10.2. In this example the matrix A is given by

1 See Theorem 3.4, p. 79.

330 10 Algorithms for the Nonsymmetric Eigenvalue Problem

A =




3 7 8 9

5 −7 4 −7

1 −1 1 −1

9 3 2 5


 .

This matrix has four different real reference eigenvalues1 λ = (λ1, ...,λ4) given

by λ = (12.3246,−11.1644,−0.3246,1.1644). Now all assumptions about the ma-

trix A are fulfilled and we run the Matlab program of Section A.9 to get the reference

eigenvalue 12.3246.

Example 10.3. Now we take the matrix

A =




0 −5 2

6 0 −12

1 3 0




with the following one real and two complex eigenvalues (with the largest absolute

value): λ = (1.4522,−0.7261+ 8.0982i,−0.7261− 8.0982i). We run the Matlab

program of Section A.9 and observe that the power method does not converge in

this case. Clearly, starting from an real initial approximation x0 ∈ R3 in Algorithm

10.1 we can not compute an approximate complex eigenvalue.

Example 10.4. In this example the matrix A has order 5. The elements of this ma-

trix are uniformly distributed pseudo-random numbers on the open interval (0,1).
We run the Matlab program of Section A.9 and observe that sometimes we can ob-

tain the good approximation to the eigenvalue 2.9. second round of computations

we can get completely different erroneous eigenvalue. This is because we generate

randomly elements of the matrix A as well as because the initial guess x
(0)
1 in the

matlab program is chosen randomly. Thus, assumptions 1,2 of Remark 10.1 about

the convergence of the power method can not be fulfilled. This example is similar

to the example 10.1 where convergence was not achieved.

10.2 Inverse Iteration

This method can find all eigenvalues and eigenvectors applying the power method

for (A−σ I)−1 for some shift σ . This means that we will apply the power method

to the matrix (A−σ I)−1 instead of A, which will converge to the eigenvalue closest

to σ , rather than just λ1. This method is called the method of inverse iteration or the

inverse power method.

Algorithm 10.2. The method of inverse iteration.

1 We get the reference eigenvalues in all examples, using the command eig(A) in Matlab. These

eigenvalues are computed with the high precision.

10.2 Inverse Iteration 331

0. Set i = 0 and initialize x0. Choose a shift σ .

1. Compute yi+1 = (A−σ I)−1xi.
2. Compute the approximate normalized eigenvector as xi+1 = yi+1/‖yi+1‖.

3. Compute the approximate eigenvalue λ̃i+1 = xT
i+1Axi+1.

4. Stop updating the approximate eigenvalue and set λ̃M = λ̃i+1, M = i+ 1, if ei-

ther |λ̃i+1− λ̃i| ≤ θ or the absolute values of differences |λ̃i+1− λ̃i| are stabilized.

Here, θ is a tolerance number. Otherwise, set i = i+1 and go to step 1.

Theorem 10.2. Let A be a diagonalizable matrix, i.e., A = SΛS−1, where the ma-

trix Λ is diag(λ1,λ2, . . . ,λn). Assume that for a given shift σ the following inequal-

ities are true:

|λk −σ |< |λi −σ | ∀ i 6= k. (10.2)

Write S = (s1,s2, . . . ,sn), where the columns si are the corresponding eigenvectors

and also satisfy ‖si‖ = 1. Then the approximate eigenvector computed at step 2 of

Algorithm 10.2 converges to the eigenvector sk, which corresponds to λk, and the

approximate eigenvalue converges to λk.

Proof. We start the proof by noting that the matrix A = SΛS−1 is diagonalizable.

Then A−σ I = S(Λ −σ I)S−1, and hence, (A−σ I)−1 = S(Λ −σ I)−1S−1. Thus

the matrix (A− σ I)−1 has the same eigenvectors si as A with the corresponding

eigenvalues ((Λ −σ I)−1) j j = (λ j −σ)−1. By assumption, |λk −σ | is smaller than

all the other |λi−σ |. This means that (λk−σ)−1 is the largest eigenvalue in absolute

value. As in the proof of Theorem 10.1, we write x0 = S(S−1x0)= S([x
(0)
1 , . . . ,x

(0)
n]T)

and assume xk
(0) 6= 0. Then we get

(A−σ I)i = (S(Λ −σ I)S−1) · · ·(S(Λ −σ I)S−1)︸ ︷︷ ︸
i times

= S(Λ −σ I)iS−1,

where all S−1S pairs cancel. This means that

(A−σ I)−ix0 = (S(Λ −σ I)−iS−1)S




x
(0)
1

x
(0)
2
...

x
(0)
n




= S




x
(0)
1 (λ1 −σ)−i

...

x
(0)
n (λn −σ)−i


= xk

(0)(λk−σ)−iS




(
x
(0)
1 /x

(0)
k

)(
λk −σ)i/(λ1 −σ

)i

...

1
...(

x
(0)
n /x

(0)
k

)(
λk −σ)i/(λn −σ

)i




,

where we put 1 in the k-th entry. Since by assumption (10.2) all the fractions

|(λk − σ)/(λi − σ)| < 1, the vector in brackets will approximate ik such that

332 10 Algorithms for the Nonsymmetric Eigenvalue Problem

‖(A−σ I)−ix0‖ will be closer to a multiple of Sik = sk, which is the eigenvector

corresponding to λk. As in Theorem 10.1, we see that λ̃i = xT
i Axi also converges to

λk. ⊓⊔
Remark 10.2..

1. The advantage of inverse iteration over the power method is the ability to con-

verge to any desired eigenvalue (the one nearest the shift σ).

2. By choosing σ a very close to a desired eigenvalue, we can converge very quickly

and thus not be as limited by the proximity of nearby eigenvalues as is the original

power method.

3. The method is very effective when we have a good approximation to an eigen-

value and want only its corresponding eigenvector.

To test the performance of the inverse iteration method we run the Matlab pro-

gram of Section A.10 with different shifts σ . We tested the same matrices as in the

power method of Section 10.1, except Example 10.1.

Example 10.5. In this example we tested the matrix

A =

(
0 10

0 0

)
,

which has the exact eigenvalues λ = (0,0) with multiplicity m = 2. Note that in this

example and in all other examples of this section we made the additional transfor-

mation of the original matrix A as Ã = QT AQ, were Q was an orthogonal matrix that

was generated in Matlab as Q = orth(rand(n,n)), where n is the size of the matrix

A. Running the Matlab program of Section A.10 we observe that the inverse itera-

tion method could converge to the reference eigenvalues for both shifts σ = 2 and

σ = 10. We also note that by applying the power method to this matrix we could get

only NaN as a result.

Example 10.6. We tested the matrix of Example 10.2. Let us recall that the refer-

ence eigenvalues in this example are λ = (12.3246,−11.1644,−0.3246,1.1644).
Running the Matlab program of Section A.10 we observe nice convergence. For

σ = 2 we could get the eigenvalue 1.1644 which is the same as the last reference

eigenvalue. This is because the shift σ = 2 is closer to this eigenvalue than to all

others. For the shift σ = 10 the algorithm converged to the first reference eigen-

value 12.3246, as expected.

This test confirms that the inverse iteration method converges to the eigenvalue

which is closest to the shift σ .

Example 10.7. We tested the matrix of Example 10.3. Running the Matlab program

of Section A.10 allows to get the nice convergence in this case too for both shifts σ .

Recall that the power method does not converge at all in Example 10.3.

Example 10.8. We tested the matrix of Example 10.4. Again, running the Matlab

program of Section A.10 we observe the nice convergence to the first eigenvalue of

the matrix A for both shifts σ = 2, 10.

10.3 Orthogonal Iteration 333

10.3 Orthogonal Iteration

In this section we will consider the method of orthogonal iteration which converges

to a p-dimensional invariant subspace (with p > 1) rather than to the one eigenvec-

tor, as it was in the two previous methods. The method of orthogonal iteration is

called sometimes the method of subspace iteration or simultaneous iteration.

Let Q0 be an n-by-p orthogonal matrix with p ≤ n. Our goal is to compute eigen-

values and eigenvectors of the square matrix A of order n. To do that we perform the

following iterative algorithm.

Algorithm 10.3.. Orthogonal iteration.

0. Set i = 0 and initialize a matrix Q0.

1. Compute Yi+1 = AQi.

2. Factorize Yi+1, using QR decomposition (see Section 9.4), to obtain the matri-

ces Qi+1 and Ri+1. The matrix Qi+1 spans an approximate invariant subspace.

3. Compute Ti+1 = QT
i+1AQi+1.

4. Compute the vector of approximate eigenvalues λ̃i+1 = (λ̃
(i+1)
1 , ..., λ̃

(i+1)
p) from

the real Schur block (see Theorem 4.27, p. 124) of the matrix Ti+1. The approxi-

mate eigenvectors will be the columns of Qi+1.

5. Stop updating the eigenvalues and set λ̃M = λ̃i+1, M = i + 1, if either the

norm ‖λ̃i+1 − λ̃i‖ ≤ θ or the differences ‖λ̃i+1 − λ̃i‖ are stabilized or the sub-

diagonal entries of Ti are small enough (smaller than the round-off errors of

size O(ε‖Ti‖)). Here, θ is a tolerance number and ε is a machine epsilon.1 Oth-

erwise, set i = i+1 and go to step 1.

Theorem 10.3. Assume that A= SΛS−1 is diagonalizable, Λ = diag(λ1,λ2, . . . ,λn),
the eigenvalues sorted so that |λ1| ≥ |λ2| ≥ · · · ≥ |λn| and |λn|> 0 or |λp|> |λp+1|,
where p ∈ [1,n−1] is an integer. Write S = (s1,s2, . . . ,sn), where the columns si are

the corresponding eigenvectors and also satisfy ‖si‖= 1. Let Qi+1Ri+1 is the QR de-

composition of the matrix Yi+1 = AQi on the step 2 and iteration i in Algorithm 10.3.

Then span(Qi) converges to span(Sp), the invariant subspace spanned by the first p

eigenvectors, 1 ≤ p ≤ n.

Proof. We assume that |λp|> |λp+1|. If we set p = 1, then the method of orthogonal

iteration and its analysis are identical to the power method.

Consider now the case when p > 1. Using step 1 of Algorithm 10.3, we can write

that span(Qi+1) = span(Yi+1) = span(AQi). Thus, we conclude that the following

equalities hold: span(Qi) = span(AiQ0) = span(SΛ iS−1Q0). We also note that

1 The machine epsilon ε represents the upper bound on the relative error due to rounding in the

floating point arithmetic.

334 10 Algorithms for the Nonsymmetric Eigenvalue Problem

SΛ iS−1Q0 = Sdiag(λ i
1, . . . ,λ

i
n)S

−1Q0

= λ i
pS




(λ1/λp)
i

. . .

1
. . .

(λn/λp)
i




S−1Q0. (10.3)

By assumption that |λp| > |λp+1|, we have |λ j/λp| ≥ 1 for j ≤ p and |λ j/λp| < 1

if j > p. Then for the entries of the matrix Λ we get




(λ1/λp)
i

. . .

(λn/λp)
i


S−1Q0 =

(
V

p×p
i

W
(n−p)×p

i

)
= Xi,

where the elements of the submatrix Wi tend to zero like (λp+1/λp)
i, and the ele-

ments of the submatrix Vi does not converge to zero. This is true, since if V0 has full

rank (by assumption we have λp 6= 0), then Vi have full rank too. Now we write the

matrix of eigenvectors S = (s1, ...,sn) as
(

S
n×p
p , Ŝ

n×(n−p)
p

)
or Sp = (s1, ...,sp), then

we get

SΛ iS−1Q0 = λ i
pS

(
V

p×p
i

W
(n−p)×p
i

)
= λ i

p

(
Sn×p

p V
p×p

i + Ŝ
n×(n−p)
p W

(n−p)×p
i

)
.

Thus,

span(Qi) = span
(
SΛ iS−1Q0

)

= span
(

Sn×p
p V

p×p
i + Ŝ

n×(n−p)
p W

(n−p)×p
i

)
= span(SpXi) (10.4)

converges to span(SpVi) = span(Sp), the invariant subspace spanned by the first p

eigenvectors, as stated in the theorem. ⊓⊔

The next theorem states that, under certain assumptions, by the method of or-

thogonal iteration we can compute eigenvalues of A from the Schur form of A.

Theorem 10.4. Let us consider Algorithm 10.3 applying to matrix A with p = n

and Q0 = I. If all the eigenvalues of A have distinct absolute values and if all the

principal submatrices S(1 : j,1 : j) is nonsingular, then the sequence of the matri-

ces Ti = QT
i AQi converges to the Schur form of A, i.e., an upper triangular matrix

with the eigenvalues on the diagonal. The eigenvalues will appear in decreasing

order of absolute value.

Proof. Using the assumption about nonsingularity of S(1 : j,1 : j) for all j we have

that X0 in the proof of Theorem 10.3 is nonsingular. This means that no vector in

10.3 Orthogonal Iteration 335

the invariant subspace span{s1, . . . ,s j} is orthogonal to span{i1, . . . , i j}, which is

the space spanned by the first j columns of Q0 = I. First note that Qi is a square

orthogonal matrix, so A and Ti = QT
i AQi are similar. We can decompose the matrix

Qi into two submatrices as Qi = (Q1i,Q2i), where Q1i has j columns and Q2i has

n− j columns such that

Ti = QT
i AQi =

(
QT

1iAQ1i QT
1iAQ2i

QT
2iAQ1i QT

2iAQ2i

)
. (10.5)

Since span(Q1i) converges to an invariant subspace of A, span(AQ1i) converges to

the same subspace. Next, QT
2iAQ1i converges to QT

2iQ1i = 0. This is because we

have QT
i = (Q1i,Q2i)

T , and QT
i Qi = I what means that

I = QT
i Qi = (Q1i,Q2i)

T (Q1i,Q2i) =

(
QT

1iQ1i QT
1iQ2i

QT
2iQ1i QT

2iQ2i

)
=

(
I 0

0 I

)
.

Since QT
2iAQ1i converges to zero in (10.5) for all j < n, every subdiagonal entry

of Ti converges to zero and thus Ti converges to upper triangular form, i.e., Schur

form. We see that the submatrix QT
2iAQ1i = Ti(j + 1 : n,1 : j) should converge to

zero like |λ j+1/λ j|i. Thus, λ j should appear as the (j, j) entry of Ti and converge

like max(|λ j+1/λ j|i, |λ j/λ j−1|i). ⊓⊔

Remark 10.3..

1. The use of the QR decomposition keeps the vectors spanning span(AiQ0) of full

rank despite round-off.

2. The method of orthogonal iteration is effectively running the algorithm for all

p̃ = 1,2, . . . , p at the same time. If all the eigenvalues have distinct absolute val-

ues, the same convergence analysis as in Theorem 10.3 implies that the first p̃≤ p

columns of Qi converge to span{s1, . . . ,s p̃} for any p̃ ≤ p.

3. If all assumptions of Theorem 10.4 hold, then we can set p = n and Q0 = I in

Algorithm 10.3 in order to get all eigenvalues and corresponding eigenvectors of

the matrix A.

We test the performance of the method orthogonal iteration, using the Matlab

program of Section A.11, see Appendix. In this program we compute eigenvalues

and corresponding eigenvectors in six different cases which are described below.

Example 10.9. In this example we tested the Hilbert matrix (3.46), p. 85, of or-

der 10. Let us recall that the elements of this matrix are given by 1/(i+ j − 1),
where i, j = 1,2, . . . ,n. From Fig. 10.1 we observe that we have obtained all com-

puted eigenvalues of this matrix which coincides with the reference eigenvalues

already at the 7-th iteration.

Example 10.10. Here we tested the Hilbert matrix of order 20. Again, we have com-

puted almost exact eigenvalues of this matrix at the 8-th iteration, see Fig. 10.1.

336 10 Algorithms for the Nonsymmetric Eigenvalue Problem

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

Real part of eigenvalues
Im

ag
. p

ar
t o

f e
ig

en
va

lu
es

Example 1. Nr. of it. in method of Orthogonal iteration:7

Exact eigenvalues

Computed eigenvalues

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

Real part of eigenvalues

Im
ag

. p
ar

t o
f e

ig
en

va
lu

es

Example 2. Nr. of it. in method of Orthogonal iteration:8

Exact eigenvalues

Computed eigenvalues

−1 −0.5 0 0.5 1 1.5
−10

−5

0

5

10

Real part of eigenvalues

Im
ag

. p
ar

t o
f e

ig
en

va
lu

es

Example 3. Nr. of it. in method of Orthogonal iteration:12

Exact eigenvalues
Computed eigenvalues

1 1.5 2 2.5 3 3.5 4
−15

−10

−5

0

5

10

15

Real part of eigenvalues

Im
ag

. p
ar

t o
f e

ig
en

va
lu

es

Example 4. Nr. of it. in method of Orthogonal iteration:15

Exact eigenvalues

Computed eigenvalues

−10 −5 0 5 10 15 20
−3

−2

−1

0

1

2

3

Real part of eigenvalues

Im
ag

. p
ar

t o
f e

ig
en

va
lu

es

Example 5. Nr. of it. in method of Orthogonal iteration:24

Exact eigenvalues
Computed eigenvalues

−1 0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

Real part of eigenvalues

Im
ag

. p
ar

t o
f e

ig
en

va
lu

es

Example 6. Nr. of it. in method of Orthogonal iteration:101

Exact eigenvalues

Computed eigenvalues

Fig. 10.1 Performance of the method orthogonal iteration.

Example 10.11. This is the same as Example 10.3 in the power method. Fig. 10.1

shows the nice convergence to the one real and two complex eigenvalues of the

matrix A at the 12-th iteration.

Example 10.12. This is the same as Example 10.2 in the power method. Fig. 10.1

shows convergence to the four real eigenvalues of the matrix A at 15-th iteration.

Example 10.13. Here we tested the matrix

A =




3 7 8 9 12

5 −7 4 −7 8

1 1 −1 1 −1

4 3 2 1 7

9 3 2 5 4




which has three real and two complex the reference eigenvalues:

λ = (19.9655,−8.2137+2.3623i,−8.2137−2.3623i,−3.4043,−0.1337).

From Fig. 10.1 we observe the convergence of all the computed eigenvalues to the

reference eigenvalues at the 24-th iteration.

Example 10.14. Here we choose the square matrix of order 10, the elements of

which are uniformly distributed pseudorandom numbers on the open interval (0,1).

10.4 QR Iteration 337

Using Fig. 10.1 we observe the convergence of the computed eigenvalues to the ref-

erence ones at the 101-th iteration.

10.4 QR Iteration

Now we will consider an improvement of the method of orthogonal iteration,

namely, the method of QR iteration. This method reorganizes the method of or-

thogonal iteration and is more efficient, since for the variant with shifts (see the next

section) it does not requires the assumption about distinct absolute eigenvalues of A

in contrast to Theorem 10.4.

Let A0 be an n-by-n matrix and our goal is to compute eigenvalues and eigenvec-

tors of this matrix. To do that we perform the following iterative algorithm.

Algorithm 10.4. The method of QR iteration.

0. Set i = 0 and initialize a matrix A0.

1. Compute QR decomposition of Ai such that Ai = QiRi.

2. Compute Ai+1 = RiQi.

3. Compute the vector of the approximate eigenvalues λ̃i+1 = (λ̃
(i+1)
1 , ..., λ̃

(i+1)
p)

from the real Schur block of the matrix Ai+1. The approximate eigenvectors will

be the columns of Qi.

4. Stop updating the eigenvalues and set λ̃M = λ̃i+1, M = i + 1, if either the

norm ‖λ̃i+1 − λ̃i‖ ≤ θ or the differences ‖λ̃i+1 − λ̃i‖ are stabilized or the sub-

diagonal elements of Ai+1 are small enough (smaller than the round-off errors

of size O(ε‖Ai+1‖). Here, θ is a tolerance number and ε is a machine epsilon.

Otherwise, set i = i+1 and go to step 1.

By step 2 of Algorithm 10.4, we have Ai+1 = RiQi. Using step 1, we can also

write that RiQi =QT
i (QiRi)Qi =QT

i AiQi. From both equalities we see that the matri-

ces Ai+1 and Ai are orthogonally similar. The next theorem proofs that the matrix Ai

computed by QR iteration is identical to the matrix QT
i AQi implicitly computed by

the method of orthogonal iteration.

Theorem 10.5. Let Ai be the matrix computed by Algorithm 10.4. Then Ai =QT
i AQi,

where Qi is the matrix computed from the method of orthogonal iteration (Algo-

rithm 10.3) starting with Q0 = I. Thus, Ai converges to the Schur form if all the

eigenvalues have different absolute values.

Proof. We use induction. Assume Ai = QT
i AQi. Using step 2 of Algorithm 10.3, we

can write AQi = Qi+1Ri+1, where Qi+1 is orthogonal and Ri+1 is upper triangular.

Hence,

Ai = QT
i AQi = QT

i (Qi+1Ri+1) = (QT
i Qi+1)Ri+1 = QR.

This is the product of an orthogonal matrix Q = QT
i Qi+1 and an upper triangular

matrix R = Ri+1 = QT
i+1AQi (this is because AQi = Qi+1Ri+1 and thus, multiplying

338 10 Algorithms for the Nonsymmetric Eigenvalue Problem

by QT
i+1 both sides of this equality, we get R = Ri+1 = QT

i+1AQi). Since the QR

decomposition is unique (except for possibly multiplying each column of Q and

row of R by −1) this is the QR decomposition Ai = QR. Then

QT
i+1AQi+1 = QT

i+1(AQiQ
T
i)Qi+1 = (QT

i+1AQi)(Q
T
i Qi+1) = Ri+1(Q

T
i Qi+1) = RQ.

This is precisely how the QR iteration maps Ai to Ai+1, therefore, Ai+1 =QT
i+1AQi+1,

as desired. Thus, the convergence of the method of QR iteration follows from the

convergence of the method of orthogonal iteration. If all the eigenvalues of A have

different absolute values, the proof is similar with the proof of Theorem 10.4 applied

to the matrix Ai+1 = QT
i+1AQi+1. ⊓⊔

Example 10.15. We test performance of the method of QR Iteration for six differ-

ent matrices which are chosen the same as for the method of orthogonal iteration.

Running the Matlab program of Section A.12 in Appendix we observe that in the

method of QR iteration we obtain the same rate of convergence as in the method of

orthogonal iteration.

10.5 QR Iteration with Shifts

From previous sections we know that the convergence rate depends on the ratios of

eigenvalues. In order to speed convergence of the method of QR iteration we can

use shifts. Let A0 be an n-by-n matrix and our goal is to compute eigenvalues and

eigenvectors of this matrix. To do that we perform the following iterative algorithm.

Algorithm 10.5. The method of QR iteration with shifts.

0. Set i = 0 and initialize a matrix A0. Choose an initial shift σ0.

1. Compute the QR decomposition of Ai −σiI such that Ai −σiI = QiRi.

2. Compute Ai+1 = RiQi +σiI.

3. Compute the vector of the approximate eigenvalues λ̃i+1 = (λ̃
(i+1)
1 , ..., λ̃

(i+1)
p)

from the real Schur block of the matrix Ai+1. The approximate eigenvectors will

be the columns of Qi.

4. Stop updating the eigenvalues and set λ̃M = λ̃i+1, M = i + 1, if either the

norm ‖λ̃i+1 − λ̃i‖ ≤ θ or the differences ‖λ̃i+1 − λ̃i‖ are stabilized or the sub-

diagonal elements of Ai+1 are small enough (smaller than the round-off errors

of size O(ε‖Ai+1‖)). Here, θ is a tolerance number and ε is a machine epsilon.

Otherwise, set i = i+1, choose a shift σi, and go to step 1.

Lemma 10.1. The matrices Ai and Ai+1 in Algorithm 10.5 are orthogonally similar.

Proof. From step 2 of Algorithm 10.5 we see that

Ai+1 = RiQi +σiI = QT
i QiRiQi +σiQ

T
i Qi = QT

i (QiRi +σiI)Qi.

10.5 QR Iteration with Shifts 339

Using step 1 of Algorithm 10.5 we observe that QT
i (QiRi +σiI)Qi = QT

i AiQi, and

thus, Ai+1 = QT
i AiQi. ⊓⊔

If Ri is nonsingular, we can also get

Ai+1 = RiQi +σiI = RiQiRiR
−1
i +σiRiR

−1
i = Ri(QiRi +σiI)R

−1
i = RiAiR

−1
i .

Remark 10.4..

1. If σi is an exact eigenvalue of Ai then the method of QR iteration with the shift σi

converges in one step. This is because if σi is an eigenvalue, then Ai − σiI is

singular and Ri is singular, which means that some diagonal entry of Ri must

be zero. Assume that the (n,n)-th element of the matrix Ri is zero, Ri(n,n) = 0.

Then the last row of RiQi is zero and the last row of the matrix Ai+1 = RiQi +σiI

equals σii
T
n where in is the n-th column of Ai.

We can also say that the last row of Ai+1 is zero except for the eigenvalue σi

appearing in the (n,n)-th entry. This means that Algorithm 10.5 has converged,

because we have obtained that Ai+1 is a block upper triangular matrix, with an

1-by-1 block σi: Ai+1 =

(
A′ a

0 σi

)
. In this matrix the leading (n− 1)-by-(n− 1)

block A′ is a new, where QR iteration can be used again without changing σi.

2. In the case when σi is not an exact eigenvalue, we will have convergence to the

matrix Ai+1(n,n) when the lower left block Ai+1(n,1 : n− 1) is small enough.

Recall the convergence of the method of inverse iteration (see Theorem 10.1) we

expect that Ai+1(n,1 : n− 1) will shrink by a factor |λk −σi|/min j 6=k |λ j −σi|,
where |λk −σi|= min j |λ j −σi|. This means that if σi is a very good approxima-

tion to eigenvalue λk then we will get the fast convergence.

Now we will concentrate on the question: how to choose shifts σi in Algo-

rithm 10.5 in order to get accurate approximate eigenvalue? For the case when we

want to get the good convergence to the n-eigenvalue of the matrix A, then choice

σi = Ai(n,n) is a good one choice for a shift. Such choice of the shift means a local

quadratic convergence to a real eigenvalue in Algorithm 10.5. This means that the

number of the correct digits doubles at every step i of Algorithm 10.5. However, it

is difficult to get global convergence with this shift and there exist examples when

the algorithm of QR iteration with this shift does not converge [94].

Another choice of shifts is the Francis1 shift where double shifts σ , σ̄ are chosen

as eigenvalues of the 2-by-2 corner of the matrix Ai:

(
an−1,n−1 an−1,n

an,n−1 an,n

)

Such choice of shifts allow convergence to either two real eigenvalues in the bottom

2-by-2 corner of the matrix Ai or single 2-by-2 block with complex conjugate eigen-

values. Such choice leads to a quadratic convergence asymptotically what means

1 John G.F. Francis (born 1934) is an English computer scientist.

340 10 Algorithms for the Nonsymmetric Eigenvalue Problem

that if values of an−1,n−2 are small enough its amplitude will rapidly decrease to

zero. However, quite often the method of QR iteration with Francis shift can fail to

converge, see [8, 22].

There exists another option how to choose a shift which is called Wilkinson’s1

shift: the shift σi is chosen as an eigenvalue of the matrix

(
an−1,n−1 an−1,n

an,n−1 an,n

)

which is closest to the value an,n of the matrix Ai.

Theorem 10.6. The method of QR iteration with Wilkinson’s shift is globally and

at least linearly convergent. It is asymptotically cubically convergent for almost all

matrices.

The proof of this theorem can be found in [94].

Example 10.16. We test performance of the method of QR Iteration with shift for

the same matrices as in the method of orthogonal iteration. Running the Matlab

program of Section A.13 in Appendix we observe nice convergence to the reference

eigenvalues for the shift chosen as σ = Ann as well as for the Wilkinson’s shift.

10.6 Hessenberg Reduction

All QR algorithms are computationally expensive: one iteration of the QR decom-

position costs O(n3) flops. Assume that we can do only one iteration to find one

eigenvalue, then in this case the cost will be O(n4). The goal of this section is to

present one more technique how to reduce computations. It turns out that if we

first reduce the original matrix A to the upper Hessenberg form and then apply the

method of QR iteration without computing Q, we dramatically reduce computations

and instead of O(n4) flops we perform our computations in O(n3) flops.

A Hessenberg matrix is a special kind of square matrix, one that is “almost”

triangular. More precisely, an upper Hessenberg matrix has zero entries below the

first subdiagonal, and a lower Hessenberg matrix has zero entries above the first

superdiagonal. They are named after Karl Hessenberg2. For example:




5 7 2 3

2 5 1 7

0 2 3 4

0 0 1 3




is upper Hessenberg and

1 James Hardy Wilkinson (1919 - 1986) was an English mathematician.
2 Karl Adolf Hessenberg (1904–1959) was a German mathematician.

10.6 Hessenberg Reduction 341




1 2 0 0

5 2 3 0

3 4 3 7

5 6 1 1




is lower Hessenberg.

In the case when the matrix A is upper Hessenberg the setting to zero of the

element ap+1,p of this matrix will bring A into a block upper triangular matrix of the

form

A =

(
A

p×p
11 A

p×(n−p)
12

0(n−p)×(p−1) A
(n−p)×(n−p+1)
22

)

with the upper Hessenberg matrices A11 and A22. This decomposition of A means

that we can find independently eigenvalues of A11 and A22. If in the process of

Hessenberg reduction any subdiagonal or superdiagonal entry of the matrix Ai is

smaller than the round-off errors of size O(ε‖A‖), then we set this value as zero.

We stop our computations when all these diagonal blocks are of the sizes 1-by-1 or

2-by-2, and our algorithm of finding of eigenvalues of A is finished.

Below we present an algorithm of the reduction of the matrix A of order n to the

upper Hessenberg matrix . Given a real matrix A, we seek an orthogonal Q such that

the matrix QAQT is an upper Hessenberg matrix.

Algorithm 10.6. Reduction to the upper Hessenberg matrix.

0. Initialize the matrix Q = I and perform steps 1-7 in the loop from i = 1 to n−2.

1. Take the elements of the vector ui = A(i+1 : n, i).
2. Obtain the first element of the vector ui as ui(1) = ui(1)+ sign(ui(1))‖ui‖.

3. Compute the elements of the vector ui = ui/‖ui‖.

4. Compute the elements of the matrix Pi = I(n−i)×(n−i)−2uiu
T
i .

5. Compute the elements of the matrix A(i+1 : n, i : n) = PiA(i+1 : n, i : n).
6. Compute the elements of the matrix A(1 : n, i+1 : n) = A(1 : n, i+1 : n)Pi.

7. Compute the elements of the matrix Q as Q(i+1 : n, i : n) = PiQ(i+1 : n, i : n).

Proposition 10.1. Hessenberg form is preserved by QR iteration.

Proof. If Ai is upper Hessenberg, then Ai − σ I is also upper Hessenberg. Let us

consider Algorithm 10.5 and perform QR decomposition of the matrix Ai − σ I.

Since the j-th column of Q is a linear combination of the leading j columns of

the matrix Ai −σ I, the QR decomposition yields an upper Hessenberg matrix Q.

Then RQ is also upper Hessenberg, as well as RQ+σ I. This means that Hessenberg

form is preserved by QR iteration. ⊓⊔
Clearly, the convergence analysis of Hessenberg reduction follows from the con-

vergence of the method of QR iteration.

Example 10.17. We test performance of the method of QR iteration via reducing

first the original matrix to the upper Hessenberg matrix, using the Matlab program

of Section A.15, see Appendix. We again test the same matrices as in the method of

orthogonal iteration. In Fig. 10.2 we observe the rapid convergence for all examples.

342 10 Algorithms for the Nonsymmetric Eigenvalue Problem

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

Real part of eigenvalues

Im
ag

. p
ar

t o
f e

ig
en

va
lu

es

Example 1. Nr. of it. in method of QR iteration:2

Exact eigenvalues

Computed eigenvalues

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

Real part of eigenvalues

Im
ag

. p
ar

t o
f e

ig
en

va
lu

es

Example 2. Nr. of it. in method of QR iteration:2

Exact eigenvalues

Computed eigenvalues

−1 −0.5 0 0.5 1 1.5
−10

−5

0

5

10

Real part of eigenvalues

Im
ag

. p
ar

t o
f e

ig
en

va
lu

es

Example 3. Nr. of it. in method of QR iteration:2

Exact eigenvalues
Computed eigenvalues

1 1.5 2 2.5 3 3.5 4
−15

−10

−5

0

5

10

15

Real part of eigenvalues

Im
ag

. p
ar

t o
f e

ig
en

va
lu

es

Example 4. Nr. of it. in method of QR iteration:2

Exact eigenvalues

Computed eigenvalues

−10 −5 0 5 10 15 20
−3

−2

−1

0

1

2

3

Real part of eigenvalues

Im
ag

. p
ar

t o
f e

ig
en

va
lu

es

Example 5. Nr. of it. in method of QR iteration:2

Exact eigenvalues

Computed eigenvalues

−1 0 1 2 3 4 5 6
−0.5

0

0.5

Real part of eigenvalues

Im
ag

. p
ar

t o
f e

ig
en

va
lu

es

Example 6. Nr. of it. in method of QR iteration:2

Exact eigenvalues

Computed eigenvalues

Fig. 10.2 Performance of the method of QR iteration: first we reduce the original matrix to the

upper Hessenberg form and then apply the method of QR iteration.

Now we illustrate the general pattern of Hessenberg reduction with the matrix A

of order 4. Every matrix Qi below is a Householder reflection matrix1 of order 4.

1. Choose Q1 so

Q1A =




x x x x

x x x x

0 x x x

0 x x x


 such that A1 = Q1AQT

1 =




x x x x

x x x x

0 x x x

0 x x x


 .

The matrix Q1 leaves the first row of Q1A unchanged, and QT
1 leaves the first column

of Q1AQT
1 unchanged, including the zeros.

2. Choose Q2 such that

1 See p. 152.

10.6 Hessenberg Reduction 343

Q2A1 =




x x x x

x x x x

0 x x x

0 0 x x


 and obtain A2 = Q2A1QT

2 =




x x x x

x x x x

0 x x x

0 0 x x


 .

The matrix Q2 changes only the last two rows of A1, and QT
2 leaves the first two

columns of Q2A1QT
2 unchanged, including the zeros. The matrix A2 is upper Hes-

senberg. Combining steps 1 and 2, we get: A2 = (Q2Q1)A(Q2Q1)
T = QAQT .

Let us consider an example of obtaining the upper Hessenberg matrix using

Householder reflection.

Example 10.18. In this example we will use the Householder reflection to get the

upper Hessenberg matrix from the matrix

A =




12 −51 4

6 167 −68

−4 24 −41


 .

To do that we need zero out the value of entry (3,1) of this matrix. First, we need

to find the Householder reflection that transforms the first column of the matrix A,

i.e. the vector x = (6,−4)T , to the form ‖x‖i1 = (
√

62 +(−4)2,0)T = (2
√

13,0)T .

Now,

u = x+αi1,

and

v =
u

‖u‖ .

Here, α =−2
√

13 and x = (6,−4)T . Therefore,

u = (6−2
√

13,−4)T ≈ (−1.21,−4)T

and v = u/‖u‖ ≈ (−0.29,−0.96)T , and then

Q1 = I −2

(
−0.29

−0.96

)(
−0.29 −0.96

)

= I −
(

0.1682 0.5568

0.5568 1.84

)
=

(
0.8318 −0.5568

−0.5568 −0.84

)
.

Now observe that Q1A preserves the first row of the matrix A:

Q1A =




1 0 0

0 0.8318 −0.5568

0 −0.5568 −0.84






12 −51 4

6 167 −68

−4 24 −41




=




12 −51 4

7.2180 125.5474 −33.7336

0.0192 −113.1456 72.3024


 ,

344 10 Algorithms for the Nonsymmetric Eigenvalue Problem

and the matrix Q1AQT
1 preserves the first column of the matrix Q1A:

A1 = Q1AQT
1 =




12 −44.6490 25.0368

7.2180 123.2132 −41.5686

0.0192 −134.3725 2.2655




which is upper Hessenberg matrix.

10.7 Tridiagonal and Bidiagonal Reduction

Suppose now that the matrix A is symmetric. Then the Hessenberg reduction leaves

the matrix A symmetric at every step such that zeros elements will be created in

symmetric positions. This will reduce the number of operation to (4/3)n3 +O(n2)
or (8/3)n3 + O(n2) to form matrices Qn−1, . . . ,Q1 (see [23]). This procedure is

called tridiagonal reduction. We recall that the eigenvalues of the symmetric ma-

trix AT A are the squares of the singular values of A.1 SVD algorithms which we

consider in Section 11.6 used this fact, and the goal of this section is to find a form

for A which implies that AT A is tridiagonal. Our goal is to compute orthogonal ma-

trices Q and V such that QAV is upper bidiagonal matrix, or nonzero only on the

diagonal and the first superdiagonal. This algorithm is called bidiagonal reduction.

Below we present the general procedure of the bidiagonal reduction which is

illustrated on the matrix A of the size 5×5.

1. Choose Q1 and V1 such that

Q1A =




x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x




and A1 = Q1AV1 =




x x 0 0 0

0 x x x x

0 x x x x

0 x x x x

0 x x x x



.

Here, Q1 is a matrix obtained after Householder reflection, and V1 is another ma-

trix obtained after Householder reflection which leaves the first column of Q1A un-

changed.

2. Choose Q2 and V2 such that

Q2A1 =




x x 0 0 0

0 x x x x

0 0 x x x

0 0 x x x

0 0 x x x




and A2 = Q2A1V2 =




x x 0 0 0

0 x x 0 0

0 0 x x x

0 0 x x x

0 0 x x x



.

1 See Section 5.1.1, p. 155.

10.7 Tridiagonal and Bidiagonal Reduction 345

Here, Q2 is a matrix obtained after Householder reflection that leaves the first row

of A1 unchanged. The matrix V2 is a Householder reflection that leaves the first two

columns of Q2A1 unchanged.

3. Choose Q3 and V3 such that

Q3A2 =




x x 0 0 0

0 x x 0 0

0 0 x x x

0 0 0 x x

0 0 0 x x




and A3 = Q3A2V3 =




x x 0 0 0

0 x x 0 0

0 0 x x 0

0 0 0 x x

0 0 0 x x



.

Here, Q3 is a Householder reflection that leaves the first two rows of A2 unchanged.

The matrix V3 is a Householder reflection that leaves the first three columns of Q3A2

unchanged.

4. Choose Q4 such that

Q4A3 =




x x 0 0 0

0 x x 0 0

0 0 x x 0

0 0 0 x x

0 0 0 0 x




and V4 = I soA4 = Q4A3.

Here, Q4 is a Householder reflection that leaves the first three rows of A3 unchanged.

Then we obtain the tridiagonal matrix as

AT
4 A4 =




x x 0 0 0

x x x 0 0

0 x x x 0

0 0 x x x

0 0 0 x x



.

In general case the matrix A has order n. Then applying the above procedure to

this matrix, we get the orthogonal matrices Q=Qn−1 · · ·Q1 and V =V1 · · ·Vn−2 such

that QAV = A′ is upper bidiagonal. Note that A′T A′ = V T AT QT QAV = V T AT AV ,

so A′T A′ has the same eigenvalues as AT A; i.e., A′ has the same singular values

as A. The cost of the algorithm of bidiagonal reduction is (8/3)n3 + 4n3 +O(n2),
where 4n3 +O(n2) counts for computations of Q and V .

Example 10.19. In this example we apply the above procedure on the bidiagonal

reduction of the matrix

A =




4 4 3

3 6 1

0 1 7




using Householder transformation. We proceed in following steps.

First, we need to zero out the second entry in the first column of the matrix A,

the vector x = (4,3,0)T . We compute first α = −sign(x1)‖x‖ = −5, and then the

346 10 Algorithms for the Nonsymmetric Eigenvalue Problem

vectors u = x+αi1 = (−1,3,0)T and v = u/‖u‖ = (−1,3,0)T/
√

10. Compute the

Householder matrix P1 as

P1 = I −2vvT =




0.8 0.6 0

0.6 −0.8 0

0 0 1




Compute P1A to zero out the two entries below 5 in the first column:

P1A =




5 6.8 3

0 −2.4 1

0 1 7


 (10.6)

Now we want to zero out the (1,3) entry of matrix (10.6). To do that we take the

minor

M =

(
6.8 3

−2.4 1

)

and compute again for x = (6.8,−2.4)T : the number α =−sign(x1)‖x‖=−7.4324

and then the vectors u= x+αi1 =(−0.6324,3)T , v= u/‖u‖=(−0.2063,0.9785)T .
Compute the matrix

V ′
1 = I −2vvT =

(
0.9149 0.4037

0.4037 −0.9149

)
.

Construct V1 such that

V1 =




1 0 0

0 V ′
1

0


=




1 0 0

0 0.9149 0.4037

0 0.4037 −0.9149


 .

Compute P1AV1 to zero out the (1,3) entry:

P1AV1 =




5 7.4324 0.0005

0 −1.7921 −1.8838

0 3.7408 −6.0006


 . (10.7)

It is remains only to zero out the (3,2) entry of the matrix in (10.7). We take the

minor

M =

(
−1.7921 −1.8838

3.7408 −6.0006

)

and compute for x = (−1.7921,3.7408)T : the number α =−sign(x1)‖x‖= 4.1479

and the vectors u = x+αi1 = (2.3558,3.7408)T , v = u/‖u‖ = (0.5329,0.8462)T .
Compute the matrix P′

2 of order 2:

P′
2 = I −2vvT =

(
0.4320 −0.9019

−0.9019 −0.4321

)
.

10.7 Tridiagonal and Bidiagonal Reduction 347

Construct P2 such that the matrix P′
2 is inserted into the identity matrix of order 3:

P2 =




1 0 0

0 P′
2

0


=




1.0000 0 0

0 0.4320 −0.9019

0 −0.9019 −0.4321


 .

Finally, multiply the matrix P2 by the matrix P1AV1 obtained in (10.7) to get bidiag-

onal matrix:

P2P1AV1 =




5.0000 7.4324 0.0005

−0.0000 −4.1480 4.5981

0.0000 −0.0001 4.2918


 . (10.8)

10.7.1 Tridiagonal Reduction using Householder Transformation

In this section we present alternative procedure which can be used for tridiagonal

reduction using Householder transformation. This procedure is taken from [12]. To

form the Householder matrix in this procedure, in each step we need to determine

α and r, which are given by:

α =−sign(a21)

√
n

∑
j=2

a2
j1, r =

√
1

2
(α2 −a21α).

From α and r, we construct the vector v:

v(1) =




v1

v2

...

vn


 ,

where v1 = 0, v2 = (a21 −α)/(2r), and

vk =
ak1

2r

for k = 3,4, . . .n. Then we compute the matrix

P1 = I −2v(1)(v(1))T

and obtain the matrix A(1) as

A(1) = P1AP1.

Having found P1 and computed A(1), the process is repeated for k = 2,3, ...,n as

follows:

348 10 Algorithms for the Nonsymmetric Eigenvalue Problem

α =−sign(ak+1,k)

√
n

∑
j=k+1

a2
jk, r =

√
1

2
(α2 −ak+1,kα),

vk
1 = vk

2 = ..= vk
k = 0, vk

k+1 =
ak

k+1,k −α

2r
, vk

j =
ak

jk

2r
for j = k+2, k+3, ..., n,

Pk = I −2v(k)(v(k))T , A(k+1) = PkA(k)Pk.

Example 10.20. In this example we apply the above algorithm to make the tridiago-

nal reduction of the matrix

A =




5 4 3

4 6 1

3 1 7


 , (10.9)

using Householder transformation. To do that we proceed in following steps.

First we compute α as

α =−sign(a21)

√
n

∑
j=2

a2
j1 =−

√
(a2

21 +a2
31) =−

√
42 +32 =−5.

Using α , we find r as

r =

√
1

2
(α2 −a21α) =

√
1

2
((−5)2 −4 · (−5)) =

3
√

5√
2
.

Then we compute the components of the vector v:

v1 = 0,

v2 =
a21 −α

2r
=

3
√

2

2
√

5
,

v3 =
a31

2r
=

√
2

2
√

5
,

and we get

v(1) =

(
0,

3
√

2

2
√

5
,

√
2

2
√

5

)T

.

Now we compute the first Householder matrix P1 = I −2v(1)(v(1))T to get

P1 =




1 0 0

0 −4/5 −3/5

0 −3/5 4/5


 .

Finally, we obtain the tridiagonal matrix A(1) as

10.7 Tridiagonal and Bidiagonal Reduction 349

A(1) = P1AP1 =




5 −5 0

−5 7.32 −0.76

0 −0.76 5.68


 .

10.7.2 Tridiagonal Reduction using Givens Rotation

To make the tridiagonal matrix from the matrix A using Givens rotation1 we first

recall, that a Givens rotation is represented by a matrix of the form

G(i, j,θ) =




1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · −s · · · 0
...

...
. . .

...
...

0 · · · s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1




,

where c = cos(Θ) and s = sin(Θ) appear at the intersections i-th and j-th rows and

columns. Elements in the Given’s matrix are:

gk k = 1 for k 6= i, j,

gi i = c,

g j j = c,

g j i =−s,

gi j = s for i > j.

We note that the sign of elements g j i,g j i switches for j > i. For given a and b our

goal is to find c = cosθ and s = sinθ such that

(
c −s

s c

)(
a

b

)
=

(
r

0

)
,

where

r =
√

a2 +b2,

c = a/r,

s =−b/r.

Example 10.21. To make the tridiagonal matrix from the matrix (10.9) using Givens

rotation we have to zero out the (3,1) and (1,3) elements of the matrix A.

1 See p. 151.

350 10 Algorithms for the Nonsymmetric Eigenvalue Problem

Thus, we use above expressions to construct the Givens rotation matrix G1 of the

form

G1 =




1 0 0

0 c −s

0 s c


 .

We compute then the product G1A to get:

G1A =




1 0 0

0 c −s

0 s c






5 4 3

4 6 1

3 1 7


=




5 4 3

4c−3s 6c− s c−7s

4s+3c 6s+ c s+7c


 .

The element (3,1) of the matrix will be zero if 4s+3c= 0. This is true when c= 4/5

and s =−3/5. To compute c,s we have used formulas:

r =
√

a2 +b2 =
√

42 +32 = 5, c =
a

r
=

4

5
, s =−b

r
=−3

5
.

Next, to get the tridiagonal matrix we have to compute G1AG1
T :

A1 = G1AG1
T =




1 0 0

0 4/5 3/5

0 −3/5 4/5






5 4 3

4 6 1

3 1 7






1 0 0

0 4/5 −3/5

0 3/5 4/5


=




5 5 0

5 7.32 0.76

0 0.76 5.68




(10.10)

Example 10.22. As another example, let us now make the upper triangular matrix

from the matrix (10.10), using Givens rotation. To do that we need zero out the

elements (2,1) and (3,2) of (10.10). To zero out the element (2,1) we compute the

numbers c and s from the known a = 5 and b = 5 as
(

c −s

s c

)(
a

b

)
=

(
r

0

)

to get:

r =
√

a2 +b2 =
√

52 +52 = 5
√

2 ≈ 7.0711,

c =
a

r
≈ 0.7071, s =

−b

r
≈−0.7071.

The Givens matrix will be

G2 =




c −s 0

s c 0

0 0 1


=




0.7071 0.7071 0

−0.7071 0.7071 0

0 0 1


 .

Finally, we obtain the matrix

10.8 QR Iteration with Implicit Shifts 351

A2 = G2A1 =




0.7071 0.7071 0

−0.7071 0.7071 0

0 0 1






5 5 0

5 7.32 0.76

0 0.76 5.68




=




7.7071 8.7116 0.5374

0 1.6405 0.5374

0 0.7600 5.6800


 . (10.11)

Now to zero out the element (3,2) we compute c, s from the known a = 1.6405

and b = 0.76 to get:

r =
√

a2 +b2 =
√

1.64052 +0.762 = 1.8080,

c =
a

r
≈ 0.9074, s =

−b

r
≈−0.4204.

The last Givens matrix will be

G3 =




1 0 0

0 c −s

0 s c


=




1 0 0

0 0.9074 0.4204

0 −0.4204 0.9074


 .

Finally, we obtain the upper triangular matrix

A3 = G3A2 =




7.0711 8.7116 0.5374

0 1.8080 2.8752

0 0.0000 4.9279


 . (10.12)

10.8 QR Iteration with Implicit Shifts

In this section we will first reduce the matrix A to the upper Hessenberg matrix and

then compute it’s QR factorization implicitly. This means that QR factorization will

be computed by construction of the matrix Q using the implicit Q Theorem. This

Theorem improves the efficiency of Hessenberg’s QR iteration algorithm. Next, we

will present how to choose a single shift to accelerate convergence of the method

of QR iteration.

We say that an upper Hessenberg matrix H is unreduced if all elements on its

subdiagonal are nonzero.

Theorem 10.7. Let H and G be unreduced upper Hessenberg matrices of order n

such that H = QT AQ and G = V T AV . Here, Q and V are orthogonal matrices of

order n, where the first columns are the same, or Qi1 = Vi1 with i1 = (1,0, ...,0).
Let X(:, i) denote the i-th column of the matrix X. Then the columns of Q and V are

the same up to the sign, or Q(:, i) =±V (:, i) for i = 2,3, ...,n.

Proof. The assertion on the first columns of the matrices Q and V is obvious. Our

goal is to prove that Q(:, i) = ±V (:, i) for i > 1. This is the same if we can prove

352 10 Algorithms for the Nonsymmetric Eigenvalue Problem

that the matrix W =V T Q = diag(±1, ...,±1). Since, by assumption, W =V T Q we

can write: GW = GV T Q = V T AVV T Q = V T AQ = V T QQT AQ = V T QH = WH.
Since GW = WH, we have GW (:, i) = (GW)(:, i) = (WH)(:, i) = ∑i+1

j=1 H jiW (:, j),

and thus, Hi+1,iW (:, i+ 1) = GW (:, i)−∑i
j=1 H jiW (:, j). The first column of W is

W (:,1) = (1,0, ...,0)T (this is because Q and V are orthogonal and Q(:,1) =V (:,1))
and G is upper Hessenberg matrix, we can use induction on the index of column i to

show that Wi is nonzero only for entries from 1 to i. Thus, W is the upper triangular

matrix. But because W is also the orthogonal matrix thus it can be only diagonal,

or W = diag(±1, ...,±1). ⊓⊔

Algorithm 10.7. The single shift QR algorithm.

Theorem 10.7 implies that to compute Ai+1 = QT
i AiQi from Ai in the QR algo-

rithm we will need only to do the following two steps.

1. Compute the first column of the matrix Qi. This column is parallel to the first

column of Ai −σiI and thus, can be obtained just by normalizing this column

vector.

2. Choose other columns of Qi such that Qi is orthogonal matrix and Ai+1 =QT
i AiQi

is unreduced upper Hessenberg matrix.

Using the above theorem we can conclude that the matrix Ai+1 in the algorithm

is computed correctly because the matrix Qi is computed uniquely up to signs. The

choice of sign is not matter. This is true since if we will change signs in columns

of Qi then signs in Ai−σiI =QiRi also will be changed: Ai−σiI =QiRi =QiDiDiRi,

where Di = diag(±1, ...,±1). Then we can write

Ai+1 = QT
i AiQi = QT

i (QiRi +σiI)Qi = QT
i (QiDiDiRi +σiI)Qi

= DiRiQiDi +σiI = Di(RiQi +σiI)Di (10.13)

and this is orthogonal similarity that only changes the signs in the columns and rows

of Ai+1.

As an example, now we will illustrate how the above algorithm works for the

computation of Ai+1 = QT
i AiQi for i = 4. In all matrices QT

i below values ci and si

can be computed using Givens rotation algorithm. The signs ∗ in the matrices Ai are

called “bulge” and should be removed during the iterations on index i in order to

restore Hessenberg form.

1. Choose Q1 such that

QT
1 =




c1 s1 0 0 0

−s1 c1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




to get A1 = QT
1 A0Q1 =




x x x x x

x x x x x

∗ x x x x

0 0 x x x

0 0 0 x x



.

2. Choose Q2 such that

10.8 QR Iteration with Implicit Shifts 353

QT
2 =




1 0 0 0 0

0 c2 s2 0 0

0 −s2 c2 0 0

0 0 0 1 0

0 0 0 0 1




to get A2 = QT
2 A1Q2 =




x x x x x

x x x x x

0 x x x x

0 ∗ x x x

0 0 0 x x



.

We note that

QT
2 A1 =




x x x x x

x x x x x

0 x x x x

0 0 x x x

0 0 0 x x



.

3. Choose Q3 such that

QT
3 =




1 0 0 0 0

0 1 0 0 0

0 0 c3 s3 0

0 0 −s3 c3 0

0 0 0 0 1




to get A3 = QT
3 A2Q3 =




x x x x x

x x x x x

0 x x x x

0 0 x x x

0 0 ∗ x x



.

We note that

QT
3 A2 =




x x x x x

x x x x x

0 x x x x

0 0 x x x

0 0 0 x x



.

4. Choose Q4 such that

QT
4 =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 c4 s4

0 0 0 −s4 c4




to get A4 = QT
4 A3Q4 =




x x x x x

x x x x x

0 x x x x

0 0 x x x

0 0 0 x x



.

We note that

QT
4 A3 =




x x x x x

x x x x x

0 x x x x

0 0 x x x

0 0 0 x x



.

At step 4 we have obtained the upper Hessenberg matrix A4. We observe that, com-

bining all steps 1-4, we can get A4 = QT
4 QT

3 QT
2 QT

1 AQ1Q2Q3Q4 = QT AQ, where the

matrix Q = Q1Q2Q3Q4 is such that

354 10 Algorithms for the Nonsymmetric Eigenvalue Problem

Q =




c1 x x x x

s1 x x x x

0 s2 x x x

0 0 s3 x x

0 0 0 s4 x



.

If we now choose the first column of Q which is Q(:,1)= (c1,s1,0,0,0) proportional

to the first column of the matrix A−σ I which is

(A−σ I)(:,1) = (a11 −σ ,a21,0,0,0)
T ,

then this matrix Q will be the same as in the QR decomposition of A−σ I.

We can choose the single shift σ as σ = an,n for the matrix Ai. This will result

in asymptotic quadratic convergence to a real eigenvalue, see [23] for details how to

choose shifts.

Questions

Doing the following exercises, explain obtained results.

10.1. (Programming)

Use Matlab program PowerM.m of Section A.9 to test the power method and to

compute the largest eigenvalue of the matrix A. Try the following examples when

the matrix A and the tolerance Θ in Algorithm 10.1, p. 327, are defined as follows:

1. A= randn(5) and the tolerance Θ = {1e−5,1e−4,1e−3,1e−2,0.1}.

2. A = diag(ones(2n,1))+diag(ones(2n−1,1),1)+diag(ones(2n−1,1),−1) for

each number n = 3,4,5 and the tolerance Θ = {1e−12,1e−10,1e−8,1e−7}.

3.

A =




1 1e6 0 0

0 2 1 0

1 2 3 10

0 0 −1 4


 (10.14)

and the tolerance Θ = {1e−12,1e−10,1e−8}.

4.

A =




1 0 0 0 0 0

0 2 1 0 0 0

0 0 2 0 0 0

0 0 0 3 1e2 1e4

0 0 0 0 3 1e2

0 0 0 0 0 3




(10.15)

and the tolerance Θ = {1e−10,1e−8,1e−6,1e−4,1e−3}.

10.2. (Programming)

10.8 QR Iteration with Implicit Shifts 355

Use Matlab program InverseIteration.m of Section A.10 to test the in-

verse iteration method for the computation of the eigenvalue of the matrix A which

is closest to the shift σ . Try all examples of matrix A and tolerance Θ as in Ques-

tion 10.1. Choose also different shifts σ . For stopping criterion using tolerance Θ
we refer to Algorithm 10.2, p. 330.

10.3. (Programming)

Use Matlab program MethodOrtIter.m of Section A.11 to test the method

of orthogonal iteration for the computation of the eigenvalues of the matrix A. Try

all examples of matrix A and tolerance Θ defined in Question 10.1. For stopping

criterion using tolerance Θ we refer to Algorithm 10.3, p. 333.

10.4. (Programming)

Use Matlab program MethodQR iter.m of Section A.12 to test the method of

QR iteration for the computation of the eigenvalues of the matrix A. Try all examples

of matrix A and tolerance Θ defined in Question 10.1. For stopping criterion using

tolerance Θ we refer to Algorithm 10.4, p. 337.

10.5. (Programming)

Use Matlab program MethodQR shift.m of Section A.13 to test the method

of QR iteration with the shift σ = A(n,n) for the computation of the eigenvalues of

the matrix A. Try all examples of matrix A and tolerance Θ defined in Question 10.1.

For stopping criterion using tolerance Θ we refer to Algorithm 10.5, p. 338.

10.6. (Programming)

Use Matlab program MethodQR Wshift.m of Section A.14 to test the method

of QR iteration with Wilkinson’s shift for the computation of the eigenvalues of the

matrix A. Try all examples of matrix A and tolerance Θ defined in Question 10.1.

For stopping criterion using tolerance Θ we refer to Algorithm 10.5, p. 338.

10.7. (Programming)

Use Matlab program HessenbergQR.m of Section A.15 to test the reduction

of the Matrix A to the upper Hessenberg matrix. Try the following examples when

the matrix A and the tolerance Θ are defined as:

1. A= randn(5) and the tolerance Θ = {1e−7,1e−5,1e−4,1e−3,1e−2,0.1}.

2. A = diag(ones(2n,1))+diag(ones(2n−1,1),1)+diag(ones(2n−1,1),−1) for

each number n = 3,4,5 and the tolerance Θ = {1e−12,1e−10,1e−8,1e−7}.

3.

A =




1 1e6 0 0

0 2 1e−3 0

0 0 3 10

0 0 −1 4


 (10.16)

and the tolerance Θ = {1e−12,1e−10,1e−8}.

4. Each tolerance from the set Θ = {1e−10,1e−8,1e−6,1e−4,1e−3} and the

matrix A=(1,0,0,0,0,0;0,2,1,0,0,0;0,0,2,0,0,0;0,0,0,1e4,1,1;0,0,0,0,1e2,1;

0,0,0,0,0,1e4)+diag(ones(5,1),−1).

Chapter 11

Algorithms for Solution of Symmetric
Eigenvalue problem

In this chapter we will discuss algorithms which can solve only symmetric eigen-

value problems using direct non-iterative methods. Recall that in the previous chap-

ter the algorithms which can find all eigenvalues and eigenvectors for the nonsym-

metric eigenvalue problem were based only on the method of QR iteration. However,

there exists a lot of algorithms for the solution of symmetric eigenvalue problem

which are more efficient than algorithms for solution of nonsymmetric eigenvalue

problems. We list now main algorithms and main advantages of every algorithm

which we will consider in this chapter:

1. Tridiagonal QR iteration. This algorithm can be used to find all the eigenval-

ues, and if needed, all the eigenvectors, of a symmetric tridiagonal matrix. This

method is the fastest numerical method which can compute all the eigenvalues of

a symmetric tridiagonal matrix. If we want apply this algorithm to find also all

the eigenvectors, then it will be efficient only for small matrices of the dimension

up to 25. We note that this algorithm is used in the Matlab command eig.

2. Rayleigh quotient iteration. This algorithm is similar to the algorithm of QR iter-

ation, and we present it here to analyze its extremely rapid cubical convergence.

3. Divide-and-conquer. This is the fastest method to find all the eigenvalues and

eigenvectors of symmetric tridiagonal matrices which have dimensions larger

than 25.

4. Bisection and inverse iteration. Bisection may be used to find a subset of the

eigenvalues of a symmetric tridiagonal matrix on the some subinterval of the

interval where are located the eigenvalues. The algorithm of Inverse iteration de-

scribed in the previous chapter can then be used to find the corresponding eigen-

vectors. In works [29, 42, 90, 91, 92, 96, 97, 115] the inverse iteration method is

developed further to find the close eigenvalues and eigenvectors as fast as possi-

ble.

5. Jacobi’s method. This is the first method for the solution of eigenvalue problems

and was developed in 1846 by Jacobi. Compared with all previous methods, the

Jacobi’s method is much slower. However, it is very accurate and can find tiny

eigenvalues much more precise than the previous methods, see details in [25].

357

358 Chapter 11. Algorithms for Solution of Symmetric Eigenvalue Problem

11.1 Tridiagonal QR Iteration

This algorithm is very similar to the usual algorithm of QR iteration for the solution

of nonsymmetric eigenproblems which we have considered in the previous chapter.

This algorithm consisted of two stages:

• First we constructed an orthogonal matrix Q via an algorithm 10.6 (reduction

to an upper Hessenberg matrix) such that QAQT = H is an upper Hessenberg

matrix.

• Then we applied QR iteration on a resulted matrix H and have obtained a se-

quence of upper Hessenberg matrices H0,H1,H2, ..., which converged to real

Shur form.

Algorithm of QR iteration for a symmetric tridiagonal matrix is very similar to

the described above procedure and consists in following steps:

• Use modified algorithm 10.6 (reduction to upper Hessenberg form) to find an

orthogonal Q such that QAQT = T is tridiagonal.

• Apply algorithm of QR iteration on a resulted matrix T to obtain a sequence of

tridiagonal matrices T0,T1,T2, . . . which will converge to diagonal form.

We note that algorithm of QR iteration keeps all matrices Ti tridiagonal. This is

because the matrix QAQT = T is symmetric and upper Hessenberg, and thus, also

lower Hessenberg, or tridiagonal.

We now describe how to choose the shifts at every QR iteration. Let us denote

by Ti the tridiagonal matrix obtained at iteration i in the algoithm of QR iteration:

Ti =




a1 b1

b1
. . .

. . .

. . .
. . . bn−1

bn−1 an



.

We can choose as a shift the single shift σi = an in the algorithm of QR iteration,

see section 10.8. Then the method is cubically convergent for almost all matrices.

However, in some special cases the method QR iteration does not converge, see p.76

in [94]. Thus, to get global convergence of method one need to compute shift in a

more complicated manner. Let the shift σi called Wilkinson’s shift be the eigenvalue

of (
an−1 bn−1

bn−1 an

)

closest to an.

Theorem 11.1. (Wilkinson). Algorithm of QR iteration with Wilkinson’s shift is

globally, and at least linearly, convergent. This algorithm is asymptotically cubi-

cally convergent for almost all matrices.

We refer to [94] for the proof of this theorem. Efficient implementation of this

algorithm is studied in [43, 95].

11.2 Rayleigh Quotient Iteration 359

11.2 Rayleigh Quotient Iteration

The Rayleigh1 quotient of a symmetric matrix A and a nonzero real vector u is

ρ(u,A)≡ uT Au

uT u
.

Evident properties of the Rayleigh quotient ρ(u,A) are (see Section 4.3.11 for

variational properties of eigenvalues and self-adjoint operators):

• ρ(γu,A) = ρ(u,A) for any nonzero scalar γ .

• If Aqi = λ̃iqi, then ρ(qi,A) = λ̃i.

Algorithm 11.1. Rayleigh quotient iteration.

0. Initialization: set i = 0, stopping tolerance θ and choose a shift σ . Initialize x0

such that ‖x0‖= 1.

1. Compute yi+1 = (A−ρiI)
−1xi.

2. Compute xi+1 = yi+1/‖yi+1‖2.

3. Compute the approximate Rayleigh quotient ρi+1 = ρ(xi+1,A).
4. Stop updating the Rayleigh quotient and set ρM = ρi+1, M = i+1, if

‖Axi+1 −ρi+1xi+1‖2 < θ . Otherwise, set i = i+1 and go to step 1.

From results of Section 7.1, p. 217, follows that when the stopping criterion

‖Axi −ρixi‖2 < tol in the above algorithm is satisfied then computed Rayleigh quo-

tient ρi is within tolerance θ of an eigenvalue of A.

If we will take shift σi = ann in algorithm 10.5 and then run algorithm 11.1 with

x0 = (0, ...,0,1)T then σi = ρi.

Theorem 11.2. Rayleigh quotient iteration is locally cubically convergent.

Proof. We will analyze only the case when A is diagonal. This is enough since writ-

ing QT AQ = Λ , where Q is the orthogonal matrix whose columns are eigenvec-

tors, and Λ = diag(λ̃1, . . . , λ̃n) is the diagonal matrix of eigenvalues, we can write

Rayleigh quotient ρi computed at the iteration i as

ρi = ρ(xi,A) =
xT

i Axi

xT
i xi

=
x̂T

i QT AQx̂i

x̂T
i QT Qx̂i

=
x̂T

i Λ x̂i

x̂T
i x̂i

= ρ(x̂i,Λ),

where x̂i ≡ QT xi and ŷi ≡ QT yi. We observe also that Qŷi+1 = (A−ρiI)
−1Qx̂i, so

ŷi+1 = QT (A−ρiI)
−1Qx̂i = (QT AQ−ρiI)

−1x̂i = (Λ −ρiI)
−1x̂i.

We see, that running Rayleigh quotient iteration algorithm 11.1 with A and x0 is the

same as to run the Rayleigh quotient iteration with Λ and x̂0. Thus we will assume

1 John William Strutt, 3rd Baron Rayleigh (1842 - 1919) was an English physicist.

360 Chapter 11. Algorithms for Solution of Symmetric Eigenvalue Problem

that A = Λ is already diagonal and eigenvectors of A are ei, or the columns of the

identity matrix I.

Assume that xi is converging to e1, so we can write xi = e1 + di, where ‖di‖2 ≡
ε ≪ 1. To prove cubic convergence, we need to show that xi+1 = e1 + di+1 with

‖di+1‖2 = O(ε3). We first note that

1 = xT
i xi = (e1 +di)

T (e1 +di) = eT
1 e1 +2eT

1 di +dT
i di = 1+2di1 + ε2

so that di1 =−ε2/2. Therefore,

ρi = xT
i Λxi = (e1 +di)

T Λ(e1 +di) = eT
1 Λe1 +2eT

1 Λdi +dT
i Λdi

= λ̃1 − (−2eT
1 Λdi −dT

i Λdi) = λ̃1 −η = λ̃1 − λ̃1ε2 −dT
i Λdi,

(11.1)

and since −2eT
1 di = ε2 we have that η ≡ −2eT

1 Λdi − dT
i Λdi = λ̃1ε2 − dT

i Λdi. We

see that

|η | ≤ |λ̃1|ε2 +‖Λ‖2‖di‖2
2 ≤ |λ̃1|ε2 +‖Λ‖2ε2 ≤ 2‖Λ‖2ε2,

so ρi = λ̃1 −η = λ̃1 +O(ε2) is a very good approximation to the eigenvalue λ̃1.

Now, using algorithm 11.1 we see that yi+1 = (A−ρiI)
−1xi. Thus, using remark

above we can write

yi+1 = (Λ −ρiI)
−1xi

=

(
xi1

λ̃1 −ρi

,
xi2

λ̃2 −ρi

, . . . ,
xin

λ̃n −ρi

)T

because(Λ −ρiI)
−1 = diag

1

λ̃ j −ρi

=

(
1+di1

λ̃1 −ρi

,
di2

λ̃2 −ρi

, . . . ,
din

λ̃n −ρi

)T

becausexi = e1 +di

=

(
1− ε2/2

η
,

di2

λ̃2 − λ̃1 +η
, . . . ,

din

λ̃n − λ̃1 +η

)T

becauseρi = λ̃1 −η and di1 =−ε2/2

=
1− ε2/2

η

(
1,

di2η

(1− ε2/2)(λ̃2 − λ̃1 +η)
, . . . ,

dinη

(1− ε2/2)(λ̃n − λ̃1 +η)

)T

≡ 1− ε2/2

η
(e1 + d̂i+1).

To bound ‖d̂i+1‖2, we will bound every denominator in the above expression

using inequality (see Section 7.1, p. 217, for the definition of gap)

|λ̃ j − λ̃1 +η | ≥ gap(1,Λ)−|η |,

as well us using estimate for |η | in every numerator

11.2 Rayleigh Quotient Iteration 361

|η | ≤ |λ̃1|ε2 +‖Λ‖2‖di‖2
2 ≤ 2‖Λ‖2ε2

to get

‖d̂i+1‖2 ≤
‖di+1‖2|η |

(1− ε2/2)(gap(1,Λ)−|η |)

≤ 2‖Λ‖2ε3

(1− ε2/2)(gap(1,Λ)−2‖Λ‖2ε2)
.

(11.2)

In other words, inequality (11.2) means ‖d̂i+1‖2 = O(ε3). Finally, by algorithm 11.1

we have that xi = yi/‖yi‖2 and thus

xi+1 = e1 +di+1 = yi+1/‖yi+1‖2 (11.3)

or

xi+1 =
yi+1

‖yi+1‖2
=

(
1− ε2/2

η
(e1 + d̂i+1)

)

∥∥∥∥
1− ε2/2

η
(e1 + d̂i+1)

∥∥∥∥
2

= (e1 + d̂i+1)/‖e1 + d̂i+1‖2.

Comparing the above expression with (11.2) we see that ‖d̂i+1‖2 = O(ε3).
⊓⊔

Below we present an example of using algorithm 11.1 on the computation of the

Rayleigh quotient of some predefined symmetric tridiagonal matrix A.

Example 11.1. We compute the Rayleigh quotient of the matrix

A =




1 5 0 0

5 7 1 0

0 1 3 4

0 0 4 2




using algorithm 11.1. This matrix has four different eigenvalues

λ = (−2.0607,−1.3469,6.4239,9.9837),

which we have obtained using the command eig(A) in Matlab. The computed

Rayleigh quotient is ρ =−1.3469, which is one of the eigenvalues of A. The Matlab-

program RayleighQuotient.m of Section A.16 is available for running of this

test.

362 Chapter 11. Algorithms for Solution of Symmetric Eigenvalue Problem

11.3 Divide-and-Conquer

The main advantage of this method is that it is the fastest among existing methods to

compute all eigenvalues and eigenvectors of a tridiagonal matrix of the size n larger

than about n = 25. The Divide-and-Conquer method is not so easy to implement

efficiently in a stable way. It was introduced first in work [21] and the first efficient

and stable implementation of it was presented in [30, 38].

The structure of the algorithm is the following. Let T is a tridiagonal symmetric

matrix:

T =




a1 b1 0 0

b1 a2 b2 0 ... 0

...

... am−1 bm−1 0

0 bm−1 am bm 0 0

0 0 bm am+1 bm+1 0

0 0 0 bm+1
...
0 0 0 bn−1

0 0 0 0 bn−1 an




such that we can decompose it in a following way:

T =




a1 b1 0 0

b1 a2 b2 0 ... 0

...

... am−1 bm−1 0

0 bm−1 am −bm 0 0 0

0 0 0 am+1 −bm bm+1 0

0 0 0 bm+1
...
0 0 0 bn−1

0 0 0 0 bn−1 an




+




... ...
...bm bm...
...bm bm...
... ...




=

(
T1 0

0 T2

)
+bm




0
...

0

1

1

0
...

0




(
0...0 1 1 0....0

)
=

(
T1 0

0 T2

)
+bmvvT .

(11.4)

Assume that we have eigendecomposition of T1,T2 such that T1 = Q1Λ1QT
1 and

T2 = Q2Λ2QT
2 . Then we can write that

11.3 Divide-and-Conquer 363

T =

(
T1 0

0 T2

)
+bmvvT =

(
Q1Λ1QT

1 0

0 Q2Λ2QT
2

)
+bmvvT

=

(
Q1 0

0 Q2

)((
Λ1 0

0 Λ2

)
+bmuuT

)(
QT

1 0

0 QT
2

)
.

(11.5)

Let us define the diagonal matrix

D =

(
Λ1 0

0 Λ2

)

and rewrite (11.5) as

T =

(
Q1 0

0 Q2

)(
D+bmuuT

)(QT
1 0

0 QT
2

)
. (11.6)

We observe that the eigenvalues of T are the same as eigenvalues of

D+bmuuT = D+ρuuT (11.7)

with scalar ρ = bm. Thus, our goal now is to find eigenvalues of (11.7). To do that

we proceed in following steps:

Step 1. We assume that diagonal elements of D are sorted such that d1 ≥ ...≥ dn

and D+λ I is nonsingular.

Step 2. To find eigenvalues we compute the characteristic polynomial

det(D+ρuuT −λ I) = 0

noting that

det(D+ρuuT −λ I) = det((D−λ I)(I+ρ(D−λ I)−1uuT)). (11.8)

Step 3. By assumption in Step 1 we have

det(D−λ I) 6= 0

and thus in (11.8) we should have

det(I +ρ(D−λ I)−1uuT) = 0.

Lemma 11.1. If x and y are vectors, then det(I + xyT) = 1+ yT x.

The proof of this lemma is left to exercise 11.9. Thus, using this lemma we can get

that

det(I +ρ(D−λ I)−1uuT) = 1+uT ρ(D−λ I)−1u = 1+ρ
n

∑
i=1

u2
i

di −λ
= f (λ).

(11.9)

364 Chapter 11. Algorithms for Solution of Symmetric Eigenvalue Problem

We see that eigenvalues of T are roots of the so-called secular equation f (λ) = 0.

The secular equation can be solved using Newton’s method

λ k+1 = λ k − f (λ k)

f ′(λ k)
, (11.10)

where

f ′(λ k) = ρ
n

∑
i=1

u2
i

(di −λ k)2
(11.11)

and k is the number of iteration in Newton’s method. We observe that f ′(λ k) > 0

and increasing when ρ = bm > 0 except the point λ = di. Thus, the roots of f (λ) are

alternated by this di, and f (λ) is monotonic and smooth on every interval (di,di+1).
Then the Newton’s method (11.10) will converge for a starting point λ 0 ∈ (di,di+1).

To obtain eigenvectors for the found eigenvalues we need following lemma.

Lemma 11.2. If λ̃ is an eigenvalue of D+ρuuT , then

x = (D− λ̃ I)−1u (11.12)

is its eigenvector.

Proof. If λ̃ is an eigenvalue of D+ ρuuT and (11.12) is its eigenvector, then we

should have

(D+ρuuT)((D− λ̃ I)−1u) = ((D− λ̃ I)+ λ̃ I +ρuuT)((D− λ̃ I)−1u)

= u+ λ̃ (D− λ̃ I)−1u+u(ρuT (D− λ̃ I)−1u).
(11.13)

Now we use expression for the secular equation, or

ρuT (D− λ̃ I)−1u+1 = f (λ̃) = 0

and thus,

ρuT (D− λ̃ I)−1u =−1,

or

(D+ρuuT)((D− λ̃ I)−1u) = u+ λ̃ (D− λ̃ I)−1u−u

= λ̃ (D− λ̃ I)−1u = λ̃x.
(11.14)

⊓⊔

Algorithm 11.2. Finding eigenvalues and eigenvectors of a symmetric tridiagonal

matrix using Divide-and-conquer.

1. If T is 1-by-1

return Q = 1, Λ = T

else

11.3 Divide-and-Conquer 365

form T =

(
T1 0

0 T2

)
+bmυυT

2. Compute output matrices Q1 and Λ1 by eigendecomposition of T1.

3. Compute output matrices Q2 and Λ2 by eigendecomposition of T2.

4. Form D+ρuuT from Λ1, Λ2, Q1, Q2.

5. Find eigenvalues Λ and eigenvectors Q′ of D + ρuuT as roots of the secular

equation (11.9) using Newton’s method (11.10).

6. Form Q =

(
Q1 0

0 Q2

)
Q′ = eigenvectors of T .

6. Return Q, Λ and stop.

Remark 11.1.

• Eigenvectors can be computed by formula (11.12).

• This formula is not stable in the case when two eigenvalues (λ̃i, λ̃i+1) are lo-

cated close to each other. This means that (D− λ̃i)
−1u and (D− λ̃i+1)

−1u are

inaccurate and far from orthogonal.

• The Löwner’s theorem is used to compute eigenvectors for two eigenvalues

(λ̃i, λ̃i+1) which are close to each other.

Theorem 11.3. (Löwner1).

Let D = diag(d1, . . . ,dn) be diagonal with dn < .. . < d1. Let λ̃n < .. . < λ̃1 be

given, satisfying the alternating property

dn < λ̃n < · · ·< di+1 < λ̃i+1 < di < λ̃i < · · ·< d1 < λ̃1.

Then there is a vector û such that the λ̃i are the exact eigenvalues of D̂≡D+ ûûT .

The entries of û are:

|ûi|=
(

∏n
j=1(λ̃ j −di)

∏n
j=1, j 6=i(d j −di)

)1/2

. (11.15)

Proof. The characteristic polynomial of D̂ can be written in two ways:

as

det(D̂−λ I) =
n

∏
j=1

(λ̃ j −λ) (11.16)

and using

det(D̂−λ I) = det(D+ ûûT −λ I) = det(D(I +D−1ûûT)−λ I)

= det((D−λ I)(I +(D−λ I)−1ûûT))

as

1 Charles Löwner (1893 - 1968) was an American mathematician. His name was Karel Löwner in

Czech and Karl Löwner in German.

366 Chapter 11. Algorithms for Solution of Symmetric Eigenvalue Problem

det(D̂−λ I) =

(
n

∏
j=1

(d j −λ)

)(
1+

n

∑
j=1

û2
j

d j −λ

)

=

(
n

∏
j=1

(d j −λ)

)



1+
n

∑
j = 1

j 6= i

û2
j

d j −λ
+

û2
i

di −λ




=

(
n

∏
j=1

(d j −λ)

)



1+
n

∑
j = 1

j 6= i

û2
j

d j −λ




+




n

∏
j = 1

(d j −λ)




û2
i

di −λ

=

(
n

∏
j=1

(d j −λ)

)



1+
n

∑
j = 1

j 6= i

û2
j

d j −λ




+




n

∏
j = 1

j 6= i

(d j −λ)




û2
i .

(11.17)

Now we choose λ = di in (11.16) and in (11.17) for det(D̂−λ I) to get

n

∏
j=1

(λ̃ j −di) = û2
i

n

∏
j = 1

j 6= i

(d j −di)

or

û2
i =

∏n
j=1(λ̃ j −di)

∏n
j=1, j 6=i(d j −di)

.

Using the alternating property we can show that the right hand side in the above

expression is positive and thus, we get (11.15).

⊓⊔

Below we give the stable algorithm for computing the eigenvalues and eigenvec-

tors where we have assumed that ρ = 1.

Algorithm 11.3. Compute the eigenvalues and eigenvectors of D+uuT .

1. Solve the secular equation 1+∑n
i=1

u2
i

di−λ = 0 to get the eigenvalues λ̃i of D+uuT .

2. Use Löwner’s theorem to compute û so that the λ̃i are ”exact”

eigenvalues of D+ ûûT .

3. Use formula (11.12) in Lemma 11.2 to compute the eigenvectors of D̂=D+ ûûT .

11.4 Bisection and Inverse Iteration 367

Below we present an example of using algorithm 11.2 on the computation of

eigenvalues and eigenvectors of some predefined symmetric tridiagonal matrix A.

The Matlab program of section A.17 is available for running of this test.

Example 11.2. We compute the eigenvalues and eigenvectors of the matrix

A =




10.8901 9.5557 0 0 0

9.5557 10.6813 2.6985 0 0

0 2.6985 2.2341 4.0888 0

0 0 4.0888 13.5730 14.8553

0 0 0 14.8553 3.7942




using algorithm 11.2. This matrix has five different eigenvalues

λ = (−7.5981,−0.1710,3.5923,20.5154,24.8341)

obtained using the command eig(A) in Matlab. We apply the Matlab program of

section A.17 and compute eigenvalues and eigenvectors of the matrix A above. It

turns out, that the computed eigenvalues and eigenvectors of the above matrix using

the Matlab program of section A.17 are the same as given by the command eig(A)

in Matlab.

11.4 Bisection and Inverse Iteration

The Bisection algorithm uses Sylvester’s inertia theorem 4.44 to find only such k

eigenvalues which we want.

Recall that Inertia(A) = (ν ,ζ ,π), where ν , ζ and π are the number of negative,

zero, and positive eigenvalues of A, respectively. Suppose that X is nonsingular.

Using Sylvester’s inertia theorem 4.44 we have that Inertia(A) = Inertia(XT AX).
Now suppose that we use Gaussian elimination to factorize A−zI = LDLT , where

L is nonsingular and D diagonal. Then Inertia(A− zI) = Inertia(D). Inertia of D is

very easy computable since D is diagonal.

Further in our considerations of this section we use notation

#dii < 0

which means “the number of values of dii less than zero.” Then

Inertia(A− zI) = (#dii < 0,#dii = 0,#dii > 0)
= (#negativeeigenvaluesofA− zI,

#zeroeigenvaluesofA− zI,
#positiveeigenvaluesofA− zI)

= (#eigenvaluesofA < z,
#eigenvaluesofA = z,
#eigenvaluesofA > z).

368 Chapter 11. Algorithms for Solution of Symmetric Eigenvalue Problem

Let us define

NrofEig(A,z) = #eigenvaluesofA < z.

Suppose z1 < z2 and we compute Inertia(A− z1I) and Inertia(A− z2I). Then the

number of eigenvalues N[z1,z2) in the interval [z1,z2) equals (# eigenvalues of A< z2)

– (# eigenvalues of A < z1), or

N[z1,z2) = NrofEig(A,z2)−NrofEig(A,z1).

Algorithm 11.4. Bisection: find all eigenvalues of A inside [a,b) to a given error

tolerance θ .

na = NrofEig(A,a)
nb = NrofEig(A,b)
if na = nb, quit (because there are no eigenvalues in [a,b))
put [a,na,b,nb] onto WorkingArray

/∗ WorkingArray contains all subintervals of [a,b) containing

eigenvalues from n−na through n−nb +1, which the algorithm

will update until they will be less than tolerance θ . ∗/
while WorkingArray is not empty

remove [low,nlow,up,nup] from WorkingArray

if up− low < θ then

print ”there are nup −nlow eigenvalues in [low, up)”

else

mid = (low+up)/2

nmid = NrofEig(A,mid)
if nmid > nlow then print ”there are eigenvalues in [low,mid)”

put [low,nlow,mid,nmid] onto WorkingArray

end if

if nup > nmid then print “there are eigenvalues in [mid,up)”
put [mid,nmid ,up,nup] onto WorkingArray

end if

end if

end while

From NrofEig(A,z) it is easy to compute Gaussian elimination provided that

A− zI =




a1 − z b1
b1 a2 − z
...
... bn−2 an−1 − z bn−1

... ... bn−1 an − z




= LDLT =




1
l1 1 ...
...
... ln−1 1







d1
... d2 ...
...
... .. dn







1 l1... ...
.. 1 ...
... ... ln−1

... ... 1


 .

(11.18)

11.4 Bisection and Inverse Iteration 369

Using (11.18) we observe that

a1 − z = d1,

d1l1 = b1,

l2
i−1di−1 +di = ai − z,

dili = bi.

(11.19)

Substitute li = bi/di into l2
i−1di−1+di = ai−z to get following recurrent formula:

di = (ai − z)−
b2

i−1

di−1
, (11.20)

from which is easy to compute values di of the matrix D by knowing previous values

di−1 and known ai,bi. In [26, 27] was shown that since A−zI is a tridiagonal matrix

then the formula (11.20) is stable.

Below we present an example of using algorithm 11.4. The Matlab program of

section A.18 is available for running of this test.

Example 11.3. We compute eigenvalues of the matrix

A =




16.1984 2.8029 0 0 0

2.8029 9.0301 23.0317 0 0

0 23.0317 12.5310 24.2558 0

0 0 24.2558 10.5238 17.5216

0 0 0 17.5216 10.4891




using the Bisection algorithm 11.4. This matrix has five different eigenvalues

λ = (−25.0154,−1.2034,15.9244,21.8223,47.2444), which we have obtained us-

ing the command eig(A) in Matlab.

We compute now eigenvalues of the matrix A using the Matlab program of sec-

tion A.18. Since in the Matlab program of section A.18 we require that the left and

right hand side of the input interval in algorithm 11.4 will have difference no more

than the given error tol, then this interval will contain one eigenvalue, and left or

right hand side of this interval can be taken as our desired eigenvalue. The output

information obtained by the Matlab program of section A.18 for the matrix A de-

fined above is the following:

There are 1.0000 eigenvalues in the interval [-25.0154,-25.0154)

There are 1.0000 eigenvalues in the interval [-1.2034,-1.2034)

There are 1.0000 eigenvalues in the interval [15.9244,15.9244)

There are 1.0000 eigenvalues in the interval [21.8223,21.8223)

There are 1.0000 eigenvalues in the interval [47.2444,47.2444)

Comparing the above results with the exact ones we observe that the computed

eigenvalues using the Matlab program of section A.18 are the same as produced by

the command eig(A).

370 Chapter 11. Algorithms for Solution of Symmetric Eigenvalue Problem

11.5 Jacobi’s Method

We will not reduce the original matrix A to a tridiagonal matrix T as in all previ-

ous methods, but will work on original A. Jacobi’s1 method produces a sequence

Ai, i = 0, ...m, of orthogonally similar matrices for a given matrix A = A0, which will

converge to a diagonal matrix with the eigenvalues on the diagonal. The next matrix

Ai+1 is obtained from the previous one Ai by the recurrent formula

Ai+1 = JT
i AiJi,

where Ji is an orthogonal matrix called a Jacobi rotation. Thus

Am = JT
m−1Am−1Jm−1

= JT
m−1JT

m−2Am−2Jm−2Jm−1 = · · ·
= JT

m−1 · · ·JT
0 A0J0 · · ·Jm−1

= JT AJ.

If we choose every Ji in some special way then Am will converge to a diagonal

matrix Λ for large m. Thus we can write

Λ ≈ JT AJ

or

JΛJT ≈ A,

from what we see that the columns of J are approximate eigenvectors.

To do JT AJ nearly diagonal we will construct iteratively Ji to make one pair of

off-diagonal entries of Ai+1 = JT
i AiJi zero at a time. We will do this by taking Ji to

be a Givens rotation, or

j k

Ji = R(j,k,θ)≡
j

k




1

1
. . .

cosθ −sinθ
. . .

sinθ cosθ
. . .

1

1




,
(11.21)

where θ is chosen such that the (j,k) and (k, j) entries of Ai+1 will be zero out. To

determine θ (or actually cosθ and sinθ), let us consider

1 Carl Gustav Jacob Jacobi (1804 - 1851) was a German mathematician.

11.5 Jacobi’s Method 371

(
a
(i+1)
j j a

(i+1)
jk

a
(i+1)
k j a

(i+1)
kk

)
=

(
cosθ −sinθ
sinθ cosθ

)T
(

a
(i)
j j a

(i)
jk

a
(i)
k j a

(i)
kk

)(
cosθ −sinθ
sinθ cosθ

)

=

(
c −s

s c

)T
(

a
(i)
j j a

(i)
jk

a
(i)
k j a

(i)
kk

)(
c −s

s c

)
=

(
λ1 0

0 λ2

)
,

(11.22)

where λ1 and λ2 are the eigenvalues of




a
(i)
j j a

(i)
jk

a
(i)
k j a

(i)
kk


 .

It is easy to compute c = cosθ and s = sinθ from (11.22) on every iteration i:

(
λ1 0

0 λ2

)
=

(
a j jc

2 +akks2 +2sca jk sc(akk −a j j)+a jk(c
2 − s2)

sc(akk −a j j)+a jk(c
2 − s2) a j js

2 +akkc2 −2sca jk

)
.

Setting the off-diagonals to zero and solving for θ we get

0 = sc(akk −a j j)+a jk(c
2 − s2),

or
a j j −akk

2a jk

=
c2 − s2

2sc
=

cos2θ

sin2θ
= cot2θ ≡ τ .

We now introduce notation t = s
c
= tanθ noting that t2 + 2τt − 1 = 0. Solving this

quadratic equation we get

t =
sign(τ)

|τ |+
√

1+ τ2
,

c =
1√

1+ τ2
,

s = tc.

(11.23)

Algorithm 11.5. Compute and apply a Jacobi rotation to A for indices (j,k).

function Jacobi-Rotation (A, j,k)
if |a jk| is not too small

τ = (a j j −akk)/(2a jk)

t = sign(τ)/(|τ |+
√

1+ τ2)
c = 1/

√
1+ τ2

s = tc

A = RT (j,k,θ)AR(j,k,θ) /* here, c = cosθ and s = sinθ */

J = J R(j,k,θ) /* if eigenvectors are desired */

end if

end if

372 Chapter 11. Algorithms for Solution of Symmetric Eigenvalue Problem

The general Jacobi algorithm is given below.

Algorithm 11.6. Jacobi’s method to find the eigenvalues of a symmetric matrix.

Perform following steps in loop:

1. Choose a (j, k).
2. Call function Jacobi-Rotation(A, j,k) until A is sufficiently diagonal.

There are different ways how to pick up (j,k) pairs. To measure progress of

convergence we define

off(A)≡
√

∑
1≤ j<k≤n

a2
jk.

Thus, off(A) is the root-sum-of-squares of the (upper) off-diagonal entries of A, so

A is diagonal if and only if off(A) = 0. We want to make off(A) = 0 as quickly as

possible.

The next lemma shows that off(A) decreases monotonically with every iteration

in Jacobi rotation.

Lemma 11.3. Let A′ be the matrix after calling procedure Jacobi-Rotation (A, j,k)
for any j 6= k. Then

off2(A′) = off2(A)−a2
jk.

The proof of this lemma can be found in [23].

The next algorithm is the original version of the Jacobi algorithm developed in

1846. However, in practical computations this algorithm is too slow.

Algorithm 11.7. Classical Jacobi’s algorithm.

0. Set i = 0 and tolerance θ .

1. Choose (j,k) such that a jk is the largest off-diagonal entry in magnitude.

2. Call Jacobi-Rotation(A, j,k).
3. Compute offi(A).
4. Stop and set offM(A) = offi(A), M = i, if offi(A) < θ . Otherwise, set i = i+ 1

and go to step 1.

Theorem 11.4. Let A′ be the matrix after calling Jacobi-Rotation(A, j,k) for any

j 6= k. After one step of calling Jacobi-Rotation procedure in the classical Jacobi’s

algorithm (11.7), we have

off(A′)≤
√

1− 1

N
off(A),

where N = n(n−1)
2

is the number of superdiagonal entries of A. After k steps of

calling Jacobi-Rotation procedure we have

off(A′)≤
(

1− 1

N

)k/2

off(A).

11.5 Jacobi’s Method 373

Proof. By Lemma 11.3 after one step of Jacobi rotation we have

off2(A′) = off2(A)−a2
jk,

where a jk is the largest offdiagonal entry. Thus,

off2(A)≤ n(n−1)

2
a2

jk,

or

a2
jk ≥

1

n(n−1)/2
off2(A)

such that

off2(A)−a2
jk ≤

(
1− 1

N

)
off2(A)

from what follows statements of theorem 11.4.

⊓⊔

Summarizing we have that the classical Jacobi’s algorithm converges at least

linearly with the error decreasing by a factor of at least

√
1− 1

N
at a time.

Theorem 11.5. Jacobi’s method is locally quadratically convergent after N steps.

This means that for a large i

off(Ai+N) = O(off2(Ai)).

The proof of this theorem is given in [113]. In practice, we do not use the classical

Jacobi’s algorithm because searching for the largest entry is too slow. We use the

following simple method to choose j and k.

Algorithm 11.8. Cyclic-by-row-Jacobi: run through the off diagonals of A rowwise.

Loop

for j = 1 to n−1

for k = j+1 to n

call Jacobi-Rotation (A, j,k)
end for

end for

until A is sufficiently diagonal.

A no longer changes when Jacobi-Rotation(A, j,k) chooses only c = 1 and s = 0

for an entire pass through the inner loop. As was shown in [113] the cyclic Jacobi’s

algorithm is also asymptotically quadratically convergent like the classical Jacobi’s

algorithm.

The cost of one loop in algorithm (11.8) is around half the cost of the tridiagonal

reduction and the computation of eigenvalues and eigenvectors via QR iteration, as

well as more than the cost using Divide-and-conquer. For convergence of Jacobi’s

374 Chapter 11. Algorithms for Solution of Symmetric Eigenvalue Problem

method is needed to perform from 5 to 10 loops in (11.8) and thus this method is

much slower than other methods.

Below we present an example of using the classical Jacobi algorithm 11.7. The

Matlab program of section A.19 is available for running of this test.

Example 11.4. We compute eigenvalues of the matrix

A =




14.7776 4.9443 0 0 0

4.9443 18.2496 28.3358 0 0

0 28.3358 10.8790 2.5361 0

0 0 2.5361 11.0092 18.9852

0 0 0 18.9852 15.0048




(11.24)

using the classical Jacobi algorithm 11.7. This matrix has five different eigenvalues

λ = (−14.6416,−5.8888,14.6644,32.0314,43.7547)

which we have obtained using the command eig(A) in Matlab. We run the Mat-

lab program of section A.19 until the matrix A is sufficiently diagonal, i.e. until

o f f (A)< tol for tol = 0.005. The computed final matrix A obtained after all Jacobi

rotations is the following:

A =




14.6644 0.0000 −0.0000 0.0029 0.0001

0.0000 43.7547 −0.0000 0.0000 −0.0008

−0.0000 −0.0000 −14.6416 0.0000 −0.0000

0.0029 0.0000 0.0000 −5.8888 0.0000

0.0001 −0.0008 −0.0000 0.0000 32.0314



.

We observe that values lying on the diagonal of the above matrix A are the eigen-

values of the initial matrix A given in (11.24).

Comparing these values with the exact ones we observe that the computed eigen-

values using the Matlab program of section A.19 are almost the same (depending

on the input tolerance tol) as produced by the command eig(A).

11.6 Algorithms for the Singular Value Decomposition

Algorithms for the solution of the symmetric eigenvalue problem can be trans-

formed to the algorithms for SVD of a symmetric matrix A. Eigendecomposition

of a symmetric matrix A, except Jacobi’s method, can be performed in the following

steps:

1. Reduce A to tridiagonal form T with an orthogonal matrix Q1:

A = Q1T QT
1 .

2. Find the eigendecomposition of T :

11.6 Algorithms for the Singular Value Decomposition 375

T = Q2ΛQT
2 ,

where Λ is the diagonal matrix of eigenvalues and Q2 is the orthogonal matrix

where columns will be eigenvectors.

3. Combine these decompositions to get

A = (Q1Q2)Λ(Q1Q2)
T .

The columns of Q = Q1Q2 will be the eigenvectors of A.

All the algorithms for the SVD of a general matrix G, except Jacobi’s method,

have an analogous structure which is the following:

1. Reduce G to bidiagonal form B, which have nonzero elements only on the main

diagonal and first superdiagonal, with orthogonal matrices U1 and V1 such that

G =U1BV T
1 .

2. Find the SVD of B

B =U2ΣV T
2 ,

where Σ is the diagonal matrix of singular values, and U2 and V2 are orthogonal

matrices whose columns are the left and right singular vectors, respectively.

3. Combine these decompositions to get

G = (U1U2)Σ(V1V2)
T .

The columns of U =U1U2 and V =V1V2 are the left and right singular vectors of

G, respectively.

Lemma 11.4. Let B be an n-by-n bidiagonal matrix such that

B =




a1 b1
... a2
...
... ... an−1 bn−1

... an




(11.25)

There are following possibilities to convert the problem of finding the SVD of B

to finding the eigenvalues and eigenvectors of a symmetric tridiagonal matrix.

1. Let the matrix A will be such that

A =

(
0 BT

B 0

)
.

Let P be the permutation matrix

P = (e1,en+1,e2,en+2, . . . ,en,e2n).

376 Chapter 11. Algorithms for Solution of Symmetric Eigenvalue Problem

Here, ei denote the i-th column of the identity matrix of the size 2× 2. Then the

matrix

TPT AP ≡ PT AP

is symmetric tridiagonal such that

TPT AP =




0 a1
a1 0
...
... bn−1 0 an

... ... an 0



.

TPT AP has all zeros on its main diagonal, and its superdiagonal and subdiagonal

is a1,b1,a2,b2, . . . ,bn−1,an.

If (λ̃i,xi) is an eigenpair for TPT AP, with xi a unit vector such that

TPT APxi = λ̃ixi,

then λ̃i =±σi, where σi is a singular value of B, and Pxi =
1√
2

(
υi

±ui

)
. Here, ui

and υi are left and right singular vectors of B, respectively.

2. Let TBBT ≡ BBT . Then TBBT is symmetric tridiagonal

TBBT =




a2
1 +b2

1 a2b1
a2b1 a2

2 +b2
2

...

... ... a2
n−1 +b2

n−1 anbn−1

... ... anbn−1 a2
n




with diagonal a2
1 +b2

1,a
2
2 +b2

2, . . . ,a
2
n−1 +b2

n−1,a
2
n, and superdiagonal and sub-

diagonal a2b1,a3b2, . . . ,anbn−1. The singular values of B are the square roots of

the eigenvalues of TBBT , and the left singular vectors of B are the eigenvectors of

TBBT .

3. Let TBT B ≡ BT B. Then TBT B is symmetric tridiagonal

TBT B =




a2
1 a1b1

a1b1 a2
2 +b2

1
...
... ... a2

n−1 +b2
n−2 an−1bn−1

... ... an−1bn−1 a2
n +b2

n−1




with diagonal a2
1,a

2
2+b2

1,a
2
3+b2

2, . . . ,a
2
n+b2

n−1 and superdiagonal and subdiag-

onal a1b1,a2b2, . . . ,an−1bn−1. The singular values of B are the square roots of

the eigenvalues of TBT B, and the right singular vectors of B are the eigenvectors

of TBT B.

Proof of the first statement of this lemma follows from Theorem 9.6 and proof of

the second and third statements follows from Theorem 9.4.

11.7 Different Versions of QR Iteration for the Bidiagonal SVD 377

However, direct application of Lemma 11.4 for computing SVD of a symmetric

tridiagonal matrices using algorithms of QR iteration, Divide-and-conquer or Bi-

section is inefficient since by Lemma 11.4 in the case of matrix TPT AP we need to

compute not all, but only positive eigenvalues, as well as there are problems of com-

puting singular vectors for tiny singular values: numerical computing of entries for

TBBT ,TBT B is unstable because of rounding in floating point arithmetic.

Thus, there exist following stable algorithms for computing the SVD numeri-

cally:

1. Different versions of QR iteration. This is the fastest algorithm for small matrices

up to size 25 to find all the singular values of a bidiagonal matrix.

2. Divide-and-conquer. This is the fastest method to find all singular values and

singular vectors for matrices larger than 25.

3. Bisection and inverse iteration. In this algorithm the first part of the lemma 11.4

is applied for TPT AP = PT AP to find only the singular values in a desired interval.

Singular values are computed with high accuracy but singular vectors can loss

the orthogonality.

4. Jacobi’s method. SVD of a dense matrix G is computed implicitly applying of

Jacobi’s method - algorithm 11.5 - for GGT or GT G.

11.7 Different Versions of QR Iteration for the Bidiagonal SVD

In this section we will present so-called algorithm dqds (”differential quotient-

difference algorithm with shifts” [99]) which was originally derived in [28] and

later updated in [32] for the case when we want to compute only singular values.

We refer to [95] for survey of different versions of QR Iteration for the SVD.

To derive dqds algorithm we will start with algorithm of LR iteration which

can be applied for the symmetric positive definite (s.p.d) matrices. Let T0 be any

symmetric positive definite matrix. The following algorithm produces a sequence of

similar symmetric positive definite matrices Ti:

Algorithm 11.9. LR iteration.

0. Set i = 0 and initialize s.p.d T0. Perform steps 1-4 in loop:

1. Compute a shift τ2
i such that it is smaller than the smallest eigenvalue of Ti.

2. Compute the Cholesky factorization of Ti − τ2
i I = BT

i Bi, where Bi is an upper

triangular matrix with all positive elements on diagonal.

3. Update Ti+1 = BiB
T
i + τ2

i I.

4. Stop updating Ti and set TM = Ti+1, M = i+1, if ‖Ti+1 −Ti‖2 ≤ θ . Here, θ is a

tolerance number. Otherwise, set i = i+1 and go to step 1.

Algorithm of LR iteration is very similar to QR iteration: we compute a factor-

ization, and multiply the factors in reverse order to get the next iterate Ti+1. It is easy

to see that Ti+1 and Ti are similar:

378 Chapter 11. Algorithms for Solution of Symmetric Eigenvalue Problem

Ti+1 = BiB
T
i + τ2

i I = B−T
i BT

i BiB
T
i + τ2

i B−T
i BT

i

= B−T
i (BT

i Bi + τ2
i)B

T
i = B−T

i TiB
T
i .

(11.26)

The following lemma states that when we choose the shift τ2
i = 0, then two steps

of LR iteration produce the same T2 as one step of QR iteration.

Lemma 11.5. Let T2 be the matrix produced by two steps of algorithm 11.9 with

τ2
i = 0. Let T ′ be the matrix produced by one step of QR iteration such that QR= T0,

T ′ = RQ. Then T2 = T ′.

Proof. Using the property that T0 is symmetric we factorize T 2
0 in two ways:

1. First factorization is:

T 2
0 = T T

0 T0 = (QR)T QR = RT R,

where RT is a lower triangular matrix. We assume that Rii > 0. By uniqueness of

Cholesky factorization it is unique.

2. The second factorization is

T 2
0 = BT

0 B0BT
0 B0.

Using algorithm 11.9, we have

T1 = B0BT
0 = BT

1 B1.

Using the second factorization and then the above expression we can rewrite

T 2
0 = BT

0 B0BT
0 B0 = BT

0 (B
T
1 B1)B0 = (B1B0)

T B1B0,

where (B1B0)
T is a lower triangular matrix. This must be the Cholesky factorization

since T0 is s.p.d. By uniqueness of the Cholesky factorization, we conclude that

R = B1B0 and two steps of LR iteration is the one step of QR iteration. We can show

it also in a following way: since T0 = QR and T0 = QR we have

T ′ = RQ = RQ(RR−1) = R(QR)R−1 = RT0R−1.

Substituting R = B1B0, and T0 = BT
0 B0 into the right hand side of the above equation

we get:

T ′ = (B1B0)(B
T
0 B0)(B1B0)

−1 = B1B0BT
0 B0B−1

0 B−1
1 = B1(B0BT

0)B
−1
1

Using the fact B0BT
0 = T1 = BT

1 B1 we finally get:

T ′ = B1(B
T
1 B1)B

−1
1 = B1BT

1 = T2.

⊓⊔

Remark 11.2.

11.7 Different Versions of QR Iteration for the Bidiagonal SVD 379

• We observe that algorithm 11.9 and lemma 11.5 depends on s.p.d. T0 which

should not be tridiagonal.

• Because of similarity of LR iteration and QR iteration stated in lemma 11.5,

analysis of LR iteration follows from the analysis of QR iteration.

• We observe that matrices Ti+1 = BiB
T
i + τ2

i I in algorithm 11.9 are constructed

explicitly and this can be unstable procedure because of rounding in floating

point arithmetic.

The next dqds algorithm mathematically is the same as the algorithm of LR

iteration. However, of dqds algorithm is that matrices Bi+1 are computed directly

from Bi without constructing Ti+1 = BiB
T
i + τ2

i I.

Let Bi have diagonal a1, . . . ,an and superdiagonal b1, . . . ,bn−1, and Bi+1 have

diagonal â1, . . . , ân and superdiagonal b̂1, . . . , b̂n−1. We assume that b0 = b̂0 = bn =
b̂n = 0. Using algorithm 11.9 we have that

BT
i+1Bi+1 + τ2

i+1I = Ti+1 = BiB
T
i + τ2

i I. (11.27)

Writing (11.27) for the (j, j) entries for j < n we get

â2
j + b̂2

j−1 + τ2
i+1 = a2

j +b2
j + τ2

i

and expressing â2
j from it we have:

â2
j = a2

j +b2
j − b̂2

j−1 −δ , (11.28)

where δ = τ2
i+1 − τ2

i . The shift τ2
i should be chosen in a special way - see step 1 in

algorithm 11.9. Writing (11.27) for squares of (j, j+1) we have:

â2
j b̂

2
j = a2

j+1b2
j ,

and expressing b̂2
j from it we get:

b̂2
j = a2

j+1b2
j/â2

j . (11.29)

Combining two equations (11.28) and (11.29) we get the intermediate algorithm.

Algorithm 11.10. Intermediate algorithm.

for j = 1 to n−1

â2
j = a2

j +b2
j − b̂2

j−1 −δ

b̂2
j = b2

j(a
2
j+1/â2

j)
end for

â2
n = a2

n − b̂2
n−1 −δ

We observe that algorithm 11.10 maps directly the squares of the entries of Bi

to the squares of the entries of Bi+1. Thus, the square roots are taken only at the end

of the algorithm.

380 Chapter 11. Algorithms for Solution of Symmetric Eigenvalue Problem

In the next algorithm we rewrite algorithm 11.10 in the classical notations of [99]

using the change of variables

q j = a2
j ,e j = b2

j .

Algorithm 11.11. One step of the qds algorithm.

for j = 1 to n−1

q̂ j = q j + e j − ê j−1 −δ
ê j = e j(q j+1/q̂ j)

end for

q̂n = qn − ên−1 −δ

The final dqds algorithm is the same as qds but will be more accurate. To derive

dqds algorithm we take the part q j − ê j−1 −δ from q̂ j of algorithm 11.11, and use

first (11.29) to express ê j−1 and then (11.28) to express q̂ j−1 to get:

d j ≡ q j − ê j−1 −δ = q j −
q je j−1

q̂ j−1
−δ

= q j

(
q̂ j−1 − e j−1

q̂ j−1

)
−δ = q j

(
q j−1 − ê j−2 −δ

q̂ j−1

)
−δ

=
q j

q̂ j−1
d j−1 −δ .

(11.30)

Using (11.30) we can rewrite the inner loop of algorithm 11.11 as

q̂ j = d j + e j,

ê j = e j(q j+1/q̂ j),

d j+1 = d j(q j+1/q̂ j)−δ .

(11.31)

To get final algorithm, we note that d j+1 can overwrite d j:

Algorithm 11.12. One step of the dqds algorithm.

d = q1 −δ
for j = 1 to n−1

q̂ j = d + e j

t = (q j+1/q̂ j)
ê j = e j t

d = d t −δ
end for

q̂n = d

The dqds algorithm 11.12 has the same number of floating point operations in

its inner loop as qds algorithm 11.11. How to choose a shift τi in δ = τ2
i+1−τ2

i and

analysis of convergence of these algorithms are presented in [32].

11.8 Jacobi’s Method for the SVD 381

11.8 Jacobi’s Method for the SVD

In this section we will present algorithms which can find SVD of a dense matrix.

These algorithms will use Jacobi’s algorithm 11.8 for the symmetric matrix

A = GT G.

Similarly with algorithm 11.8 algorithms of this section are very slow for computa-

tion of SVD compared with methods which we have considered. However, Jacobi’s

method can compute the singular values and singular vectors much more accurate

than other discussed algorithms.

The first Jacobi algorithm computes Jacobi rotation matrix J at every iteration

step and updates GT G to JT GT GJ. Since we compute only GJ instead of computing

GT G or JT GT GJ this algorithm is called one-sided Jacobi rotation.

Algorithm 11.13. One-sided Jacobi rotation of G.

function One-Sided-Jacobi-Rotation (G, j,k)
Compute a j j = (GT G) j j, a jk = (GT G) jk, and akk = (GT G)kk

if |a jk|> ε
√

a j jakk

τ = (a j j −akk)/(2a jk)

t = sign(τ)/(|τ |+
√

1+ τ2)
c = 1/

√
1+ t2

s = c t

G = G R(j,k,θ) /* here c = cosθ and s = sinθ */

/* if right singular vectors are desired */

J = J R(j,k,θ)
end if

end if

We note that the entries a j j, a jk, and akk of A = GT G are computed by algorithm

11.13 where the Jacobi rotation R(j,k,θ) is computed using algorithm 11.5.

In the next algorithm we assume that G is of the size n× n. We compute the

singular values σi, the left singular vector matrix U , and the right singular vector

matrix V such that G =UΣV T , where Σ = diag(σi).

Algorithm 11.14. One-sided Jacobi.

Loop

for j = 1 to n−1

for k = j+1 to n

call One-Sided-Jacobi-Rotation (G, j,k)
end for

end for

until GT G is diagonal enough

Set σi = ‖G(:, i)‖2 (the 2-norm of column i of G)

Set U = [u1, . . . ,un], where ui = G(:, i)/σi

Set V = J (product of Jacobi rotations)

382 Chapter 11. Algorithms for Solution of Symmetric Eigenvalue Problem

The following theorem shows that one-sided Jacobi algorithm 11.14 can compute

the SVD with a high accuracy.

Theorem 11.6. Let G = DX be an n× n matrix, where D is diagonal and nonsin-

gular, and X is nonsingular. Let Ĝ be the matrix after calling One-Sided-Jacobi-

Rotation (G, j,k) m times in floating point arithmetic. Let σ1 ≥ . . . ≥ σn be the

singular values of G, and let σ̂1 ≥ . . .≥ σ̂n be the singular values of Ĝ. Then

|σi − σ̂i|
σi

≤ O(mε)κ(X),

where κ(X) = ‖X‖‖X−1‖ is the condition number of X.

The proof can be found in [23].

In the example presented below we will illustrate performance of the one-sided

Jacobi algorithm 11.14 using the Matlab program of section A.20.

Example 11.5. We compute the SVD decomposition of the matrix

A =




3.8373 16.5466 0 0 0

16.5466 17.7476 5.5205 00

0 5.5205 11.4120 7.1830 0

0 0 7.1830 11.4657 8.7969

0 0 0 8.7969 18.5031




(11.32)

using the one-sided Jacobi algorithm 11.14. We run the Matlab program of section

A.20 until the matrix AT A is sufficiently diagonal, i.e. until o f f (AT A) < tol for

tol = 0.005. Computed SVD decomposition of the matrix A = UΣV T obtained by

applying the Matlab program of section A.20 is the following:

U =




−0.8000 0.4934 −0.2008 −0.2157 −0.1723

0.5608 0.7867 0.0260 −0.1254 −0.2241

−0.1934 0.2983 0.5262 0.7440 0.2077

0.0853 0.1764 −0.7317 0.3083 0.5754

−0.0286 0.1324 0.3830 −0.5377 0.7388



,

Σ =




7.7615 0 0 0 0

0 30.2188 0 0 0

0 0 1.6960 0 0

0 0 0 13.4582 0

0 0 0 0 25.3541



,

V =




0.8000 0.4934 −0.2008 −0.2157 −0.1723

−0.5608 0.7867 0.0260 −0.1254 −0.2241

0.1934 0.2983 0.5262 0.7440 0.2077

−0.0853 0.1764 −0.7317 0.3083 0.5754

0.0286 0.1324 0.3830 −0.5377 0.7388



.

11.8 Jacobi’s Method for the SVD 383

For comparison, computed SVD decomposition of the matrix A = UΣV T given in

(11.32) using the svd command in Matlab gives the following resultat:

U =




−0.4934 −0.1723 −0.2157 −0.8000 −0.2008

−0.7867 −0.2241 −0.1254 0.5608 0.0260

−0.2983 0.2077 0.7440 −0.1934 0.5262

−0.1764 0.5754 0.3083 0.0853 −0.7317

−0.1324 0.7388 −0.5377 −0.0286 0.3830



,

Σ =




30.2188 0 0 0 0

0 25.3541 0 0 0

0 0 13.4582 0 0

0 0 0 7.7615 0

0 0 0 0 1.6960



,

V =




−0.4934 −0.1723 −0.2157 0.8000 −0.2008

−0.7867 −0.2241 −0.1254 −0.5608 0.0260

−0.2983 0.2077 0.7440 0.1934 0.5262

−0.1764 0.5754 0.3083 −0.0853 −0.7317

−0.1324 0.7388 −0.5377 0.0286 0.3830



.

Questions

11.1. Prove that 5 is an eigenvalue of the matrix

A =




6 3 3 1

0 7 4 5

0 0 5 4

0 0 0 8


 . (11.33)

Compute an eigenvector of A which corresponds to the eigenvalue 5.

11.2. Compute eigenvalues and corresponding eigenvectors for the matrix

A =




1 2 −4

0 2 1

0 0 3


 . (11.34)

11.3. Compute eigenvalues and corresponding eigenvectors for the matrix

A =

(
1 4

1 1

)
. (11.35)

a) Compute estimate to eigenvalue of A by the Rayleigh quotient with vector

x = (1,1)T .

384 Chapter 11. Algorithms for Solution of Symmetric Eigenvalue Problem

b) If we will apply the method of inverse iteration to A, to which one eigenvector

of A this method will converge?

c) If we will apply the method of inverse iteration with a shift σ = 2, what eigen-

value of A will be obtained?

d) If we will apply the method of QR iteration to A, to what form this matrix will

converge: diagonal or triangular? Why?

11.4. Assume that GT G converges to a diagonal matrix. Prove that algorithm 11.14

implements the SVD decomposition of the matrix G.

11.5. Let x is the unit vector and y is the any orthogonal to x vector. Prove that

‖(x+ y)xT − I‖2 = ‖x+ y‖2.

11.6. Let A = D+ρuuT , where D is the diagonal matrix D = diag(d1, ...,dn) and u

is the vector u = (u1, ...,un)
T .

a) Prove that di is an eigenvalue of A if di = di+1 or ui = 0.

b) Prove that the eigenvector corresponding to di is ei (the i-th column of I), if

ui = 0.

11.7. Show how to compute scalars c and c̃ in the function f (λ) = c̃+ c
d−λ if we

know that at λ = ξ we have f (ξ) = ψ and f ′(ξ) = ψ ′. Here, ψ,ψ ′ are known

scalars.

11.8. Let A = GT G in algorithm 11.14. Her, A and G are of the size n×n. Assume

that |a jk| ≤ ε
√

a j jakk for all j 6= k. Let σn ≤ σn−1 ≤ ...≤ σ1 are the singular values

of G and λ 2
n ≤ ... ≤ λ 2

1 are the sorted diagonal entries of A. Prove that |σi −λi| ≤
nε |λi|, where λi are the singular values computed with high relative accuracy.

11.9. Prove Lemma 11.1.

11.10. Let A is a symmetric matrix and consider algorithm 10.5 with a Rayleigh

quotient shift σi = ann. Consider also algorithm of Rayleigh quotient iteration 11.1

starting with x0 = (0, ...,0,1)T which computes Rayleigh quotients ρi. Show that

sequences σi = ρi are the same for all i. Hint: to prove this statement we can use the

same arguments as we have used to prove connection between the algorithm of QR

iteration and algorithm of inverse iteration.

11.11. Prove part 1 of Lemma 11.4.

11.12. Prove parts 2 and 3 of Lemma 11.4.

11.13. Let the matrix A is defined as

A =

(
I B

B̄T I

)
, (11.36)

where B is the Hermitian matrix with ‖B‖2 < 1. Prove that

κ(A) = ‖A−1‖2‖A‖2 =
1+‖B‖2

1−‖B‖2
.

11.8 Jacobi’s Method for the SVD 385

11.14. (Programming)

Use Matlab-program RayleighQuotient.m of Section A.16 to test Rayleigh

Quotient iteration algorithm 11.1. Try your own examples of the symmetric matrix

A and different tolerances tol.

11.15. (Programming)

Use Matlab-program DivideandConq.m of Section A.17 to test Divide-and-

Conquer algorithm 11.3. Try your own examples of the symmetric matrix A and

different tolerances in the Newton’s method for the solution of secular equation.

11.16. (Programming)

Use Matlab-programs of section A.18 to test Inverse Iteration algorithm 11.4.

Try your own examples of the symmetric matrix A and different tolerances tol.

11.17. (Programming)

Use Matlab-programs of section A.19 to test Classical Jacobi algorithm 11.4. Try

your own examples of the symmetric matrix A and different tolerances tol.

11.18. (Programming)

Use Matlab-programs of section A.20 to test SVD decomposition of a symmetric

matrix A using the one-sided Jacobi algorithm 11.14. Try your own examples of

matrix A and different tolerances tol.

Chapter 12

Introduction to Iterative Methods for Solution of
Linear Systems

In this chapter we will discuss iterative algorithms for solution of linear system of

equations (LSE) Ax = b. These algorithms are used when direct methods take a lot

of time and computer space to solve this system, or in other words, they are not

efficient.

Most of the methods presented in this chapter are described with more details

in [9, 23]. We also refer to the books on the iterative methods [4, 49, 100]. Parallel

implementation of many of discussed iterative methods is presented in [98]. The

goal of this chapter introduce the reader into the topic of iterative algorithms.

In sections 12.1 - 12.6 we will discuss basic iterative methods such as Ja-

cobi, Gauss-Seidel and Successive overrelaxation, and in section 12.7 we introduce

Krylov subspace methods. Further, conjugate gradient method (CG) and precondi-

tioned conjugate gradient method (PCG) are presented in sections 12.8, 12.9, re-

spectively. We refer to [4, 44, 49, 100] for a survey on a Krylov subspace methods

and different preconditioning techniques.

12.1 Basic Iterative Methods

The basic iterative methods for the solution of system of linear equations Ax = b

are:

1. Jacobi.

2. Gauss-Seidel.

3. Successive overrelaxation (SOR).

These methods produce a sequence of iterative solutions xm of a linear system

Ax = b which converge to the solution x = A−1b provided that there exists an initial

guess x0. To use iterative methods we will introduce a splitting:

A = M−K,

387

388 Chapter 12. Introduction to Iterative Methods for Solution of Linear Systems

where detM 6= 0. Applying this splitting to Ax = b we get:

Ax = Mx−Kx = b.

From the equation above we have

Mx = b+Kx

and thus,

x = M−1(b+Kx) = M−1b+M−1Kx.

Let us define

Rx = M−1Kx, c = M−1b.

The iterative update for xm can be written as:

xm+1 = Rxm + c, (12.1)

where m is the number of iteration.

Lemma 12.1. Let ‖R‖ = maxx 6=0
‖Rx‖
‖x‖ . If ‖R‖ < 1 then iterations (12.1) will con-

verge for all initial guesses x0.

Proof. For exact x we have:

x = Rx+ c. (12.2)

Subtracting (12.2) from (12.1) we get:

xm+1 − x = R(xm − x). (12.3)

Taking norms we have:

‖xm+1 − x‖= ‖R(xm − x)‖ ≤ ‖R‖ ‖xm − x‖ ≤ ‖Rm+1‖ ‖x0 − x‖. (12.4)

Inequality will converge to zero since ‖R‖< 1. ⊓⊔

Another convergence criterion needs introduction of the definition of spectral

radius for R. Let (λ1, ...,λn) be the (real or complex) eigenvalues of a matrix R. The

spectral radius of R is ρ(R)≡ maxλi,i=1,...,n |λi|.

Lemma 12.2. For all operator norms ρ(R)≤ ‖R‖. Then ∀R and ∀ε > 0 there exist

operator norm ‖ · ‖(R,ε) such that ‖R‖(R,ε) ≤ ρ(R)+ ε .

Proof of this lemma can be found in [23].

Theorem 12.1. Let ‖R‖= maxx 6=0
‖Rx‖
‖x‖ . If ρ(R)< 1 then iterations (12.1) will con-

verge for all initial guesses x0.

Proof. Using (12.5) we have:

12.2 Jacobi Method 389

‖xm+1 − x‖= ‖R(xm − x)‖ ≤ ‖R‖ ‖xm − x‖ ≤ ‖Rm+1‖ ‖x0 − x‖= λ m+1(x0 − x).
(12.5)

Since ρ(R) < 1 then using lemma 12.2 we choose a such operator norm that

‖R‖(R,ε) < 1. Then by lemma 12.1 iterations (12.1) will converge for all initial

guesses x0. ⊓⊔

The rate of convergence r(R) of iterative procedure xm+1 = Rxm +c is defined as

r(R) =− log10 ρ(R).

In the iterative methods considered below we want to have efficient splitting

A = M −K as possible. Let us introduce following notations. If matrix A has no

zeros on its diagonal we will write the splitting as

A = D− L̃−Ũ = D(I −L−U), (12.6)

where D is a diagonal matrix, −L̃ is the strictly lower triangular part of A such that

DL = L̃,

and −Ũ is the strictly upper triangular part of A such that

DU = Ũ .

12.2 Jacobi Method

The splitting for Jacobi method is:

A = D− (L̃+Ũ). (12.7)

Applying it to the solution of Ax = b we have:

Ax = Dx− (L̃x+Ũx) = b.

From the equation above we can get

Dx = b+ L̃x+Ũx

and thus

x = D−1(b+ L̃x+Ũx) = D−1b+D−1L̃x+D−1Ũx.

Let us define

RJ ≡ D−1(L̃+Ũ) = L+U,

cJ ≡ D−1b.
(12.8)

390 Chapter 12. Introduction to Iterative Methods for Solution of Linear Systems

Then iterative update in the Jacobi method can be written as:

xm+1 = RJxm + cR. (12.9)

Formula (12.9) can be also written as

Dxm+1 = b+ L̃xm +Ũxm, (12.10)

or using the definition of the matrix D on the element level the same formula can be

represented as

a j, jxm+1, j = b j − ∑
k 6= j

a j,kxm,k. (12.11)

Algorithm 12.1. One step in the Jacobi method.

for j = 1 to n

xm+1, j =
b j −∑k 6= j a j,kxm,k

a j, j

end

In the case of the model problem for the Poisson’s equation of section 8.1.3 on a

square we will have the following Jacobi’s method:

Algorithm 12.2. One step in the Jacobi method for two-dimensional Poisson’s

equation.

for i = 1 to N

for j = 1 to N

um+1,i, j =
um,i−1, j +um,i+1, j +um,i, j−1 +um,i, j+1 +h2 fi, j

4

end

end

Example 12.1. In this example we present the numerical solution of the Dirichlet

problem for the Poisson’s equation (8.11) in two dimensions using iterative Jacobi

method. We define the right hand side f (x) and the coefficient a(x1,x2) in (8.11) the

same as in example 8.2 of Chapter 8. We produce the same mesh as in this example

and solve then the linear system of equations Au = f . The Matlab program of Sec-

tion A.21 is available in Appendix for running of this test. We have implemented

three different version of Jacobi method in this program: the first version uses the

formula (12.9), the second - the algorithm 12.1 and the third - the algorithm 12.2.

For all three algorithms we have used the stopping criterion ‖um+1 − um‖2 < tol,

where chosen tolerance was tol = 10−9.

The results of our numerical simulations are the same as on Figure 8.1 for the

number of the inner points N = 20 and for the tolerance tol = 10−9 in the iterative

update (check it by running the Matlab program of Section A.21).

12.3 Gauss-Seidel Method 391

12.3 Gauss-Seidel Method

To get the Gauss-Seidel1 method we use the same splitting (12.7) as for the Jacobi

method. Applying it to the solution of Ax = b we have:

Ax = Dx− (L̃x+Ũx) = b.

Next, we rearrange terms in the right hand side of the above equation to get:

Dx− L̃x = b+Ũx, (12.12)

and thus, the solution of (12.12) is computed as

x = (D− L̃)−1(b+Ũx) = (D− L̃)−1b+(D− L̃)−1Ũx.

We can rewrite the above equation using notations DL = L̃ and DU = Ũ to get:

x = (D− L̃)−1b+(D− L̃)−1Ũx

= (D−DL)−1b+(D−DL)−1Ũx

= (I −L)−1D−1b+(I −L)−1D−1Ũx

= (I −L)−1D−1b+(I −L)−1Ux.

(12.13)

Let us define

RGS ≡ (I −L)−1U,

cGS ≡ (I −L)−1D−1b.
(12.14)

Then iterative update in the Gauss-Seidel method can be written as:

xm+1 = RGSxm + cGS. (12.15)

We can also write the formula (12.13) via an iterative update as

(I −L)Dxm+1 = b+DUxm, (12.16)

or using the definition of matrices D,L,U on the element level as

a j, jxm+1, j = b j −
j−1

∑
k=1

a j,kxm+1,k −
n

∑
k= j+1

a j,kxm,k. (12.17)

Here, ∑
j−1
k=1 a j,kxm+1,k represent already updated terms with values of xm+1, and

terms ∑n
k= j+1 a j,kxm,k are with older values of xm which we have updated on the

iteration m.

1 Philipp Ludwig von Seidel (1821 - 1896) was a German mathematician.

392 Chapter 12. Introduction to Iterative Methods for Solution of Linear Systems

Algorithm 12.3. One step in the Gauss-Seidel method.

for j = 1 to n

xm+1, j =
b j −∑

j−1
k=1 a j,kxm+1,k −∑n

k= j+1 a j,kxm,k

a j, j

end

If we want apply the Gauss-Seidel method for the solution of the model problem

for the Poisson’s equation of section 8.1.3 we need organize ordering for the new

m+ 1 variables and old already computed values m. We will use such called red-

black ordering based on the chessboard-like coloring. Let B nodes correspond to the

black squares on a chessboard, and R nodes correspond to the weight squares. The

Gauss-Seidel method for the solution of the two-dimensional Poisson’s equation on

a square becomes the following.

Algorithm 12.4. One step in the Gauss-Seidel method for two-dimensional Pois-

son’s equation.

for all R red nodes i, j

um+1,i, j =
um,i−1, j +um,i+1, j +um,i, j−1 +um,i, j+1 +h2 fi, j

4

end

for all B black nodes i, j

um+1,i, j =
um+1,i−1, j +um+1,i+1, j +um+1,i, j−1 +um+1,i, j+1 +h2 fi, j

4

end

Example 12.2. Here we present the numerical solution of the Dirichlet problem

for the Poisson’s equation (8.11) in two dimensions using iterative Gauss-Seidel

method. The set-up for our numerical experiments is the same as in example 8.2 of

Chapter 8. The Matlab programs of Sections A.22 and A.23 are available in Ap-

pendix for running of this test. The Matlab program of Section A.22 implements

algorithm 12.3 while the Matlab program of Section A.23 implements the algorithm

12.4, the Gauss-Seidel method with Red-Black ordering. In both cases we have used

the computation of the residual in the stopping criterion ‖Aum+1 −b‖2 < tol, where

chosen tolerance was tol = 10−9.

The results of our numerical simulations are the same as on Figure 8.1 for the

number of the inner points N = 20 and for the tolerance tol = 10−9 in the iterative

update (check it by running the Matlab programs of Sections A.22, A.23). However,

the convergence of the Gauss-Seidel method (665 iterations in usual Gauss-Seidel

method and 634 iterations in Gauss-Seidel with Red-Black ordering) is much faster

than in the usual Jacobi method which converged in 1204 iterations.

12.4 Successive Overrelaxation SOR(ω) Method 393

12.4 Successive Overrelaxation SOR(ω) Method

The method of successive overrelaxation improves the Gauss-Seidel method in the

following way: it takes weighted average of values xm+1 and xm such that:

xm+1, j = (1−ω)xm, j +ωxm+1, j, (12.18)

where ω is a weight called also relaxation parameter. When ω = 1, then we will get

usual Gauss-Seidel method, when ω < 1 we get underrelaxation method, and when

ω > 1 - overrelaxation method. We will investigate all three cases in Section 12.6.

To get SOR(ω) method in a matrix form, we again apply splitting (12.7) and

obtain equation similar to (12.12), but only in the iterative form:

(D− L̃)xm+1 = b+Ũxm. (12.19)

Applying now weighted average (12.18) to this equation we have:

(D−ωL̃)xm+1 = ωb+((1−ω)D+ωŨ)xm. (12.20)

Using notations DL = L̃ and DU = Ũ the equation (12.20) can be rewritten as

xm+1 = (D−ωL̃)−1ωb+(D−ωL̃)−1((1−ω)D+ωŨ)xm

= (I −ωL)−1D−1ωb+(I −ωL)−1((1−ω)I +ωU)xm.
(12.21)

Now defining

RSOR = (I −ωL)−1((1−ω)I +ωU),

cSOR = (I −ωL)−1D−1ωb
(12.22)

we can rewrite (12.21) in the form

xm+1 = RSORxm + cSOR. (12.23)

To get SOR(ω) for implementation, we take xm+1, j in the right hand side of

(12.18) from the Gauss-Seidel algorithm 12.3 and obtain the following algorithm:

Algorithm 12.5. One step in the SOR(ω) method.

for j = 1 to n

xm+1, j = (1−ω)xm, j +ω

[
b j −∑

j−1
k=1 a j,kxm+1,k −∑n

k= j+1 a j,kxm,k

a j, j

]

end

394 Chapter 12. Introduction to Iterative Methods for Solution of Linear Systems

To apply the SOR(ω) method for the solution of the model problem for the Pois-

son’s equation of section 8.1.3 we will use the red-black ordering as in the Gauss-

Seidel method. The SOR(ω) method will be the following.

Algorithm 12.6. One step in the SOR(ω) method for two-dimensional Poisson’s

equation.

for all R red nodes i, j

um+1,i, j = (1−ω)um,i, j +
ω(um,i−1, j +um,i+1, j +um,i, j−1 +um,i, j+1 +h2 fi, j)

4

end

for all B black nodes i, j

um+1,i, j =(1−ω)um,i, j+
ω(um+1,i−1, j +um+1,i+1, j +um+1,i, j−1 +um+1,i, j+1 +h2 fi, j)

4

end

12.5 Symmetric Successive Overrelaxation SSOR(ω) Method

The main scheme of all iterative methods which we studied before was to construct

an iterative procedure xi+1 = Rxi + c such that all xi will converge to the exact solu-

tion x of the system of linear equations Ax = b under the condition that ρ(R) < 1.

The method of symmetric successive overrelaxation constructs a such sequence of

solutions of Ax = b which improve already obtained approximations xi. In other

words, we are interested in the answer to the question: for already computed ap-

proximations xi can we construct a such linear combination x̂n = ∑n
i=0 αi,nxi where

coefficients αi,n satisfy ∑n
i=0 αi,n = 1 and which will be better approximation of the

exact solution x ?

Suppose, that we have positive answer to this question. Then the error e = x− x̂n

in the new computed x̂n can be computed as:

e = x̂n − x =
n

∑
i=0

αi,nxi − x =
n

∑
i=0

αi,n(xi − x) =
n

∑
i=0

αi,nRi(x0 − x) = Pn(R)(x0 − x),

(12.24)

where Pn(R) = ∑n
i=0 αi,nRi is a polynomial of degree n such that Pn(1) = ∑n

i=0 αi,n =
1. Usually, classical Chebyshev polynomials satisfy this condition. The Chebyshev

polynomials of the first kind are defined by the reccurent formula

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)−Tn−1(x).

(12.25)

12.5 Symmetric Successive Overrelaxation SSOR(ω) Method 395

Properties of the Chebyshev polynomials are listed in [109]. We are going to con-

struct a polynomial in the form

Pn(x) =
Tn(x/ρ)

Tn(1/ρ)
(12.26)

such that the spectral radius of Pn(R) is as small as possible. The polynomial Pn(x)

in (12.26) has following properties:

Pn(1) = 1,

max
−ρ(R)<x<ρ(R)

|Pn(x)|< ε (12.27)

for small tolerance ε > 0. By the spectral mapping theorem (since Pn(R)=∑n
i=0 αi,nRi

is a polynomial of degree n) we have that the eigenvalues of Pn(R) are Pn(λ (R)),
where λ are eigenvalues of R. Combining this observation with (12.27) we can con-

clude that the spectral radius of R will be small and thus, polynomials in the form

(12.26) are well suitable for our goals.

Let us define now

µn :=
1

Tn(1/ρ)
. (12.28)

Then (12.26) can be written for x = R in terms of µn as

Pn(R) = µnTn(R/ρ). (12.29)

Writing (12.25) for x = 1/ρ and using (12.28) we get

1

µn

= Tn(1/ρ) = 2/ρTn−1(1/ρ)−Tn−2(1/ρ). (12.30)

Writing (12.25) for x = R/ρ we have

Tn(R/ρ) =
2 R

ρ
Tn−1(R/ρ)−Tn−2(R/ρ). (12.31)

We now substitute equations (12.29), (12.31) into the error equation (12.24) to ob-

tain:

e = x̂n − x = Pn(R)(x0 − x) = µnTn

(
R

ρ

)
(x0 − x)

= µn

(
2 R

ρ
Tn−1(R/ρ)(x0 − x)−Tn−2(R/ρ)(x0 − x)

)
.

(12.32)

Writing (12.28) for x = R and different indices n we get

Pn−1(R) = µn−1Tn−1(R/ρ),

Pn−2(R) = µn−2Tn−2(R/ρ).
(12.33)

396 Chapter 12. Introduction to Iterative Methods for Solution of Linear Systems

We use equations (12.33) in the last row of (12.32) to obtain

e = x̂n − x = µn

(
2 R

ρ

Pn−1(R/ρ)(x0 − x)

µn−1
− Pn−2(R/ρ)(x0 − x)

µn−2

)
. (12.34)

Using (12.24) we can write the error for different indices n as

e = x̂n−1 − x = Pn−1(R)(x0 − x),

e = x̂n−2 − x = Pn−2(R)(x0 − x).
(12.35)

Substituting (12.35) in (12.34) we have

e = x̂n − x = µn

(
2 R

ρ

x̂n−1 − x

µn−1
− x̂n−2 − x

µn−2

)

= µn

2 R

ρ

x̂n−1

µn−1
−µn

2 R

ρ

x

µn−1

−µn

x̂n−2

µn−2
+µn

x

µn−2

= µn

2 R

ρ

x̂n−1

µn−1
−µn

x̂n−2

µn−2
+C1(x),

(12.36)

where

C1(x) = µn

x

µn−2
−µn

2 R

ρ

x

µn−1
. (12.37)

Adding x to both parts of (12.36) we get

x̂n = µn

2 R

ρ

x̂n−1

µn−1
−µn

x̂n−2

µn−2
+C2(x), (12.38)

where

C2(x) = x+µn

x

µn−2
−µn

2 R

ρ

x

µn−1
. (12.39)

Further, noting that for the exact x we have x = Rx+ c and thus, R = (x− c)/x,

the function C2(x) can be written as

C2(x) = x+µn

x

µn−2
− 2 (x− c)

ρ

µn

µn−1

= xµn

(
1

µn

+
1

µn−2
− 2

ρµn−1

)
+

2µnc

ρµn−1
.

(12.40)

Noting that by (12.28) and (12.25) we have

1

µn

=
2

ρµn−1
− 1

µn−2
. (12.41)

Then (12.40) can be simplified to

12.5 Symmetric Successive Overrelaxation SSOR(ω) Method 397

C2(x) =
2µnc

ρµn−1
. (12.42)

Combining (12.38), (12.41) and (12.42) we can formulate following accelerating

algorithm for iterations xi+1 = Rxi + c.

Algorithm 12.7. Chebyshev acceleration algorithm.

Step 0: Initialization:

set N,ε , µ0 = 1,µ1 = ρ(R), x̂0 = x0; x̂1 = Rx1 + c.

Step 1: for n = 1 to N

µn =
1

2
ρ(R)µn−1

− 1
µn−2

x̂n = µn
2 R

ρ(R)µn−1
x̂n−1 − µn

µn−2
x̂n−2 +

2µnc

ρ(R)µn−1

if ‖x̂n − x̂n−1‖< ε quit

else set n := n+1 and go to Step 1.

end

The algorithm 12.7 requires that the matrix R has real eigenvalues. Thus, this

algorithm can not be applied to SOR(ω) since the matrix RSOR defined in (12.22)

can have complex eigenvalues. However, if we will write iterations in SOR(ω) as

xi+1 = R̂xi + c with a matrix R̂ which has real eigenvalues, then the algorithm 12.7

can be used.

Assume that we have a symmetric matrix A such that A = D(I − L−U) with

U = LT . Recall now iterations in (12.21) in SOR(ω) and let us write them in two

steps:

• Step 1 :

xnew
i = (I −ωL)−1D−1ωb+(I −ωL)−1((1−ω)I +ωU)xi

= (I −ωL)−1((1−ω)I +ωU)xi + const. := L̂xi + const.
(12.43)

• Step 2 :

xi+1 = (I −ωU)−1((1−ω)I +ωL)xnew
i + const. := Ûxnew

i + const. (12.44)

Substituting (12.43) into (12.44) we get iterations xi+1 = R̂xi +c, where a matrix

R̂ := L̂Û has only real eigenvalues since the similar symmetric matrix (I−ωU)R̂(I−
ωU)−1 has real eigenvalues:

(I −ωU)R̂(I −ωU)−1 = I +(2−ω)2(I −ωL)−1(I −ωU)−1

+(ω −2)(I −ωU)−1 +(ω −2)(I −ωL)−1

= I +(2−ω)2(I −ωL)−1(I −ωLT)−1

+(ω −2)(I −ωLT)−1 +(ω −2)(I −ωL)−1.

(12.45)

398 Chapter 12. Introduction to Iterative Methods for Solution of Linear Systems

Thus, we can formulate following symmetric successive overrelaxation SSOR(ω)

algorithm for iterations xi+1 = R̂xi + c.

Algorithm 12.8. Step 1. Apply one step of SOR(ω) algorithm 12.5 for j = 1

to n to compute xi,1, ...,xi,n.

Step 2. Apply one step of SOR(ω) algorithm 12.5 backwards for j = n to

1 to compute xi,n, ...,xi,1.

12.6 Study of Convergence of Main Iterative Methods

Theorem 12.2. If the matrix A is strictly row diagonally dominant (i.e. such that

|aii|> ∑i 6= j |ai j|), then Jacobi and Gauss-Seidel methods converge such that

‖RGS‖∞ < ‖RJ‖∞ < 1, (12.46)

where RGS and RJ are defined in (12.14), (12.8), respectively.

Proof. We can rewrite (12.46) with e = (1, ...,1)T as

‖RGS‖∞ = ‖ |RGS| e‖∞ < ‖RJ‖∞ = ‖ |RJ | e‖∞ < 1, (12.47)

Using definitions (12.14) and (12.8) we can get from the above inequality:

‖|RGS| e‖∞ = ‖|(I −L)−1U | e‖∞ < ‖ |RJ | e‖∞ = ‖ |L+U | e‖∞ < 1. (12.48)

Further, the triangle inequality, the facts that Ln = 0 and (I − |L|)−1 ≈ ∑
n−1
i=0 |L|i

imply that

|(I −L)−1U | e ≤ |(I −L)−1| |U | e ≈ |
n−1

∑
i=0

Li| |U | e

≤
n−1

∑
i=0

|L|i |U | e ≈ (I −|L|)−1|U | e.

(12.49)

Using the assumption

‖RJ‖∞ = ρ < 1 (12.50)

together with the fact that all entries of (I −|L|)−1 ≈ ∑
n−1
i=0 |L|i > 0 we have that

0 ≤ (I −|L|− |U |) e. (12.51)

By assumption (12.50) we have

|RJ | e = (|L|+ |U |) e ≤ e.

Next, multiplying (12.51) by |L| we obtain

12.6 Study of Convergence of Main Iterative Methods 399

0 ≤ |L|(I −|L|− |U |) e = (|L|− |L|2 −|L||U |) e.

Then adding |U | e to both sides of the above inequality we get

|U | e ≤ (I −|L|)(|L|+ |U |) e = (|L|− |L|2 −|L||U |+ |U |) e,

from which follows (12.48) and thus (12.46). ⊓⊔
Theorem 12.3. Let the spectral radius of RSOR is such that ρ(RSOR)≥ |ω −1|. Then

0 < ω < 2 is required for convergence of SOR(ω).

Proof. We write the characteristic polynomial for RSOR as

ϕ(λ) = det(λ I −RSOR) = det((I −ωL)(λ I −RSOR))

= det((λ +ω −1)I −ωλL−ωU).
(12.52)

From the equation above we have

ϕ(0) =±∏λi(RSOR) =±det((ω −1)I) =±(ω −1)n,

and thus

max
i

|λi(RSOR)| ≥ |ω −1|,

from what follows that ρ(RSOR)≥ |ω −1|. ⊓⊔
Theorem 12.4. If A is s.p.d matrix then ρ(RSOR) < 1 for all 0 < ω < 2 and thus,

SOR converges for all 0 < ω < 2. If we choose ω = 1 then we obtain usual Gauss-

Seidel method which also converges.

Proof of this theorem can be found in [23].

Assume that for any matrix M which can be written as

M = D− L̃−Ũ

the RJ(α) is the matrix which is defined as

RJ(α) = αD−1L̃+
1

α
D−1Ũ

for any scalar α > 0. The matrix M is called consistently ordered if eigenvalues of

RJ(α) are independent on α .

Theorem 12.5. Assume that A is consistently ordered and ω 6= 0. Then following

statements are fulfilled:

1. The eigenvalues of RJ appear in pairs with ±,

2. Assume that λ̃ is an eigenvalue of R j and the following equation is true

(λ +ω −1)2 = λω2λ̃ 2. (12.53)

Then λ is an eigenvalue of RSOR.

400 Chapter 12. Introduction to Iterative Methods for Solution of Linear Systems

3. If λ 6= 0 is an eigenvalue of RSOR, then λ̃ in (12.53) is an eigenvalue of R j.

Proof. 1. Since A is consistently ordered, then RJ(1) = RJ and RJ(−1) =−RJ have

the same eigenvalues and thus appear in ± pairs.

2. Assume that λ = 0, then from (12.53) we have

(ω −1)2 = 0. (12.54)

We see that ω = 1 and RSOR(1) = RGS = (I −L)−1U . Thus, λ = 0 is eigenvalue

of RSOR. Otherwise we can write that

0 = det(λ I −RSOR) = det((I −ωL)(λ I −RSOR))

= det((λ +ω −1)I −ωλL−ωU)

= det
(√

λω
((λ +ω −1√

λω

)
I −

√
λL− 1√

λ
U
))

= det
((λ +ω −1√

λω

)
I −L−U

)
(
√

λω)n.

(12.55)

Defining

λ̃ =
λ +ω −1√

λω
(12.56)

we see that it is an eigenvalue of L+U = RJ and thus, the equation (12.53) is

true.

3. If λ 6= 0 then we use previous proof in opposite direction.

⊓⊔

From theorem 12.5 follows, that if A is consistently ordered, then ρ(RGS) =
ρ(RJ)

2. We can see it from (12.53) since for ω = 1 we have Gauss-Seidel method,

and thus (12.53) can be written as

λ 2 = λλ̃ 2, (12.57)

or

λ = λ̃ 2. (12.58)

Thus, ρ(RGS) = ρ(RJ)
2, or the Gauss-Seidel method is twice faster than the Ja-

cobi method.

Theorem 12.6. Assume that A is consistently ordered, RJ has real eigenvalues such

that λ̃ = ρ(RJ)< 1. Then following statements are fulfilled:

• The optimal relaxation parameter ωopt in SOR(ω) can be computed as

ωopt =
2

1+
√

1− λ̃ 2
(12.59)

• The spectral radius ρ(RSOR(ωopt)) for ωopt defined by (12.59) can be computed

as

12.6 Study of Convergence of Main Iterative Methods 401

0 0.2 0.4 0.6 0.8 1
x

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2

solution u(x
1
,x

2
) in SOR method , N = 60, iter. = 282

0

1

2

3

4

5

×10 -3

0
1

2

1

×10 -3

u(
x

1
,x

2
) 4

solution u(x
1
,x

2
) in SOR method, N = 60, iter. = 282

x
2

0.5

x
1

6

0.5

0 0
0

1

2

3

4

5

×10 -3

10
1

11

1

a(
x

1
,x

2
) 12

coefficient a(x
1
,x

2
) with A = 12

x
2

0.5

x
1

13

0.5

0 0

0.75
1

0.8

0.85

1
f(

x
1
,x

2
) 0.9

f(x
1
,x

2
) with A

f
 = 1

x
2

0.95

0.5

x
1

1

0.5

0 0

Fig. 12.1 Solution of problem (8.11) in the example of Section 8.1.3 on the unit square with mesh

60-by-60 points.

ρ(RSOR(ωopt)) = ωopt −1 =
λ̃ 2

(1+
√

1− λ̃ 2)2
(12.60)

• The spectral radius ρ(RSOR(ω)) for 0 < ω < 2 can be computed as

ρ(RSOR(ω)) =

{
1−ω + 1

2
ω2λ̃ 2 +ωλ̃

√
1−ω +0.25ω2λ̃ 2, if ω ∈ (0,ωopt),

ω −1, if ω ∈ [ωopt ,2),

(12.61)

Proof. The proof follows from the solution of equation (12.53) for λ . ⊓⊔

Example 12.3. The matrix A in the model problem for the Poisson’s equation of

section 8.1.3 is s.p.d.. Thus, by theorem 12.4 the SOR(ω) for this problem will

converge for all 0 < ω < 2.

We present the numerical solution of the Dirichlet problem for the Poisson’s

equation (8.11) in two dimensions using iterative SOR(ω) method. The set-up for

our numerical simulations is the same as in example 8.2 of Chapter 8. The Matlab

402 Chapter 12. Introduction to Iterative Methods for Solution of Linear Systems

1 1.2 1.4 1.6 1.8 2
Relaxation parameter ω

0

100

200

300

400

500

600

N
um

be
r

of
 it

er
at

io
ns

 in
 S

O
R

Mesh: 20 by 20 points

SOR(ω)
Computed optimal ω

1 1.2 1.4 1.6 1.8 2
Relaxation parameter ω

0.75

0.8

0.85

0.9

0.95

1

 S
pe

ct
ra

l r
ad

iu
s

ρ
(R

S
O

R
(ω

))

Mesh: 20 by 20 points

ρ(RSOR(ω))

1 1.2 1.4 1.6 1.8 2
Relaxation parameter ω

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
um

be
r

of
 it

er
at

io
ns

 in
 S

O
R

Mesh: 60 by 60 points

SOR(ω)
Computed optimal ω

1 1.2 1.4 1.6 1.8 2
Relaxation parameter ω

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

 S
pe

ct
ra

l r
ad

iu
s

ρ
(R

S
O

R
(ω

))

Mesh: 60 by 60 points

ρ(RSOR(ω))

Fig. 12.2 Convergence of SOR(ω) computed for the model problem (8.11) in the example of

Section 8.1.3 on the unit square for different discretizations. On the left figures we plot the number

of iterations in SOR depending on ω (blue line) and corresponding optimal relaxation parameter

ωopt (red line). The computed spectral radius ρ(RSOR(ω)) is presented on the right figures.

program of Section A.24 is available in Appendix for running of this test. This

program implements two algorithms: first is implemented the algorithm 12.5 and

then follows the algorithm 12.6, or SOR(ω) method with Red-Black ordering. We

have used the stopping criterion ‖um+1 − um‖2 < tol, where chosen tolerance was

tol = 10−9.

The results of our numerical simulations are the same as on Figure 8.1 for the

number of the inner points N = 20 and for the tolerance tol = 10−9 in the iterative

update (check it by running the Matlab programs of Section A.24). Figure 12.1

presents the numerical solution for the number of the inner points N = 60, relaxation

parameter ω = 1.95 and the tolerance tol = 10−9.

We perform computations for different relaxation parameters ω ∈ (0,2). We

also compute the optimal relaxation parameter ωopt , as well as the spectral ra-

dius ρ(RSOR(ω)) using formulas (12.59), (12.61), respectively. Figure 12.2 presents

results of these computations. Left figures of Figure 12.2 show convergence of

SOR(ω) for different ω ∈ (0,2) (blue line) and corresponding optimal relaxation pa-

rameter ωopt computed by (12.59) (red line). Right figures of Figure 12.2 show the

12.7 Krylov Subspace Methods 403

spectral radius ρ(RSOR(ω)) computed by (12.61) with ωopt implemented by (12.59)

and λ̃ given by (12.56). Using this figure we also conclude that the convergence

of SOR(ω) is much faster than both convergence of Gauss-Seidel method and of

Jacobi method.

12.7 Krylov Subspace Methods

Krylov1 subspace methods are used for the solution of large system of linear equa-

tions Ax = b and for finding eigenvalues of A avoiding matrix-matrix multiplication.

Instead, these methods use multiplication of matrix by the vector.

The Krylov subspace generated by matrix A of the size n×n and vector b of the

size n is the linear subspace spanned by powers of A and multiplied by b:

Kr(A,b) = span{b,Ab,A2b, ...,Ar−1b}. (12.62)

For the symmetric matrix A we can write the decomposition QT AQ = H, where

Q is the orthogonal transformation and H is the upper Hessenberg matrix which

also will be a lower Hessenberg, and thus, tridiagonal matrix. Writing Q as Q =
{q1, ...,qn} and using AQ = QH we have

Aq j =
j+1

∑
i=1

hi, jqi. (12.63)

By multiplying both sides of the above expression by orthonormal vectors qT
m

and using the fact that qi are orthonormal we obtain:

qT
mAq j =

j+1

∑
i=1

hi, jq
T
mqi = hm, j, 1 ≤ m ≤ j. (12.64)

We can rewrite (12.63) as

h j+1, jq j+1 = Aq j −
j

∑
i=1

hi, jqi. (12.65)

Two formulas (12.64) and (12.65) are used in the Arnoldi2 algorithm for the

reduction of the matrix A to an upper Hessenberg form. Let r will be the number

of columns in the matrices Q and H which we need to compute. We now formulate

the Arnoldi algorithm which performs partial reduction of the matrix A to the upper

1 Aleksey Krylov (1963 - 1945) was a Russian naval engineer, applied mathematician and mem-

oirist.
2 Walter Edwin Arnoldi (1917 - 1995) was an American engineer.

404 Chapter 12. Introduction to Iterative Methods for Solution of Linear Systems

Hessenberg form. The vectors q j computed in this algorithm are called Arnoldi

vectors.

Algorithm 12.9. Arnoldi algorithm.

Initialization: q1 =
b

‖b‖2

for j = 1 to r

z = Aq j

for i = 1 to j

hi, j = qT
i z

z = z−hi, jqi

end

h j+1, j = ‖z‖2

if h j+1, j = 0 quit

qi+1 =
z

h j+1, j

end

Let us define Q= (Qr,Qu) with Qr = (q1, ...,qr) and Qu = (qr+1, ...,qn). We have

following structure of the matrix H after r steps of the Arnoldi algorithm 12.9:

H = QT AQ = (Qr,Qu)
T A (Qr,Qu)

=

(
QT

r AQr QT
r AQu

QT
u AQr QT

r AQr

)
=

(
Hr Hur

Hru Hu

)
,

(12.66)

where Hr is the upper Hessenberg matrix. We know only Hr and Hru with Hur and

Hu still being unknown.

For the case of a symmetric matrix A the Arnoldi algorithm can be simplified

since the matrix H is symmetric and tridiagonal what means that

H =




α1 β1
β1 α2
...
... ... αn−1 βn−1

... ... βn−1 αn




(12.67)

Rewriting (12.63) for the case of the symmetric and tridiagonal H given by (12.67)

we have

Aq j = β j−1q j−1 +α jq j +β jq j+1. (12.68)

We note that columns of Q are orthonormal. Thus, multiplying (12.68) by qT
j we get

qT
j Aq j = qT

j (β j−1q j−1 +α jq j +β jq j+1) = α j. (12.69)

From (12.68) we can obtain expression for computing q j+1:

q j+1 = (Aq j −β j−1q j−1 −α jq j)/β j, (12.70)

12.7 Krylov Subspace Methods 405

which is used in the Lanczos1 algorithm. Combining (12.69) and (12.70) we get

Lanczos algorithm for partial reduction of a symmetric matrix A to the symmetric

tridiagonal form.

Algorithm 12.10. Lanczos algorithm.

Initialization: q1 =
b

‖b‖2
,β0 = 0,q0 = 0

for j = 1 to r

z = Aq j

α j = qT
j z

z = z−α jq j −β j−1q j−1 /* no reorthogonalization */

β j = ‖z‖2

if β j = 0 quit

qi+1 =
z

β j

end

The vectors q j computed by the algorithm 12.10 are called Lanczos vectors. The

vectors qr computed in the Lanczos or Arnoldi algorithm create orthonormal ba-

sis of the Krylov subspace Kr defined in (12.62). The matrix Hr = QT
r AQr in both

algorithms is called the projection of A to the Krylov subspace Kr.

Taking into account (12.66) we can write following structure of the matrix T

after r steps of the Lanczos algorithm 12.10:

T = QT AQ = (Qr,Qu)
T A (Qr,Qu)

=

(
QT

r AQr QT
r AQu

QT
u AQr QT

r AQr

)
=

(
Tr Tur

Tru Tu

)
=

(
Tr T T

ru

Tru Tu

)
.

(12.71)

We can compute elements of Tr and Tru = T T
ur since the matrix A is symmetric.

However, elements of Tu are not known.

Our goal now is to use r steps in the Lanczos or Arnoldi algorithms to solve linear

system Ax = b. To do that we seek the best approximation xr to the exact solution

x = A−1b given by

xr =
r

∑
j=1

z jq j = Qrz, (12.72)

where z = (z1, ...,zr)
T . Let us define the residual as Rr = b − Axr. For the case

of s.p.d. matrix A we can define the norm ‖R‖A−1 := (RT A−1R)1/2. We note that

‖R‖A−1 = ‖xr − x‖A. Thus, the best computed solution xr will minimize ‖R‖A−1 .

The algorithm which can compute such vector xr is called the conjugate gradient

algorithm (CG).

Theorem 12.7. Let A is a symmetric matrix, Hr = QT
r AQr and residuals are defined

as Rr = b−Axr∀xr ∈ Kr. When Hr is not singular we can define

xr = QrH
−1
r e1‖b‖2, (12.73)

1 Cornelius Lanczos (1893 - 1974) was a Hungarian mathematician and physicis mathematician.

406 Chapter 12. Introduction to Iterative Methods for Solution of Linear Systems

where e1 = (1,0, ...,0)T . Then QT
r Rr = 0.

Let A is also positive definite matrix. Then Hr must be nonsingular and xr defined

as in (12.73) minimizes ‖Rr‖A−1 for all xr ∈ Kr, where Rr =±‖Rr‖2qr+1.

The proof of this theorem can be found in [23]. Numerical exploration of the

convergence of the Lanczos algorithm 12.10 is provided in [23]. We note that the

round-off errors destroy the orthogonalization property of the Lanczos algorithm

12.10: the vectors qi can lose orthogonality and become linearly dependent. Below

we present more expensive but algorithm with full orthogonalization for finding

eigenvalues and eigenvectors of a symmetric matrix A. We say that the algorithm

make full orthogonalization since we perform the Gram-Schmidt orthogonalization

process twice to be sure that we will make z orthogonal to all q1, ...,q j−1, see dis-

cussion in [94].

Algorithm 12.11. Lanczos algorithm with orthogonalization.

Initialization: q1 =
b

‖b‖2
,β0 = 0,q0 = 0

for j = 1 to r

z = Aq j

α j = qT
j z

z = z−∑
j−1
i=1 (z

T qi)qi /* make twice reorthogonalization */

z = z−∑
j−1
i=1 (z

T qi)qi

β j = ‖z‖2

if β j = 0 quit

qi+1 =
z

β j

end

We can see that the r steps of the Lanczos algorithm with full orthogonaliza-

tion 12.11 takes O(r2n) flops compared with O(rn) flops of the Lanczos algorithm

12.10. Selective reorthogonalization process takes advantages of both algorithms

and make Lanczos vectors nearly orthogonal sufficiently cheap, see details in [23].

To formulate the Lanczos algorithm with selective reorthogonalization we define

the Rayleigh-Ritz1 procedure. In this procedure eigenvalues of A are approximated

by the eigenvalues of Tr = QT
r ΛQr with Tr defined in (12.71), and are called by Ritz

values. Let us define Tr =VΛV T the eigendecomposition of Tr. The Ritz vectors are

the columns of QrV which are also eigenvector approximations of Tr’s eigenvectors.

The next theorem provides criterion for selective orthogonalization of Lanczos

vectors.

Theorem 12.8. (Paige2).

Let the j-s step of the Lanczos algorithm 12.10 can be written as

β jq j+1 + f j = Aq j −α jq j −β j−1q j−1, (12.74)

1 Walther Ritz (1878 - 1909) was a Swiss theoretical physicist.
2 Constantin Marie Le Paige (1852 - 1929) was a Belgian mathematician.

12.7 Krylov Subspace Methods 407

where f j is the round-off error and ‖ f‖2 ≤ O(ε‖A‖) with ε representing the ma-

chine epsilon. Let Tr = VΛV T be the eigendecomposition of Tr with orthogonal

V = (v1, ...,vr), and Λ = diag(Θ1, ...,Θr). Let columns yi,r = Qrvi of QrV with or-

thogonal Q = (q1, ...,qr) be the Ritz vectors with Θi being a Ritz values. Then

yT
i,rqr+1 =

O(ε‖A‖)
βr|vi(r)|

,

where vi(r) is the r-th entry of vi, i = 1, ...,r, and βr = ‖Tru‖2 with Tru defined in

(12.71).

The proof of this theorem is given in [23].

Using Paige’s theorem 12.8 we can design the simplest version of Lanczos algo-

rithm with selective orthogonalization. In this algorithm we check values of βr|vi(r)|
at every step of algorithm, and then for small values of βr|vi(r)| we orthogonalize

the values of vector z.

Algorithm 12.12. Lanczos algorithm with selective orthogonalization.

Initialization: q1 =
b

‖b‖2
,β0 = 0,q0 = 0

for j = 1 to r

z = Aq j

α j = qT
j z

z = z−α jq j −β j−1q j−1 /* no reorthogonalization */

for i ≤ r

if βr|vi(r)| ≤
√

ε‖Tr‖
yi,r = Qrvi /* Ritz vectors */

z = z− (yT
i,rz)yi,r /* selective reorthogonalization */

end if

end for

β j = ‖z‖2

if β j = 0 quit

qi+1 =
z

β j

end

The algorithm 12.12 still can be improved using recurrence formula given in

[107] since it is not necessary that the condition βr|vi(r)| ≤
√

ε‖Tr‖ should be

checked at every iteration. Thus, a lot of steps in selective reorthogonalization can

be eliminated. See also [40] where is presented a shifted block Lanczos algorithm

with standard implementation.

However, when the matrix A is nonsymmetric, then all above considered Lanczoz

algorithms are not valid. This is because eigenvalues of A can be complex or badly

conditioned. We refer to [5, 6, 20, 100, 102] for theory and implementation of the

Lanczos algorithm for the nonsymmetric matrix.

408 Chapter 12. Introduction to Iterative Methods for Solution of Linear Systems

12.8 Conjugate Gradient Method

In this section we will present main steps of derivation of the CG algorithm. We will

start to use the Lanczos algorithm 12.10 and combine it with formula (12.73). Then

using Theorem 12.7 we will conclude that the residuals Rr = b−Axr are parallel to

the Lanczos vectors qr+1 .

Let us introduce conjugate gradients vectors pr. The pr are called gradients be-

cause in a single step of the CG algorithm we compute the approximated solution

as xr = xr−1 + ν pr with some scalars ν (see algorithm 12.13), and this solution

minimizes the residual norm ‖Rr‖A−1 = (RT
r A−1Rr)

1/2. The vectors pr are called

conjugate, or more precisely A-conjugate, because pT
r Ap j = 0 if j 6= r.

Since A is symmetric positive definite, then the following matrix Hr = QT
r AQr is

also symmetric positive definite. Thus, we can use Cholesky decomposition on Hr

to get

Hr = L̂rL̂
T
r = LrDrL

T
r , (12.75)

where Lr is unit lower bidiagonal and Dr is diagonal. Then using the formula (12.73)

we get

xr = QrH
−1
r e1||b||2

= Qr(L
−T
r D−1

r L−1
r)e1||b||2

= (QrL
−T
r)(D−1

r L−1
r e1||b||2)

≡ (P̃r)(yr),

where P̃r ≡ QrL
−T
r and yr ≡ D−1

r L−1
r e1||b||2. Let P̃r = (p̃1, . . . , p̃r). The conjugate

gradients pi will be parallel to the columns p̃i of P̃r.

Lemma 12.3. The columns pi of the matrix P̃r are A-conjugate. This means that

P̃T
r AP̃r is diagonal.

Proof. We can write

P̃T
r AP̃r = (QrL

−T
r)A(QrL

−T
r) = L−1

r (QT
r AQr)L

−T
r = L−1

r (Hr)L
−T
r

= L−1
r (LrDrL

T
r)L

−T
r = Dr.

⊓⊔

Let us define the following iterative update for xr:

xr = P̃r yr = (P̃r−1, p̃r)

(
yr−1

ηr

)

= P̃r−1yr−1 + p̃rηr = xr−1 + p̃rηr

(12.76)

To be able use this formula we need compute the scalars ηr. Since Hr−1 is the

leading (r− 1)× (r− 1) submatrix of Hr, Lr−1 and Dr−1 are also the leading (r−
1)× (r−1) submatrices of Lr and Dr, respectively. Thus, we can write

12.8 Conjugate Gradient Method 409

Hr =




α1 β1

β1
. . .

. . .

. . .
. . . βr−1

βr−1 αr




= LrDrL
T
r =




1

l1
. . .

. . .
. . .

lr−1 1







d1

. . .

dr−1

dr







1

l1
. . .

. . .
. . .

lr−1 1




T

=

(
Lr−1

lr−1ẽT
r−1 1

)
diag(Dr−1,dr)

(
Lr−1

lr−1êT
r−1 1

)T

,

where êT
r−1 = (0, . . . ,0,1) and dim êT

r−1 = r−1.

We also see that D−1
r−1 and L−1

r−1, are the leading (r− l)× (r−1) submatrices of

matrices D−1
r = diag(D−1

r−1,d
−1
r) and

L−1
r =

(
L−1

r−1 ...
... 1

)
,

respectively. Below we show that the vector defined as yr−1 = D−1
r−1L−1

r−1ê1||b||2,

where dim ê1 = r−1, is the same as the leading r−1 components of the vector yr.

We have:

yr = D−1
r L−1

r e1||b||2 =
(

D−1
r−1

d−1
r

) (
L−1

r−1 ...
... 1

)
e1||b||2

=

(
D−1

r−1L−1
r−1ê1||b||2
ηr

)
=

(
yr−1

ηr

)
.

Now to be able use the formula (12.76) for computing xr we need derive iterative

formulas for the columns of P̃r = (p̃1, . . . , p̃r) and ηr.

We start first to derive P̃r = (p̃1, . . . , p̃r). We observe that LT
r−1 is upper triangular

and thus the matrix L−T
r−1 is also upper triangular and it forms the leading submatrix

of L−T
r of the size (r− l)× (r−1). Therefore, P̃r−1 is identical to the leading r−1

columns of P̃r:

P̃r = QrL
−T
r = (Qr−1,qr)

(
L−T

r−1 ...
0 1

)
= (Qr−1L−T

r−1, p̃r) = (P̃r−1, p̃r).

From P̃r = QrL
−T
r , we get

P̃rL
T
r = Qr.

Now equating the r-th column on both sides of the above equation, we obtain the

iterative formula for updating p̃r:

410 Chapter 12. Introduction to Iterative Methods for Solution of Linear Systems

p̃r = qr − lr−1 p̃r−1. (12.77)

Iterative formulas (12.77) for updating p̃r, qr (from the Lanczos algorithm) and

finally (12.76) for computing xr provide main steps in the CG algorithm. We will

additionally simplify these formulas to obtain the ultimate CG algorithm. By Theo-

rem 12.7 residuals Rr and vectors qr+1 are parallel. Thus, we can replace the Lanc-

zos vectors qr+1 with the residuals Rr = b−Axr. We now multiply both sides of

xr = xr−1 +ηr p̃r by A and subtract from b to get:

Rr = b−Axr = b−A(xr−1 +ηr p̃r) = Rr−1 −ηrAp̃r. (12.78)

The above formula yields the following iterative updates:

Rr = Rr−1 −ηrAp̃r, (12.79)

from (12.76) we get:

xr = xr−1 +ηr p̃r, (12.80)

from (12.77) we get:

p̃r = qr − lr−1 p̃r−1. (12.81)

Next step is eliminate qr. To do that, we substitute Rr−1 = qr||Rr−1||2 and pr ≡
||Rr−1||2 p̃r into (12.79)-(12.81) to get

Rr = Rr−1 −
ηr

||Rr−1||2
Apr ≡ Rr−1 −νrApr, (12.82)

xr = xr−1 +
ηr

||Rr−1||2
pr ≡ xr−1 +νr pr, (12.83)

pr = Rr−1 −
||Rr−1||2lr−1

||Rr−2||2
pr−1 ≡ Rr−1 +µr pr−1. (12.84)

Analyzing (12.82)-(12.84) we observe that we need formulas for the scalars νr

and µr. For derivation νr, we multiply both sides of (12.84) on the left by pT
r A and

use the Lemma 12.3 to get

pT
r Apr = pT

r ARr−1 +0 = RT
r−1Apr. (12.85)

Multiplying both sides of (12.82) on the left by RT
r−1, using the equality RT

r−1Rr = 0

(since the Ri are parallel to the columns of the orthogonal matrix Q) and then (12.85)

we obtain

νr =
RT

r−1Rr−1

RT
r−1Apr

=
RT

r−1Rr−1

pT
r Apr

. (12.86)

Finally, we derive a formula for µr. Multiplying both sides of (12.84) on the left

by pT
r−1A and using the Lemma 12.3 (by this Lemma pr and pr−1 are A-conjugate)

we obtain

12.8 Conjugate Gradient Method 411

µr =−
pT

r−1ARr−1

pT
r−1Apr−1

. (12.87)

We can derive alternative formulas for νr and µr. Multiplying both sides of

(12.82) on the left by RT
r , using that RT

r−1Rr = 0, and solving for νr we get

νr =− RT
r Rr

RT
r Apr

. (12.88)

Equating the (12.86) and the (12.88) for νr−1 and comparing with equation

(12.87) yields different formula for computation µr:

µr =−
pT

r−1ARr−1

pT
r−1Apr−1

=
RT

r−1Rr−1

RT
r−2Rr−2

. (12.89)

Combining (12.82), (12.83), (12.84), (12.86) and (12.89) yields the conjugate

gradient algorithm .

Algorithm 12.13. Conjugate gradient algorithm.

Initialization: r = 0; x0 = 0; R0 = b; p1 = b;

repeat

r = r+1

z = A pr

νr = (RT
r−1Rr−1)/(pT

r z)
xr = xr−1 +νr pr

Rr = Rr−1 −νrz

µr+1 = (RT
r Rr)/(R

T
r−1Rr−1)

pr+1 = Rr +µr+1 pr

until ||Rr||2 is small enough

Convergence analysis of this algorithm is presented in [23]. From this analysis

follows, that
‖Rr‖A−1

‖R0‖A−1

≤ 1

Hr(1+
2

k−1
)
, (12.90)

where k = λmax

λmin
is the condition number of A. Estimate (12.90) tells us that when the

condition number k ≈ 1, the term in the right hand side of (12.90) is small and we

have rapid convergence in CG algorithm 12.13. If the condition number k is large

then the estimate (12.90) can be rewritten as

‖Rr‖A−1

‖R0‖A−1

≤ 1

Hr(1+
2

k−1
)
≤ 1

(1+ 2√
k−1

)
, (12.91)

and convergence is slower.

We note that when the matrix A is simply symmetric then the norm ‖Rr‖2 is

minimized using the minimum residual algorithm MINRES [93]. When the matrix

412 Chapter 12. Introduction to Iterative Methods for Solution of Linear Systems

A is nonsymmetric then for minimization of ‖Rr‖2 is used generalized minimum

residual algorithm GMRES [101].

Example 12.4. We present the numerical solution of the Dirichlet problem for the

Poisson’s equation (8.11) in two dimensions using conjugate gradient method . The

set-up for our numerical experiments is the same as in example 8.2 of Chapter 8.

The Matlab program of Section A.25 which implements algorithm 12.13 is available

in Appendix for running of this test. We have used computation of the residual Rr

in the stopping criterion ‖Rr‖2 < tol, where chosen tolerance was tol = 10−9.

The conjugate gradient method converged in 33 iterations for number of the inner

points N = 20. Our computed solution is the same as presented on Figure 8.1 (check

it by running the Matlab programs of Section A.25).

12.9 Preconditioning for Linear Systems

Preconditioning technique is used for the reduction of the condition number of the

considered problem. For the solution of linear system of equations Ax = b the pre-

conditioner matrix P of a matrix A is a matrix P−1A such that P−1A has a smaller

condition number then the original matrix A. This means that instead of the solution

of a system Ax = b we will consider solution of the system

P−1Ax = P−1b. (12.92)

The matrix P should have the following properties:

• P is s.p.d. matrix;

• P−1A is well conditioned;

• The system Px = b should be easy solvable.

The preconditioned conjugate gradient method is derived as follows. First we

multiply both sides of (12.92) by P1/2 to get

(P−1/2AP−1/2)(P1/2x) = P−1/2b. (12.93)

We note that the system (12.93) is s.p.d. since we have chosen the matrix P such

that P = QΛQT which is the eigendecomposition of P. Then the matrix P1/2 will be

s.p.d. if it is defined as P1/2 = QΛ 1/2QT . Defining

Ã := P−1/2AP−1/2,

x̃ := P1/2x,

b̃ := P−1/2b

(12.94)

we can rewrite (12.93) as the system Ãx̃ = b̃. Matrices Ã and P−1A are similar since

P−1A = P−1/2ÃP1/2. Thus, Ã and P−1A have the same eigenvalues. Thus, instead

12.9 Preconditioning for Linear Systems 413

of the solution of P−1Ax = P−1b we will present preconditioned conjugate gradient

algorithm (PCG) for the solution of Ãx̃ = b̃.

Algorithm 12.14. Preconditioned conjugate gradient algorithm.

Initialization: r = 0; x0 = 0; R0 = b; p1 = P−1b;y0 = P−1R0

repeat

r = r+1

z = A pr

νr = (yT
r−1Rr−1)/(pT

r z)
xr = xr−1 +νr pr

Rr = Rr−1 −νrz

yr = P−1Rr

µr+1 = (yT
r Rr)/(y

T
r−1Rr−1)

pr+1 = yr +µr+1 pr

until ||Rr||2 is small enough

Common preconditioner matrices P are:

• Jacobi preconditioner P = diag(a11, ...,ann). In [108] was shown that such choice

of the preconditioner reduces the condition number of P−1A around factor n of

its minimal value.

• block Jacobi preconditioner

P =




P1,1 ... 0

...
0 ... Pr,r


 (12.95)

with Pi,i = Ai,i, i = 1, ...,r, for the block matrix A given by

A =




A1,1 ... A1,r

...
Ar,1 ... Ar,r


 (12.96)

with square blocks Ai,i, i = 1, ...,r. In [24] was shown that choice of precon-

ditioner P given by (12.95) minimizes the condition number of P−1/2AP−1/2

within a factor of r.

• Method of SSOR can be used as a block preconditioner as well, see details in

[100].

• Incomplete Cholesky factorization [62, 100, 111] with A = LLT is often used for

PCG algorithm 12.14. In this case a sparse lower triangular matrix L̃ is chosen to

be close to L. Then the preconditioner is defined as P = L̃L̃T .

• Incomplete LU preconditioner [100].

• Domain decomposition methods [23].

Some of these preconditioners are implemented in the software package PETSc

[98]. An example of using PETSc for the solution of the Dirichlet problem for the

Poisson’s equation (8.11) in two dimensions is presented below.

414 Chapter 12. Introduction to Iterative Methods for Solution of Linear Systems

Example 12.5. In this example we demonstrate how PETSc [98] can be used for the

solution of the Dirichlet problem for the Poisson’s equation (8.11). The set-up for

our problem in this and the next example is the same as in example 8.2 of Chapter

8. The PETSc programs of Section A.27 are available for running of this example.

We have executed these programs by running the main program Main.cpp using

version of PETSc petsc−3.7.4 on 64 bits Red Hat Linux Workstation. Example of

Makefile used for compilation of PETSc programs of Section A.27 we show below:

PETSC ARCH=/sup64/petsc-3.7.4

include ${PETSC ARCH}/lib/petsc/conf/variables
include ${PETSC ARCH}/lib/petsc/conf/rules
MPI INCLUDE = ${PETSC ARCH}/include/mpiuni
CXX=g++

CXXFLAGS = -Wall -Wextra -g -O0 -c -Iinclude

-I${PETSC ARCH}/include -I${MPI INCLUDE}
LD=g++

LFLAGS=

OBJECTS=Main.o CG.o Create.o DiscretePoisson2D.o

GaussSeidel.o Jacobi.o PCG.o Solver.o SOR.o

Run=Main

all: $(Run)

$(CXX) $(CXXFLAGS) -o $@ $<

$(Run): $(OBJECTS)

$(LD) $(LFLAGS) $(OBJECTS) $(PETSC LIB) -o $@

Different iterative methods are encoded by numbers 1−7 in the following order:

1 - Jacobi’s method, 2 - Gauss-Seidel method, 3 - Successive Overrelaxation method

(SOR), 4 - Conjugate Gradient method, 5 - Conjugate Gradient method (algorithm

12.13), 6 - Preconditioned Conjugate Gradient method, 7 - Preconditioned Conju-

gate Gradient method (algorithm 12.14). Methods 1-5 use inbuilt PETSc functions,

and methods 6,7 implement algorithms 12.13, 12.14, correspondingly. For example,

to run Main.cpp with SOR method, one should run this program, for example, as

follows:

> hohup Main 3 > result.m

Then results will be printed in the file result.m and can be viewed in mat-

lab using the command surf(result)(note that before loading file result.m

in matlab one need remove the first two rows in the output file informing about

chosed method and number of iterations when convergence have been achieved).

Additional file with result called solution.m also will be created. By doing so,

we simply illustrate different possibilities for output of results in PETSc. Using the

command surf(solution) the computed solution of the Dirichlet problem for

the Poisson’s equation (8.11) can be observed.

Example 12.6. In this example we present the numerical solution of the Dirichlet

problem for the Poisson’s equation (8.11) in two dimensions using preconditioned

conjugate gradient method (algorithm 12.14) implemented in Matlab. The Matlab

program of Section A.26 is available in Appendix for running of this test. In this

12.9 Preconditioning for Linear Systems 415

program we can choose between three preconditioners as the preconditioner matrix

P in the algorithm 12.14: Jacobi preconditioner, Block Jacobi Preconditioner and

the incomplete Cholesky factorization [62, 100, 111] with A = LLT . We also use

computation of the residual Rr in the stopping criterion ‖Rr‖2 < tol, where chosen

tolerance was tol = 10−9.

The preconditioned conjugate gradient method converged in 17 iterations for the

preconditioner matrix P constructed using the incomplete Cholesky factorization for

number of the inner points N = 20 and for the tolerance tol = 10−9. We note that

by choosing Jacobi or Block Jacobi Preconditioners we have the same convergence

as in usual conjugate gradient method . Our final solution is the same as on Figure

8.1 (check it by running the Matlab programs of Section A.26).

Questions

12.1. Find values of the real parameter α such that the matrix




1 0 α
4 2 0

6 5 3


 (12.97)

a) has all real values;

b) has all complex eigenvalues with positive imaginary parts.

12.2. Let A is a Hermitian matrix of the size n×n and let λ and µ such that λ 6= µ be

eigenvalues of A with corresponding eigenvectors x and y. Prove that eigenvectors

corresponding to different eigenvalues are orthogonal, i.e. ȳT x = 0.

12.3. Let the matrix A of the size n×n has the block triangular form

A =

(
A11 A12

0 A22

)
, (12.98)

where the block A11 is of the size r× r and the blocks A12,A22 are of the size (n−
r)× (n− r). Prove that λ is an eigenvalue of A if λ is an eigenvalue of A11 and x is

the corresponding eigenvector. Hint: construct a vector y of the size n− r such that

(x,y)T is an eigenvector of A for the eigenvalue λ .

12.4. Let the matrix A of the size dimA = n×n has the spectral radius ρ(A)< 1.

a) Show that the matrix I −A is nonsingular;

b) Show that

(I −A)−1 =
n

∑
i=0

Ai.

12.5. Let the complex Hermitian matrix C of the size n×n can be presented as C =
A+ iB where matrices A and B are the real and imaginary parts of C, respectively.

Let us define the real matrix C̃ of the size 2n×2n as

416 Chapter 12. Introduction to Iterative Methods for Solution of Linear Systems

C̃ =

(
A −B

B A

)
. (12.99)

a) Show that C̃ is a symmetric matrix.

b) Let λ is an eigenvalue of C with the corresponding eigenvector x+ iy. Show

that λ is an eigenvalue of C̃, where both (x,y)T and (−y,x)T are corresponding

eigenvectors.

12.6. Find eigenvalues of the following matrix

(
2i 1

1 0

)
. (12.100)

How many linearly independent eigenvectors does it have?

12.7. Let λ be an eigenvalue of the orthogonal matrix Q. Show that |λ | = 1. What

are the singular values of an orthogonal matrix?

12.8. Let the matrix A is real symmetric tridiagonal matrix which has no zero ele-

ments on its subdiagonal. Show that the matrix A should have distinct eigenvalues.

12.9. (Programming)

Implement the Arnoldi and Lanczos algorithms 12.9, 12.10. First, run both algo-

rithms on A with starting vector for q as in algorithms 12.9, 12.10. Then run both

algorithms on QT AQ with the starting vector for q given by QT q. Confirm that you

will obtain identical upper Hessenberg matrices Hr in algorithm 12.9 or tridiagonal

matrices Tr in algorithm 12.10 in both cases.

12.10. (Programming)

Implement different versions of Lanczos algorithms 12.10, 12.11, 12.12. Present

the following results on the graphs depending on the step i of the Lanczos algo-

rithms:

1. some largest and smallest computed eigenvalues λi(A) of A;

2. the global errors in the computed eigenvalues λi(Tr) of item 1 given by

|λi(Tr)−λi(A)|
|λi(A)|

;

3. the local errors of item 1 given by

min
j

|λi(Tr)−λ j(A)|
|λi(A)|

,

where λ j(A) is the nearest to λi(Tr) eigenvalue of A. Sometimes these errors are

smaller than the global errors.

4. the error bounds of item 1
|βrvi(r)|
|λi(A)|

.

12.9 Preconditioning for Linear Systems 417

12.11. Prove that the conjugate vectors pr in algorithm 12.13 are orthogonal with

respect to the inner product defined by A.

12.12. Prove that if A of the size dimA = n×n is symmetric positive definite, then

Hr = QT
r AQr, where dimQ = n× r with a full column rank, is also symmetric posi-

tive definite. Here, the matrix Q has a full column rank and not orthogonal.

12.13. (Programming)

Modify Matlab program of section A.21 which implements the Jacobi method

of the algorithm (12.2), and using this program solve the model problem for the

Poisson’s equation of section 8.1.3 in three dimension on a unit cube.

12.14. (Programming)

Modify Matlab program of section A.22 which implements the Gauss-Seidel

method of the algorithm (12.4), and using this program solve the model problem

for the Poisson’s equation of section 8.1.3 in three dimension on a unit cube.

12.15. (Programming)

Modify Matlab program of section A.24 which implements the SOR(ω) method

of the algorithm (12.6) for different ω , and using this program solve the model

problem for the Poisson’s equation of section 8.1.3 in three dimension on a unit

cube. For which ω and why the SOR(ω) method will converge?

12.16. (Programming)

Write Matlab program for implementing of SSOR(ω) algorithm (12.8) with

Chebyshev acceleration of xi+1 = R̂xi + c for different ω . In [46] was shown that

the choice ω = 2

1+
√

2(1−ρ)
is a good one. In this case ρ(R̂) ≈ 1− π

2N
, where N is

the number of the points in the mesh. Compare performance of SSOR(ωopt) and

SOR(ωopt) with optimal ωopt given by (12.59).

12.17. (Programming)

Write a program for implementing the Arnoldi algorithm 12.9. Test the program

on a real symmetric matrix A of the size n× n with eigenvalues 1,2, ...,n. Hint: to

generate a such matrix A first generate a matrix B of the size n× n with randomly

distributed entries on the interval [0,1) and compute QR factorization of it: B = QR.

Then construct a matrix A as A = QDQT with diagonal matrix D = diag(1, ...,n).
Run the Arnoldi algorithm 12.9 for n iterations.

12.18. (Programming)

Write a program for implementing the Lanczos algorithm 12.10. Test the pro-

gram on a real symmetric matrix A as in the question 12.4. Run the Lanczos algo-

rithm 12.10 for n iterations.

12.19. (Programming)

Modify Matlab program of section A.25 which implements the Conjugate Gra-

dient algorithm 12.13, and using this program solve the model problem for the Pois-

son’s equation of section 8.1.3 in three dimension on a unit cube.

418 Chapter 12. Introduction to Iterative Methods for Solution of Linear Systems

12.20. (Programming)

Modify Matlab program of section A.26 which implements the Preconditioned

Conjugate Gradient algorithm 12.13, and using this program solve the model prob-

lem for the Poisson’s equation of section 8.1.3 in three dimension on a unit cube.

12.21. (Programming)

Modify PETSc programs of section A.27 which solve the Dirichlet problem for

the Poisson’s equation (8.11) and apply them to solve this problem in three dimen-

sions on a unit cube. See details of running PETSc programs in example 12.5.

Appendix A

Matlab Programs

A.1 Matlab Programs for Gaussian Elimination using LU

Factorization

function [L,U,P]=LU_PP(A)

% LU factorization with partial pivoting

% This function calculates the permutation matrix P,

% the unit lower triangular matrix L,

% and the nonsingular upper triangular matrix U

% such that LU=PA for a given nonsingular A.

[n,n]=size(A);

P=eye(n); L=eye(n); U=A;

for i=1:n-1

[pivot m]=max(abs(U(i:n,i)));

m=m+i-1;

if m∼=i
% swap rows m and i in P

temp=P(i,:);

P(i,:)=P(m,:);

P(m,:)=temp;

% swap rows m and i in U

temp=U(i,:);

U(i,:)=U(m,:);

U(m,:)=temp;

% swap elements L(m,1:i-1) and L(i,1:i-1) in L

if i >= 2

temp=L(i,1:i-1);

L(i,1:i-1)=L(m,1:i-1);

L(m,1:i-1)=temp;

end

end

L(i+1:n,i)=U(i+1:n,i)/U(i,i);

U(i+1:n,i+1:n)=U(i+1:n,i+1:n)-L(i+1:n,i)*U(i,i+1:n);

U(i+1:n,i)=0;

419

420 A Matlab Programs

end

function x=ForwSub(L,b)

% This function computes the vector x, of length n,

% given Lx=b where L is an nxn, nonsingular lower triangular matrix

% and b is an known vector of length n,

% by using forward substitution.

%% Compute x by forward substitution.

s=size(L);

n=s(1);

x=zeros(n,1);

% L(i,i)*x(i)=b(i)-sum_{j=1}ˆ{i-1}

% First set x(i)=b(i), then subtract known values.

% Lastly divide by diagonal entry L(i,i)

x(1)=b(1)/L(1,1);

for i=2:n

x(i)=(b(i)-L(i,1:(i-1))*x(1:(i-1)))/L(i,i);

end

end

function x=BackSub(U,b)

% This function computes the vector x by backward substitution.

% We solve Ux=b, where U is an nxn, nonsingular upper triangular matrix

% and b is a known vector of the length n, we find the vector x.

%% Compute x by backward substitution.

s=size(U);

n=s(1);

x=zeros(n,1);

% U(i,i)*x(i) = b(i)-sum_{j=i+1}ˆ{n}

x(n)=b(n)/U(n,n);

for i=n-1:-1:1

x(i)=(b(i)-U(i,(i+1):n)*x((i+1):n))/U(i,i);

end

end

% main program for the solution of Poisson's equation

% - a laplace = f in 2D

close all

%Define input parameters

n=20; % number of inner nodes in one direction.

a_amp = 12; % amplitude for the function a(x_1,x_2)

f_amp = 1; % 1, 50, 100 choose const. f value

x_0=0.5;

y_0=0.5;

c_x=1;

c_y=1;

A.1 Matlab Programs for Gaussian Elimination using LU Factorization 421

h = 1/(n+1); % define step length

%%---

% Computing all matrices and vectors

%--

% Generate a n*n by n*n stiffness matrix

S = DiscretePoisson2D(n);

% factorize A using LU decomposition with pivoting

[L,U,P]=LU_PP(S);

%% generate coefficient matrix of a((x_1)_i,(x_2)_j) = a(i*h,j*h)

C = zeros(n,n);

for i=1:n

for j=1:n

C(i,j) = 1 + a_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

% create diagonal matrix from C

D = zeros(nˆ2,nˆ2);

for i=1:n

for j=1:n

D(j+n*(i-1),j+n*(i-1)) = C(i,j);

end

end

%% calculate load vector f

% If f is constant.

% f = f_amp*ones(nˆ2,1);

% If f is Gaussian function.

f=zeros(nˆ2,1);

for i=1:n

for j=1:n

f(n*(i-1)+j)=f_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

%%---

% Solving the linear system of equations using Gaussian elimination

%--

% We have system A u = 1/hˆ2 D L U u = f

% 1. Compute vector of right hand side

% b = Dˆ(-1)*f given by b(i,j)=f(i,j)/a(i,j)

b=zeros(nˆ2,1);

for i=1:n

for j=1:n

b(n*(i-1)+j)=f(n*(i-1)+j)/C(i,j); % Use coefficient matrix C or

% diagonal matrix D to get a(i,j)

422 A Matlab Programs

end

end

% We now have system to solve: 1/hˆ2 A u = b

% Use first LU decomposition: 1/hˆ2 L U u = b

% 2. Compute v = Lˆ(-1)*b by forward substitution.

v=ForwSub(L,P*b);

% We now have system 1/hˆ2 U u = v

% 3. Compute w = Uˆ(-1)*v by backward substitution.

w=BackSub(U,v);

% 4. We now have system 1/hˆ2 u = w

% Compute finally solution as: u=hˆ2*w

u=hˆ2*w;

%%---

% Plots and figures.

%--

% sort the data in u into the mesh-grid, the boundary nodes are zero.

Z = zeros(n+2,n+2);

for i=1:n

for j=1:n

Z(i+1,j+1) = u(j+n*(i-1));

end

end

%% plotting

x1=0:h:1;

y1=0:h:1;

figure(1)

surf(x1,y1,Z) % same plot as above, (x1, y1 are vectors)

view(2)

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['u(x_1,x_2) with A = ',num2str(a_amp),...

', N = ',num2str(n)])

figure(2)

surf(x1,y1,Z) % same plot as above

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['u(x_1,x_2) with A = ',num2str(a_amp),...

', N = ',num2str(n)])

A.1 Matlab Programs for Gaussian Elimination using LU Factorization 423

% Plotting a(x,y)

Z_a= zeros(n+2);

for i=1:(n+2)

for j=1:(n+2)

Z_a(i,j)= 1 + a_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

figure(3)

surf(x1,y1,Z_a)

xlabel('x_1')

ylabel('x_2')

zlabel('a(x_1,x_2)')

title(['a(x_1,x_2) with A = ',num2str(a_amp)])

% plott the function f(x,y)

Z_f= zeros(n+2);

for i=1:(n+2)

for j=1:(n+2)

Z_f(i,j)=f_amp*exp(-((x1(i)-x_0)ˆ2/(2*c_xˆ2)...

+(y1(j)-y_0)ˆ2/(2*c_yˆ2)));

end

end

figure(4)

surf(x1,y1,Z_f)

xlabel('x_1')

ylabel('x_2')

zlabel('f(x_1,x_2)')

title(['f(x_1,x_2) with A_f = ',num2str(f_amp)])

function A=DiscretePoisson2D(n)

%%

The function for 2D discretization of the Laplace operator

% with sign minus: - laplace

% Input parameters:

% n - number of inner nodes, which is assumed to be the same in both

% the x_1- and x_2 directions.

%%

A = zeros(n*n,n*n);

% Main diagonal

for i=1:n*n

A(i,i)=4;

end

% 1st and 2nd off-diagonals

for k=1:n % go through block 1 to n

for i=1:(n-1)

A(n*(k-1)+i,n*(k-1)+i+1)=-1; %

A(n*(k-1)+i+1,n*(k-1)+i)=-1;

424 A Matlab Programs

end

end

% 3rd and 4th off-diagonals

for i=1:n*(n-1)

A(i,i+n)=-1;

A(i+n,i)=-1;

end

end

A.2 Matlab programs for Cholesky decomposition

% main program for the solution of Poisson's equation

% - a laplace = f in 2D using Cholesky decomposition

close all

%Define input parameters

n=20; % number of inner nodes in one direction.

A_1 = 10; % amplitude 1 for the rhs

A_2 = 10; % amplitude 2 for the rhs

h = 1/(n+1); % define step length

%%---

% Computing all matrices and vectors

%--

% Generate a n*n by n*n stiffness matrix

S = DiscretePoisson2D(n);

% factorize A=L*LˆT using Cholesky decomposition

[L]=Cholesky(S);

%% generate coefficient matrix of a((x_1)_i,(x_2)_j) = a(i*h,j*h)

C = zeros(n,n);

for j=1:n

for i=1:n

C(i,j) = 1;

end

end

%% compute load vector f

f=zeros(nˆ2,1);

for j=1:n

for i=1:n

f(n*(i-1)+j)= A_1*exp(-((i*h-0.25)ˆ2/0.02...

+(j*h-0.25)ˆ2/0.02))+ A_2*exp(-((i*h-0.75)ˆ2/0.02...

A.2 Matlab programs for Cholesky decomposition 425

+(j*h-0.75)ˆ2/0.02));

end

end

%%---

% Solving the linear system of equations using Gaussian elimination

%--

% We have system A u = 1/hˆ2 (C*L*LˆT) u = f

% 1. Compute vector of right hand side

% as b(i,j)=f(i,j)/a(i,j)

b=zeros(nˆ2,1);

for j=1:n

for i=1:n

b(n*(i-1)+j)=f(n*(i-1)+j)/C(i,j); % Use coefficient matrix C

end

end

% We now have system to solve: 1/hˆ2 A u = b

% Use first LU decomposition: 1/hˆ2 (L LˆT) u = b

% 2. Compute v = Lˆ(-1)*b by forward substitution.

v=ForwSub(L,b);

% We now have system 1/hˆ2 LˆT u = v

% 3. Compute w = LˆTˆ(-1)*v by backward substitution.

w=BackSub(L',v);

% 4. We now have system 1/hˆ2 u = w

% Compute finally solution as: u=hˆ2*w

u=hˆ2*w;

%%---

% Plots and figures.

%--

% sort the data in u into the mesh-grid, the boundary nodes are zero.

Z = zeros(n+2,n+2);

for j=1:n

for i=1:n

Z(i+1,j+1) = u(n*(i-1)+j);

end

end

%% plotting

x1=0:h:1;

y1=0:h:1;

426 A Matlab Programs

figure(1)

surf(x1,y1,Z) % same plot as above, (x1, y1 are vectors)

view(2)

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['u(x_1,x_2) with N = ',num2str(n)])

figure(2)

surf(x1,y1,Z) % same plot as above

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['u(x_1,x_2) with N = ',num2str(n)])

function L=Cholesky(A)

% Function factorizes square matrix A, assuming that A is s.p.d. matrix,

% into A=LL', where L' is the transpose

% of L, and L is non-singular lower triangular matrix.

%%

s=size(A);

n=s(1);

L=zeros(n);

% diagonal elements i=j

% a_jj=v_j*v_j'=l_j1ˆ2+l_j2ˆ2+...+l_jjˆ2 (sum has j-terms)

% elements below diagonal, i>j

% a_ij=v_i*v_j'=l_i1 l_j1 + l_i2 l_j2 + ... + l_ij l_jj (sum has j terms)

for j=1:n % go through column 1 to n

% Compute diagonal elements, i=j

L(j,j)=A(j,j);

for k=1:(j-1)

L(j,j)=L(j,j)-L(j,k)ˆ2;

end

L(j,j)=L(j,j)ˆ(1/2);

% Compute elements below diagonal, i>j

for i=(j+1):n

L(i,j)=A(i,j);

for k=1:(j-1)

L(i,j)=L(i,j)-L(i,k)*L(j,k);

end

L(i,j)=L(i,j)/L(j,j);

end

end

end

A.3 Matlab Programs testing Hager’s condition estimator 427

A.3 Matlab Programs testing Hager’s condition estimator

%%%

% Hager's algorithm: for the input matrix A

% the function HagerCond(A) computes

% the lower bound of the one-norm of the matrix A.

%%%

% First we generate some random symmetric matrices

n=5;

A=zeros(n);

for i=1:n

for j=1:n

tal = rand*30;

A(i,i)=rand*20;

A(i,j)=tal;

A(j,i)=tal;

end

end

disp(' The input matrix A is:');

A

disp(' The computed lower bound of ||A||_1 is:');

HagersEst = HagersAlg(A)

disp(' result of norm(A,1) is:');

norm(A,1)

%%

% Run Hager's algorithm.

%%

function [LowerBound] = HagersAlg(B)

x=(1/length(B))*ones(length(B),1);

iter=1;

while iter < 1000

w=B*x; xi=sign(w); z = B'*xi;

if max(abs(z)) <= z'*x

break

else

x= (max(abs(z))== abs(z));

end

iter = iter + 1;

428 A Matlab Programs

end

LowerBound = norm(w,1);

end

A.4 Matlab Program FitFunctionNormaleq.m to test fitting

to a polynomial using method of normal equations

%%

% Solution of least squares problem min_x || Ax - y ||_2

% using the method of normal equations.

% Matrix A is constructed as a Vandermonde matrix.

% Program performs fitting to the function y = sin(pi*x/5) + x/5

% %%%

d=5; % degree of the polynomial

m=10;%number of discretization points or rows in the matrix A

x=zeros(1,m);

y=zeros(1,m);

A=[];

for i=1:1:m

x = linspace(-10.0,10.0,m);

% exact function which should be approximated

y(i)= sin(pi*x(i)/5) + x(i)/5;

end

% construction of a Vamdermonde matrix

for i=1:1:m

for j=1:1:d+1

A(i,j)=power(x(i),j-1);

end

end

% computing the right hand side in the method of normal equations

c=A'*y';

% computing matrix in the left hand side in the method of normal equations

C=A'*A;

l=zeros(d+1);

% solution of the normal equation using Cholesky decomposition

for j=1:1:d+1

s1=0;

for k=1:1:j-1

s1=s1+l(j,k)*l(j,k);

end

A.5 Matlab Program FitFunctionQRCGS.m 429

l(j,j)=(C(j,j)-s1)ˆ(1/2);

for i=j+1:1:d+1

s2=0;

for k=1:1:j-1

s2=s2+l(i,k)*l(j,k);

end

l(i,j)=(C(i,j)-s2)/l(j,j);

end

end

for i=1:1:d+1

for k=1:1:i-1

c(i)=c(i)-c(k)*l(i,k);

end

c(i)=c(i)/l(i,i);

end

for i=d+1:-1:1

for k=d+1:-1:i+1

c(i)=c(i)-c(k)*l(k,i);

end

c(i)=c(i)/l(i,i);

end

figure(1)

plot(x,y,'o- r', 'linewidth',1)

hold on

% compute approximation to this exact polynomial with comp. coefficients c

approx = A*c;

plot(x,approx,'*- b', 'linewidth',1)

hold off

str_xlabel = ['poly.degree d=', num2str(d)];

legend('exact sin(pi*x(i)/5) + x(i)/5',str_xlabel);

xlabel('x')

% computation of the relative error as

% norm(approx. value - true value) / norm(true value)

e1=norm(y'- approx)/norm(y')

A.5 Matlab Program FitFunctionQRCGS.m to test fitting to a

polynomial using QR decomposition via CGS

%%

% Solution of least squares problem min_x || Ax - y ||_2

% using QR decomposition. QR decomposition is performed via classical

430 A Matlab Programs

% Gram-Schmidt (CGM) orthogonalization procedure.

% Matrix A is constructed as a Vandermonde matrix.

% Program performs fitting to the function y = sin(pi*x/5) + x/5

% %%%

d=5; % degree of polynomial

m=10;%number of discretization points or rows in the matrix A

p=ones(1,d+1);

x=zeros(1,m);

y=zeros(1,m);

A=[];

for i=1:1:m

x = linspace(-10.0,10.0,m);

% exact function which should be approximated

y(i)= sin(pi*x(i)/5) + x(i)/5;

end

% construction of a Vamdermonde matrix

for i=1:1:m

for j=1:1:d+1

A(i,j)=power(x(i),j-1);

end

end

q=[];

r=[];

%QR decomposition via CGM

for i=1:1:d+1

q(:,i)=A(:,i);

for j=1:1:i-1

r(j,i)=q(:,j)'*A(:,i);

q(:,i)=q(:,i)-r(j,i)*q(:,j);

end

r(i,i)=norm(q(:,i));

q(:,i)=q(:,i)/r(i,i);

end

b=[];

b=q'*y';

for i=d+1:-1:1

for k=d+1:-1:i+1

b(i)=b(i)-b(k)*r(i,k);

end

b(i)=b(i)/r(i,i);

end

figure(1)

plot(x,y,'o- r', 'linewidth',1)

A.6 Matlab Program CGS.m 431

hold on

% compute approximation to this exact polynomial with comp. coefficients b

approx = A*b;

plot(x,approx,'*- b', 'linewidth',1)

hold off

str_xlabel = ['poly.degree d=', num2str(d)];

legend('exact sin(pi*x(i)/5) + x(i)/5',str_xlabel);

xlabel('x')

% computation of the relative error as

% norm(approx. value - true value) / norm(true value)

e1=norm(y'- approx)/norm(y')

A.6 Matlab Program CGS.m performing QR decomposition via

CGS

%%

% Classical Gram-Schmidt (CGS) orthogonalization process

% and solution of the linear least square problem using CGS.

% %%%

% size of our matrix A is m-by-n

m= 6;

n=3;

% vector of the right hand side

y=zeros(1,m);

A=[1,0,0;

0,1,0;

0,0,1;

-1, 1,0;

-1,0,1;

0,-1,1];

y = [1237,1941,2417,711,1177,475];

% allocate matrices q and r for QR decomposition

q=[];

r=[];

432 A Matlab Programs

%QR decomposition using classical Gram-Schmidt orthogonalization

for k=1:1:n

q(:,k)=A(:,k);

for j=1:1:k-1

r(j,k)=q(:,j)'*A(:,k);

q(:,k)=q(:,k)-r(j,k)*q(:,j);

end

r(k,k)=norm(q(:,k));

q(:,k)=q(:,k)/r(k,k);

end

%compute solution of the system Ax = QR x = y

% by backward substitution: R x = QˆT y

b=[];

% compute right hand side QˆT y

b=q'*y';

% perform backward substitution to get solution x = Rˆ(-1) QˆT y

% obtain solution in b

for i=n:-1:1

for k=n:-1:i+1

b(i)=b(i)-b(k)*r(i,k);

end

b(i)=b(i)/r(i,i);

end

A.7 Matlab Programs to fit a function using linear splines. The

main program is MainHatFit.m

%%

% Solution of least squares problem min_x || Ax - y ||_2

% using the method of normal equations, QR decomposition

% and SVD decomposition.

% Matrix A is constructed using linear splines.

% Program performs fitting to the function y = sin(pi*x/5) + x/5

% %%

clc

clear

clf

format long

close all

% Define number of measurements or data points. This is

A.7 Matlab Programs 433

% also number of columns in matrix A.

m=100;

%number of junction points

K=5;

x = linspace(-10,10.0,m)';

T=linspace(-10,10.0,K)';

% function whcih we want to fit

b=sin(pi*x/5) + x/5;

A=zeros(m,K);

% construct matrix A using linear splines

for k=1:K

A(:,k)=fihatt(k,x,T);

end

% compute condition number of A

cond(A)

% solution of linear system Ax = b by different methods

% using method of normal equations

xHatChol=LLSChol(A,b);

%using QR decomposition of A

xHatQR = LLSQR(A,b);

% using SVD decomposition of A

xHatSVD = LLSSVD(A,b);

disp(' Computed relative error ')

disp(' Method of normal eq. QR SVD')

disp('')

disp([norm(A*xHatChol-b)/norm(b) norm(A*xHatQR-b)/norm(b) norm(A*xHatSVD-b)/norm(b)])

% Method of iterative refinement via Newton's method

tol = 0.07;

refinedC=newtonIR(A,xHatChol,b,tol);

refinedQ=newtonIR(A,xHatQR,b,tol);

refinedS=newtonIR(A,xHatSVD,b,tol);

disp('Computed relative error after iterative refinement via Newton method ')

disp(' Method of normal eq. QR SVD')

disp('')

disp([norm(A*refinedC-b)/norm(b) norm(A*refinedQ-b)/norm(b)

norm(A*refinedS-b)/norm(b)])

434 A Matlab Programs

% Plot exact and computed functions

% choose number of points to plot solution

x = linspace(-10,10.0,100)';

b=(sin(pi*x/5) + x/5);

A=zeros(100,K);

for k=1:K

A(:,k)=fihatt(k,x,T);

end

% Choose method to be plotted

% Here, A is constructed by linear splines, approximated function is computed

% via the method of normal equations (Cholesky decomposition)

%method=A*xHatChol;

% Here, A is constructed by linear splines, approximated function is computed

% via iterative refinement of the Cholesky-solution throught the Newton method

method=A*refinedC;

% Here, A is constructed by linear splines, approximated function is computed

% via QR decomposition

%method=A*xHatQR;

% Here, A is constructed by linear splines, approximated function is computed

% via iterative refinement of the QR-solution throught the Newton method

%method=refinedQ;

% Here, A is constructed by linear splines, approximated function is computed

% via SVD decomposition

%method=A*xHatSVD;

% Here, A is constructed by linear splines, approximated function is computed

% via iterative refinement of the SVD-solution throught the Newton method

%method=A*refinedS;

figure (1)

plot(x,b,'o r', 'linewidth',1)

hold on

plot(x,method,' * b', 'linewidth',1)

hold on

legend('function', 'approx');

figure('Name','Hat functions')

plot(x,A,'k')

%%

% Construction of columns in matrix A using linear splines.

% Input arguments: T - column vector with junction points,

% x are measurement ponts (discretization points).

% Returns column with number k to the matrix A.

A.7 Matlab Programs 435

% %%

function f=fihatt(k,x,T)

h=diff(T);

N=length(T);

f=zeros(size(x));

if k>1

I=find(x>=T(k-1) & x<=T(k));

f(I)=(x(I)-T(k-1))/h(k-1);

end

if k<N

I=find(x>=T(k) & x<=T(k+1));

f(I)=(T(k+1)-x(I))/h(k);

end

%%

% Iterative refinement using Newton's method.

% Matrix A is m-by-n, m > n, the vector of the rhs b is of the size n.

% %%

function w=newtonIR(A,x,b,tol)

relative_error=1;

iter = 0;

while relative_error > tol

%compute residual

r = A*x-b;

d=A\r;

x=x-d;

iter = iter+1

relative_error = norm(A*x - b)/norm(b)

% here we introduce the maximal number of iterations

% in Newton's method: if the relative error

% is not rediced - we terminate computations

if iter > 100

break

end

end

w=x;

%%

% Solution of the system of linear equations AˆT Ax = AˆT b

% using Cholesky factorization of AˆT A.

% Matrix A is m-by-n, m > n, the vector of the rhs b is of the size n.

% %%

436 A Matlab Programs

function x=LLSChol(A,b)

ATb=A'*b;

ATA=A'*A;

n=length(A(1,:));

lowerChol=zeros(n);

%Cholesky factorization

for j=1:1:n

s1=0;

for k=1:1:j-1

s1=s1+lowerChol(j,k)*lowerChol(j,k);

end

lowerChol(j,j)=(ATA(j,j)-s1)ˆ(1/2);

for i=j+1:1:n

s2=0;

for k=1:1:j-1

s2=s2+lowerChol(i,k)*lowerChol(j,k);

end

lowerChol(i,j)=(ATA(i,j)-s2)/lowerChol(j,j);

end

end

% Solver for LLˆT x = AˆTb:

% Define z=LˆTx, then solve

% Lz=AˆT b to find z.

% After by known z we get x.

% forward substitution Lz=AˆT b to obtain z

for i=1:1:n

for k=1:1:i-1

ATb(i)=ATb(i)-ATb(k)*lowerChol(i,k);

end

ATb(i)=ATb(i)/lowerChol(i,i);

end

% Solution of LˆTx=z , backward substitution

for i=n:-1:1

for k=n:-1:i+1

ATb(i)=ATb(i)-ATb(k)*lowerChol(k,i);

end

ATb(i)=ATb(i)/lowerChol(i,i);

end

% Obtained solution

x=ATb;

%%

% Solution of the system of linear equations Ax = b via

A.7 Matlab Programs 437

% QR decomposition of a matrix A.

% Matrix A is m-by-n, m > n, the vector of the rhs b is of the size n.

% QR decomposition of A is done via classical

% Gram-Schmidt (CGM) orthogonalization procedure.

% %%%

function x=LLSQR(A,b)

n=length(A(1,:));

q=[];

r=[];

for i=1:1:n

q(:,i)=A(:,i);

for j=1:1:i-1

r(j,i)=q(:,j)'*A(:,i);

q(:,i)=q(:,i)-r(j,i)*q(:,j);

end

r(i,i)=norm(q(:,i));

q(:,i)=q(:,i)/r(i,i);

end

% compute right hand side in the equation

Rx=q'*b;

% compute solution via backward substitution

for i=n:-1:1

for k=n:-1:i+1

Rx(i)=Rx(i)-Rx(k)*r(i,k);

end

Rx(i)=Rx(i)/r(i,i);

end

x = Rx;

%%

% Solution of the system of linear equations Ax = b via

% SVD decomposition of a matrix A.

% SVD decomposition is done via matlab function svd.

% Matrix A is m-by-n, m > n, the vector of the rhs b is of the size n.

% %%%

function x=LLSSVD(A,b)

[U, S, V]=svd(A);

UTb=U'*b;

% choose tolerance

438 A Matlab Programs

tol=max(size(A))*eps(S(1,1));

s=diag(S);

n=length(A(1,:));

% compute number of singular values > tol

r=sum(s > tol);

w=[(UTb(1:r)./s(1:r))' zeros(1,n-r)]';

x=V*w;

A.8 Matlab Programs to fit a function using bellsplines. The

main program is MainBellspline.m. Functions

newtonIR.m, LLSChol.m, LLSQR.m, LLSSVD.m are the

same as in section A.7.

%%

% Solution of least squares problem min_x || Ax - y ||_2

% using the method of normal equations, QR decomposition

% and SVD decomposition.

% Matrix A is constructed using bellsplines.

% Program performs fitting to the function y = sin(pi*x/5) + x/5

% %%

clc

clear

clf

close all

format short

% input interval on which we fit the function

interval=10;

% junction points

T=linspace(-10,interval,7)';

% Define number of measurement points m

m=30;

x=linspace(-10,interval,m)';

%exact function to be fitted

b=sin(pi*x/5) +x/5;

% construct matrix A with bellsplines

%Number of bellsplines should be number of junction points +2

A=fbell(x,T);

A.8 Matlab Programs MainBellspline.m, fbell.m 439

%solution of system Ax = b using different methods for solution

% of least squares problem.

tic

% use method of normal equations

xHatChol = LLSChol(A,b);

toc

tic

%use SVD decomposition of A

xHatSVD = LLSSVD(A,b);

toc

tic

% use QR decomposition of A

xHatQR = LLSQR(A,b);

toc

% compute condition number of A

cond(A)

% use iterative refinement of the obtained solution

% via Newton's method

% choose tolerance in Newton's method

tol =0.2;

y= newtonIR(A,xHatChol,b,tol);

y1= newtonIR(A,xHatQR,b,tol);

y2= newtonIR(A,xHatSVD,b,tol);

% compute relative errors

eC=norm(A*xHatChol-b)/norm(b);

eS=norm(A*xHatSVD-b)/norm(b);

eQ=norm(A*xHatQR-b)/norm(b);

disp(' --------------Computed relative errors ------------------- ')

disp(' Method of normal eq. QR SVD')

disp('')

disp([eC eS eQ])

disp('Computed relative errors after iterative refinement via Newton method ')

disp(' Method of normal eq. QR SVD')

disp('')

disp([norm(A*y-b)/norm(b) norm(A*y1-b)/norm(b) norm(A*y2-b)/norm(b)])

% Plot results

figure(1)

440 A Matlab Programs

%plot(t,A,'linewidth',2)

plot(x,A,'linewidth',2)

m =size(A,2);

str_xlabel = [' number of bellsplines=', num2str(m)];

title(str_xlabel)

figure('Name','Cholesky')

title('Cholesky')

plot(x,b,'o- r', 'linewidth',2)

hold on

plot(x,A*xHatChol,' *- b', 'linewidth',2)

legend('exact ', 'B-spline degree 3, Cholesky');

figure('Name','QR')

plot(x,b,'o- r', 'linewidth',2)

hold on

plot(x,A*xHatQR,'* - b', 'linewidth',2)

legend('exact ', 'B-spline degree 3, QR');

figure('Name','SVD')

title('SVD')

plot(x,b,'o- r', 'linewidth',2)

hold on

plot(x,A*xHatSVD,'*- b', 'linewidth',2)

legend('exact ', 'B-spline degree 3, SVD');

%%

% Matrix B is constructed using bellsplines.

% Input arguments: T - column vector with junction points,

% x are measurement ponts (discretization points).

% %%

function B=fbell(x,T)

m=length(x);

N=length(T);

epsi=1e-14;

%construct N+6 column vector

a=[T(1)*[1 1 1]'; T; T(N)*(1+epsi)*[1 1 1]'];

n=N+5;

C=zeros(m,n);

for k=1:n

I=find(x>=a(k) & x<a(k+1));

if ∼isempty(I)
C(I,k)=1;

end

end

for j=1:3

B=zeros(m, n-j);

for k=1:n-j

A.9 Matlab Program PowerM.m to Test Power Method 441

d1=(a(k+j)-a(k));

if abs(d1)<=epsi

d1=1;

end

d2=(a(k+j+1)-a(k+1));

if abs(d2)<=epsi

d2=1;

end

B(:,k)=(x-a(k)).*C(:,k)/d1 + (a(k+j+1)-x).*C(:,k+1)/d2;

end

C=B;

end

A.9 Matlab Program PowerM.m to Test Power Method

%%%

% Power method

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc

clear all

close all

eps = 1e-7;

fig = figure;

for i =1:4

if(i==1)

% Matrix not diagonalizable

% n=2;

% A =[0 10;0 0];

% Matrix has two real eigenvalues with the same sign

n=3;

A =[5 0 0;0 2 0;0 0 -5];

elseif (i==2)

% Matrix has four real eigenvalues with the same sign

n =4;

A=[3,7,8,9;5,-7,4,-7;1,-1,1,-1;9,3,2,5];

elseif (i ==3)

% Largest eigenvalue is complex

n =3;

A =[0 -5 2; 6 0 -12; 1 3 0];

elseif (i==4)

n =2;

A =[7 -2;3 0];

n=5;

A=rand(n);

end

% get reference values of eigenvalues

exact_lambda = eig(A);

% set initial guess for the eigenvector x0

442 A Matlab Programs

x0=rand(n,1);

x0=x0/norm(x0);

lambda0 = inf ;

% lambda1 = 0;

lambdavec =[];

% counter for number of iterations

count =1;

% main loop in the power method

while (count <1000)

y1=A*x0;

% compute approximate eigenvector

x1=y1/norm(y1);

% compute approximate eigenvalue

lambda1 = transpose(x1)*A*x1;

lambdavec(count)= lambda1 ;

x0=x1;

if(abs(lambda1 - lambda0)<eps)

break ;

end

lambda0 = lambda1;

count = count + 1;

end

% Print computed eigenvalue

str =['Computed eigenvalue:' num2str(lambda1)];

str=[str, ', Exact eigenvalues:' num2str(exact_lambda',2)];

subplot (2 ,2,i)

plot (lambdavec, 'LineWidth',3)

xlabel('Number of iterations in Power method')

ylabel('Computed eigenvalue')

title (str, 'fontsize',10)

end

A.10 Matlab Program InverseIteration.m to Test Inverse

Iteration Method

%%%

% Inverse Iteration or Inverse Power method

% Computes eigenvalue closest to sigma and corresponding eigenvector

A.10 Matlab Program InverseIteration.m to Test Inverse Iteration Method 443

% %%%

clc

clear all

close all

eps = 1e-17;

fig = figure;

for i =1:4

if(i==1)

% Matrix not diagonalizable

n=2;

A =[0 10;0 0];

% Matrix has two real eigenvalues with the same sign

% n=3;

% A =[5 0 0;0 2 0;0 0 -5];

elseif (i==2)

% Matrix has four real eigenvalues with the same sign

n =4;

A=[3,7,8,9;5,-7,4,-7;1,-1,1,-1;9,3,2,5];

elseif (i ==3)

% Largest eigenvalue is complex

n =3;

A =[0 -5 2; 6 0 -12; 1 3 0];

elseif (i==4)

% n =2;

% A =[7 -2;3 0];

n=5;

A=rand(5,5);

end

% get reference values of eigenvalues

exact_lambda = eig(A);

%make orthogonalization

Q=orth(rand(n,n));

A= Q'*A*Q;

% set initial guess for the eigenvector x0

x0=rand(n,1);

x0=x0/norm(x0);

lambda0 = inf;

% choose a shift: should be choosen as closest to the desired eigenvalue

sigma=10;

% lambda1 = 0;

lambdavec =[];

count =1;

% main loop in the power method

while (count <1000)

A_shift = A - sigma*eye(size(A));

y1= inv(A_shift)*x0;

x1=y1/norm(y1);

lambda1 = transpose(x1)*A*x1;

lambdavec(count)= lambda1 ;

444 A Matlab Programs

x0=x1;

if(abs(lambda1 - lambda0)<eps)

break ;

end

lambda0 = lambda1 ;

count = count + 1;

end

% Print computed and exact eigenvalue

str =['Example ' num2str(i)];

str =[str, '. Comp. eig.:' num2str(lambda1)];

str=[str, ', Ref. eig.:' num2str(exact_lambda',2)];

subplot (2 ,2,i)

plot (lambdavec, 'LineWidth',3)

xlabel(' Number of iterations in Inverse Power method')

ylabel('Computed eigenvalues')

title (str, 'fontsize',12)

end

A.11 Matlab Program MethodOrtIter.m to Test Method of

Orthogonal Iteration

%%%

% Method of Orthogonal Iteration. Let initial Q=I. Our goal is

% compute eigenvalues and eigenvectors of the matrix A with the size (n, n).

%%%

clc

clear all

close all

eps = 1e-07;

fig = figure;

N=10;

for i =1:6

if(i==1)

n=N;

A=hilb(N);

elseif (i==2)

n=20;

A=hilb(20);

elseif (i ==3)

% Largest eigenvalue is complex

n =3;

A =[0 -5 2; 6 0 -12; 1 3 0];

elseif (i==4)

% Matrix has four real eigenvalues

n =4;

A=[3,7,8,9;5,-7,4,-7;1,-1,1,-1;9,3,2,5];

A.11 Matlab Program MethodOrtIter.m to Test Method of Orthogonal Iteration 445

elseif (i==5)

n =5;

%

A=[3,7,8,9,12;5,-7,4,-7,8;1,1,-1,1,-1;4,3,2,1,7;9,3,2,5,4];

elseif (i==6)

n=N;

A= rand(N,N);

end

lambda0= inf(n,1);

count = 1;

iter =1;

% get exact eigenvalues in sorted order

exact_lambda = sort(eig(A));

%**
%%% Method of orthogonal iteration

Q = eye(n);

for k = 1:100

Y = A*Q;

[Q,R] = qr(Y);

% end

T=Q'*A*Q;

%end

%***************************************

% %%%%%%%%% Find eigenvalues from Real Schur block

j =2; count =1;

eigs = zeros(1,n);

while (j <=n)

%real eigenvalues

if(abs(T(j,j-1)) < 1e-3)

eigs(j-1) =T(j -1,j -1);

count= j -1;

else

% Complex eigenvalues

eigs(j-1: j)= eig(T(j -1:j,j -1:j));

count =j;

j=j +1;

end

j=j +1;

end

if(count < length(eigs))

eigs(n)=T(n,n);

end

%*******************************

computed_lambda = sort(eigs);

computed_lambda = computed_lambda';

if(norm(abs(computed_lambda - lambda0))<eps)

break ;

446 A Matlab Programs

end

lambda0 = computed_lambda ;

iter = iter + 1;

end

%***************************************
str =['Comp. eig.:' num2str(computed_lambda')];

str=[str, ', Ex. eig.:' num2str(exact_lambda',2)];

str_xlabel =

['Example ',num2str(i), '. Nr. of it. in method of Orth. it.:', num2str(iter)];

subplot (3,2,i)

plot (exact_lambda,'o b','LineWidth',2,'Markersize',10)

hold on

plot (computed_lambda,'+ r','LineWidth',2, 'Markersize',10)

% xlabel(str, 'fontsize',10)

xlabel('Real part of eigenvalues');

ylabel('Imag. part of eigenvalues');

exact_lambda

computed_lambda

legend('Exact eigenvalues','Computed eigenvalues')

title(str_xlabel,'fontsize',12)

end

A.12 Matlab Program MethodQR iter.m to Test Method of

QR Iteration

%%

% Method of QR iteration. This method reorganizes the method of

% orthogonal iteration and is more efficient since it does not requires

% assumption about distinct absolute eigenvalues of A.

%%

clc

% clear all

% close all

eps = 1e-07;

fig = figure;

N=10;

for i =1:6

if(i==1)

A.12 Matlab Program MethodQR iter.m to Test Method of QR Iteration 447

n=N;

A=hilb(N);

elseif (i==2)

n=20;

A=hilb(20);

elseif (i ==3)

% Largest eigenvalue is complex

n =3;

A =[0 -5 2; 6 0 -12; 1 3 0];

elseif (i==4)

% Matrix has four real eigenvalues

n =4;

A=[3,7,8,9;5,-7,4,-7;1,-1,1,-1;9,3,2,5];

elseif (i==5)

n =5;

%

A=[3,7,8,9,12;5,-7,4,-7,8;1,1,-1,1,-1;4,3,2,1,7;9,3,2,5,4];

elseif (i==6)

n=N;

A= rand(N,N);

end

lambda0= inf(n,1);

count = 1;

iter =1;

% get exact eigenvalues in sorted order

exact_lambda = sort(eig(A));

%**
%%% Method of QR iteration

for k = 1:100

[Q,R] = qr(A);

A= R*Q;

%***************************************
% %%%%%%%%% Find eigenvalues from Real Schur block

j =2; count =1;

eigs = zeros(1,n);

while (j <=n)

%real eigenvalues

if(abs(A(j,j-1)) < 1e-10)

eigs(j-1) =A(j -1,j -1);

count= j -1;

else

% Complex eigenvalues

eigs(j-1: j)= eig(A(j -1:j,j -1:j));

count =j;

j=j +1;

end

j=j +1;

end

if(count < length(eigs))

448 A Matlab Programs

eigs(n)=A(n,n);

end

%*******************************

computed_lambda = sort(eigs)';

if(norm(abs(computed_lambda - lambda0))<eps)

break ;

end

lambda0 = computed_lambda ;

iter = iter + 1;

end

%***************************************
str =['Comp. eig.:' num2str(computed_lambda')];

str=[str, ', Ex. eig.:' num2str(exact_lambda',2)];

str_xlabel =

['Example ',num2str(i), '. Nr. of it. in method of QR it.', num2str(iter)];

subplot (3,2,i)

plot (exact_lambda,'o b','LineWidth',2,'Markersize',10)

hold on

plot (computed_lambda,'+ r','LineWidth',2, 'Markersize',10)

% xlabel(str, 'fontsize',10)

xlabel('Real part of eigenvalues');

ylabel('Imag. part of eigenvalues');

exact_lambda

computed_lambda

legend('Exact eigenvalues','Computed eigenvalues')

title(str_xlabel,'fontsize',12)

end

A.13 Matlab Program MethodQR shift.m to Test Method of

QR Iteration with Shift σ = A(n,n)

%%

% Method of QR iteration with shift sigma=A(n,n)

% %%%

clc

%clear all

%close all

eps = 1e-09;

fig = figure;

A.13 Matlab Program MethodQR shift.m 449

N=10;

for i =1:6

if(i==1)

n=N;

A=hilb(N);

elseif (i==2)

n=20;

A=hilb(20);

elseif (i ==3)

% Largest eigenvalue is complex

n =3;

A =[0 -5 2; 6 0 -12; 1 3 0];

elseif (i==4)

% Matrix has four real eigenvalues

n =4;

A=[3,7,8,9;5,-7,4,-7;1,-1,1,-1;9,3,2,5];

elseif (i==5)

n =5;

%

A=[3,7,8,9,12;5,-7,4,-7,8;1,1,-1,1,-1;4,3,2,1,7;9,3,2,5,4];

elseif (i==6)

n=N;

A= rand(N,N);

end

lambda0= inf(n,1);

count = 1;

iter =1;

%choose shift

%sigma=1.0;

sigma=A(n,n);

%sigma=A(1,1);

% get exact eigenvalues in sorted order

exact_lambda = sort(eig(A));

%%% Method of QR iteration with shift

for k = 1:100

A = A - sigma*eye(n);

[Q,R] = qr(A);

% end

A = R*Q + sigma*eye(n);

%compute shift

sigma=A(n,n);

% %%%%%%%%% Find eigenvalues from Real Schur block

j =2; count =1;

eigs = zeros(1,n);

450 A Matlab Programs

while (j <=n)

%real eigenvalues

if(abs(A(j,j-1)) < 1e-7)

eigs(j-1) =A(j -1,j -1);

count= j -1;

else

% Complex eigenvalues

eigs(j-1: j)= eig(A(j -1:j,j -1:j));

count =j;

j=j +1;

end

j=j +1;

end

if(count < length(eigs))

eigs(n)=A(n,n);

end

%*******************************

computed_lambda = sort(eigs)';

if(norm(abs(computed_lambda - lambda0))<eps)

break ;

end

lambda0 = computed_lambda ;

iter = iter + 1;

end

%***************************************
str =['Comp. eig.:' num2str(computed_lambda')];

str=[str, ', Ex. eig.:' num2str(exact_lambda',2)];

str_xlabel =

['Example ',num2str(i), '. Nr.it. in QR it. with shift:', num2str(iter)];

subplot (3,2,i)

plot (exact_lambda,'o b','LineWidth',2,'Markersize',10)

hold on

plot (computed_lambda,'+ r','LineWidth',2, 'Markersize',10)

% xlabel(str, 'fontsize',10)

xlabel('Real part of eigenvalues');

ylabel('Imag. part of eigenvalues');

exact_lambda

computed_lambda

legend('Exact eigenvalues','Computed eigenvalues')

title(str_xlabel,'fontsize',12)

end

A.14 Matlab Program MethodQR Wshift.m 451

A.14 Matlab Program MethodQR Wshift.m to Test Method of

QR Iteration with Wilkinson’s Shift

%%%

% Method of QR iteration with Wilkonson's shift

% %%

clc

%clear all

%close all

eps = 1e-09;

fig = figure;

N=10;

for i =1:6

if(i==1)

n=N;

A=hilb(N);

elseif (i==2)

n=20;

A=hilb(20);

elseif (i ==3)

% Largest eigenvalue is complex

n =3;

A =[0 -5 2; 6 0 -12; 1 3 0];

elseif (i==4)

% Matrix has four real eigenvalues

n =4;

A=[3,7,8,9;5,-7,4,-7;1,-1,1,-1;9,3,2,5];

elseif (i==5)

n =5;

%

A=[3,7,8,9,12;5,-7,4,-7,8;1,1,-1,1,-1;4,3,2,1,7;9,3,2,5,4];

elseif (i==6)

n=N;

A= rand(N,N);

end

lambda0= inf(n,1);

count = 1;

iter =1;

%Wilkinson's shift

eig_w = eig([A(n-1,n-1),A(n-1,n); A(n,n-1),A(n,n)]);

abs_eig1 = abs(A(n,n) - eig_w(1));

abs_eig2 = abs(A(n,n) - eig_w(2));

if abs_eig1 < abs_eig2

sigma = eig_w(1);

else

452 A Matlab Programs

sigma = eig_w(2);

end

% get exact eigenvalues in sorted order

exact_lambda = sort(eig(A));

%**
%%% Method of QR iteration with shift

for k = 1:100

A = A - sigma*eye(n);

[Q,R] = qr(A);

% end

A = R*Q + sigma*eye(n);

% compute Wilkinson's shift

eig_w = eig([A(n-1,n-1),A(n-1,n); A(n,n-1),A(n,n)]);

abs_eig1 = abs(A(n,n) - eig_w(1));

abs_eig2 = abs(A(n,n) - eig_w(2));

if abs_eig1 < abs_eig2

sigma = eig_w(1);

else

sigma = eig_w(2);

end

% %%%%%%%%% Find eigenvalues from Real Schur block

j =2; count =1;

eigs = zeros(1,n);

while (j <=n)

%real eigenvalues

if(abs(A(j,j-1)) < 1e-7)

eigs(j-1) =A(j -1,j -1);

count= j -1;

else

% Complex eigenvalues

eigs(j-1: j)= eig(A(j -1:j,j -1:j));

count =j;

j=j +1;

end

j=j +1;

end

if(count < length(eigs))

eigs(n)=A(n,n);

end

%*******************************

computed_lambda = sort(eigs)';

A.15 Matlab Program HessenbergQR.m 453

if(norm(abs(computed_lambda - lambda0))<eps)

break ;

end

lambda0 = computed_lambda ;

iter = iter + 1;

end

%***************************************
str =['Comp. eig.:' num2str(computed_lambda')];

str=[str, ', Ex. eig.:' num2str(exact_lambda',2)];

str_xlabel =

['Example ',num2str(i), '. Nr.it. in QR it. with W.shift:', num2str(iter)];

subplot (3,2,i)

plot (exact_lambda,'o b','LineWidth',2,'Markersize',10)

hold on

plot (computed_lambda,'+ r','LineWidth',2, 'Markersize',10)

% xlabel(str, 'fontsize',10)

xlabel('Real part of eigenvalues');

ylabel('Imag. part of eigenvalues');

exact_lambda

computed_lambda

legend('Exact eigenvalues','Computed eigenvalues')

title(str_xlabel,'fontsize',12)

end

A.15 Matlab Program HessenbergQR.m: First we Use

Hessenberg Reduction and then the Method of QR

Iteration

%%

% Matlab program HessenbergQR.m: we will first reduce the matrix A to the upper

% Hessenberg matrix and then compute it's QR factorization

%%

clc

clear all

close all

454 A Matlab Programs

eps = 1e-07;

fig = figure;

N=10;

for i =1:6

if(i==1)

n=N;

A=hilb(N);

elseif (i==2)

n=20;

A=hilb(20);

elseif (i ==3)

% Largest eigenvalue is complex

n =3;

A =[0 -5 2; 6 0 -12; 1 3 0];

elseif (i==4)

% Matrix has four real eigenvalues

n =4;

A=[3,7,8,9;5,-7,4,-7;1,-1,1,-1;9,3,2,5];

elseif (i==5)

n =5;

%

A=[3,7,8,9,12;5,-7,4,-7,8;1,1,-1,1,-1;4,3,2,1,7;9,3,2,5,4];

elseif (i==6)

n=N;

A= rand(N,N);

end

lambda0= inf(n,1);

count = 1;

iter =1;

% get exact eigenvalues in sorted order

exact_lambda = sort(eig(A));

% First we reduce matrix A to upper Hessenberg

for k=1:n - 2

x= A(k+1:n,k);

u=x;

u(1) = u(1)+ sign(x(1))*norm(x);

u=u/norm (u);

P= eye(n-k) - 2*(u*u') ;

A(k +1:n,k:n) =P*A(k +1:n,k:n) ;

A(1:n,k +1:n)=A(1:n,k+1:n)*P;

end

%%%

for k = 1:1000

[Q,R] = qr(A);

A = R*Q;

end

A.15 Matlab Program HessenbergQR.m 455

%%%%%%%%%% Find eigenvalues from Real Schur block

j =2; count =1;

eigs = zeros(1,n);

while (j <=n)

%real eigenvalues

if(abs(A(j,j-1)) < 1e-3)

eigs(j-1) =A(j -1,j -1);

count= j -1;

else

% Complex eigenvalues

eigs(j-1: j)= eig(A(j -1:j,j -1:j));

count =j;

j=j +1;

end

j=j +1;

end

if(count < length(eigs))

eigs(n)=A(n,n);

end

%%

computed_lambda = sort(eigs)';

if(norm(abs(computed_lambda - lambda0))<eps)

break ;

end

lambda0 = computed_lambda ;

iter = iter + 1;

str =['Comp. eig.:' num2str(computed_lambda')];

str=[str, ', Ex. eig.:' num2str(exact_lambda',2)];

str_xlabel =

['Example ',num2str(i), '. Nr. of it. in method of QR it.:', num2str(iter)];

subplot (3,2,i)

plot (exact_lambda,'o b','LineWidth',2,'Markersize',10)

hold on

plot (computed_lambda,'+ r','LineWidth',2, 'Markersize',10)

% xlabel(str, 'fontsize',10)

xlabel('Real part of eigenvalues');

ylabel('Imag. part of eigenvalues');

exact_lambda

computed_lambda

legend('Exact eigenvalues','Computed eigenvalues')

title(str_xlabel,'fontsize',12)

end

456 A Matlab Programs

A.16 Matlab Program RayleighQuotient.m for computation

the Rayleigh Quotient

%%

% Program which generates predefined random tridiagonal matrices A of dim(A)=n

% and then calls the function RayleighQuotient.m

%%

n=10;

A=zeros(n);

for i=2:n

tal = rand*30;

A(i,i)=rand*20;

A(i,i-1)=tal;

A(i-1,i)=tal;

end

A(1,1)=22*rand;

%run algorithm of Rayleigh Quotient Iteration

[rq]=RayleighQuotient(A);

disp('Computed Rayleigh Quotient is:')

disp(rq)

%%%

% Computes value of Rayleigh Quotient rq which is in the tolerance

% tol from an eigenvalue of A

%%

function rq = RayleighQuotient(A)

[n,∼]=size(A);
x0=zeros(n,1);

% initialize initial vector x0 which has norm 1

x0(n)=1;

tol = 1e-10;

xi = x0/norm(x0,2);

i=0;

% initialize Rayleigh Quotient for x0

rq = (xi'*A*xi)/(xi'*xi);

A.17 Matlab Program DivideandConq.mwhich implements the divide-and-conquer algorithm 11.2457

while norm((A*xi-rq*xi),2) > tol

yi = (A-rq*eye(size(A)))\xi;

xi=yi/norm(yi,2);

rq = (xi'*A*xi)/(xi'*xi)

i=i+1;

end

end

%%

A.17 Matlab Program DivideandConq.m

%%

% Program which generates predefined random tridiagonal matrices A of dim(A)=n

% and then calls the function DivideandConq.m

%%

%Program which generates some random symmetric tridiagonal matrices

n=5;

A=zeros(n);

for i=2:n

tal = rand*30;

A(i,i)=rand*20;

A(i,i-1)=tal;

A(i-1,i)=tal;

end

A(1,1)=22*rand;

%run Divide-and-Conquer algorithm

[Q,L]=DivideandConq(A)

%%%

% Computes algorithm of Divide-and-Conquer:

% eigenvalues will be roots of the secular equation and will lie

% on the diagonal of the output matrix L.

% In the output matrix Q will be corresponding eigenvectors.

%%

function [Q,L] = DivideandConq(T)

% Compute size of input matrix T:

[m,n] = size(T);

% here we will divide the matrix

m2 = floor(m/2);

%if m=0 we shall return

458 A Matlab Programs

if m2 == 0 %1 by 1

Q = 1; L = T;

return;

%else we perform recursive computations

else

[T,T1,T2,bm,v] = formT(T,m2);

%recursive computations

[Q1,L1] = DivideandConq(T1);

[Q2,L2] = DivideandConq(T2);

%pick out the last and first columns of the transposes:

Q1T = Q1';

Q2T = Q2';

u = [Q1T(:,end); Q2T(:,1)];

%Creating the D-matrix:

D = zeros(n);

D(1:m2,1:m2) = L1;

D((m2+1):end,(m2+1):end) = L2;

% The Q matrix (with Q1 and Q2 on the "diagonals")

Q = zeros(n);

Q(1:m2,1:m2) = Q1;

Q((m2+1):end,(m2+1):end) = Q2;

%Creating the matrix B, which determinant is the secular equation:

% det B = f(\lambda)=0

B = D+bm*u*u';

% Compute eigenvalues as roots of the secular equation

% f(\lambda)=0 using Newton's method

eigs = NewtonMethod(D,bm,u);

Q3 = zeros(m,n);

% compute eigenvectors for corresponding eigenvalues

for i = 1:length(eigs)

Q3(:,i) = (D-eigs(i)*eye(m))\u;

Q3(:,i) = Q3(:,i)/norm(Q3(:,i));

end

%Compute eigenvectors of the original input matrix T

Q = Q*Q3;

% Present eigenvalues of the original matrix input T

%(they will be on diagonal)

L = zeros(m,n);

L(1:(m+1):end) = eigs;

return;

end

end

A.17 Matlab Program DivideandConq.mwhich implements the divide-and-conquer algorithm 11.2459

% Compute T1, T2 constant bm and the vector v

%from the input matrix A.

function [T,T1,T2,bm,v] = formT(A,m)

T1 = A(1:m,1:m);

T2 = A((m+1):end,(m+1):end);

bm = A(m,m+1);

T1(end) = T1(end)-bm;

T2(1) = T2(1)-bm;

v = zeros(size(A,1),1);

v(m:m+1) = 1;

T = zeros(size(A));

T(1:m,1:m) = T1;

T((m+1):end,(m+1):end) = T2;

end

% compute eigenvalues in the secular equation

% using the Newton's method

function eigs = NewtonMethod(D,p,u)

[m,n] = size(D);

%The initial guess in the Newton's method

% will be the numbers d_i

startingPoints = sort(diag(D));

%if p > 0 we have an eigenvalue on the right, else on the left

if p >= 0

startingPoints = [startingPoints; startingPoints(end)+10000];

elseif p < 0

startingPoints = [startingPoints(1)-10000; startingPoints];

end

eigs = zeros(m,1);

% tolerance in Newton's method

convCriteria = 1e-05;

% step in the approximation of the derrivative

% in Newton's method

dx = 0.00001;

%plot the secular equation

X = linspace(-3,3,1000);

for t = 1:1000

y(t) =SecularEqEval(D,p,u,X(t),m,n);

460 A Matlab Programs

end

plot(X,y, 'LineWidth',2)

axis([-3 3 -5 5])

legend('graph of the secular equation f (λ) = 0')

%Start Newton's method

for i = 1:m

%the starting value of lambda

currentVal = (startingPoints(i)+startingPoints(i+1))/ 2;

% this value is used inthe stoppimg criterion below

currentVal2 = inf;

% computed secular equation for \lambda=currentVal

fCurr = SecularEqEval(D,p,u,currentVal,m,n);

rands = 0;

k =0;

j = 0;

if ∼((startingPoints(i+1)-startingPoints(i)) < 0.0001)

while ∼(abs(fCurr) < convCriteria)

%compute value of the function dfApprox with small step dx to

%approximate derivative

fval2 = SecularEqEval(D,p,u,currentVal+dx,m,n);

fval1 = SecularEqEval(D,p,u,currentVal,m,n);

dfApprox = (fval2-fval1)/dx;

% compute new value of currentVal in Newton's method,

% or perform one iteration in Newton's method

currentVal = currentVal - fCurr/dfApprox;

% check: if we are outside of the current range, reinput inside:

if currentVal <= startingPoints(i)

currentVal= startingPoints(i)+0.0001;

k=k+1;

elseif currentVal >= startingPoints(i+1);

currentVal= startingPoints(i+1)-0.0001;

k=k+1;

elseif dfApprox == Inf || dfApprox == -Inf

currentVal= startingPoints(i) + ...

rand*(startingPoints(i+1)-startingPoints(i));

rands = rands+1;

end

j=j+1;

fCurr = SecularEqEval(D,p,u,currentVal,m,n);

if k > 10 || j > 50;

tempVec = [startingPoints(i),startingPoints(i+1)];

[val,ind] = min(abs([startingPoints(i),startingPoints(i+1)]-currentVal));

A.18 Matlab Program Bisection.m which implements the Bisection algorithm 11.4 461

if ind == 1

currentVal = tempVec(ind)+0.00001;

else

currentVal = tempVec(ind)-0.00001;

end

break;

elseif

currentVal2 == currentVal || rands > 5 || isnan(currentVal) || isnan(fCurr)

currentVal = currentVal2;

break;

end

%save last value:

currentVal2 = currentVal;

end

end

%assigning eigenvalue in the right order

eigs(i) = currentVal;

end

end

% evaluate the secular equation in Newton's method for the computed

% eigenvalue x

function fVal = SecularEqEval(D,p,u,x,m,n)

fVal = 1+p*u'*inv((D-x*eye(m,n)))*u;

end

A.18 Matlab Program Bisection.m

%%

% Find all eigenvalues of the matrix A ion the input interval [a,b)

%%

% define size n of the n-by-n matrix A

n=5;

% Generate the symmetric tridiagonal matrix A

A=randomTridiag(n);

% Set bounds for the interval [a,b) in the algorithm and the tolerance

a=-100;b=100;

tol=0.000001;

%Define functions for the worklist

DeleteRowInWorklist=@(Worklist,linenr) ChangeRowInWorklist(Worklist,linenr,'delete');

InsertRowInWorklist=@(Worklist,LineToAdd)...

462 A Matlab Programs

ChangeRowInWorklist(Worklist,LineToAdd,'add');

% Set the info for the first worklist

na=Negcount(A,a);

nb=Negcount(A,b);

Worklist=[];

%If no eigenvalues are found on the interval [a,b) then save an empty worklist

if na∼=nb
Worklist=InsertRowInWorklist(Worklist,[a,na,b,nb]);

end

while numel(Worklist)∼=0
[Worklist, LineToWorkWith]= DeleteRowInWorklist(Worklist,1);

low=LineToWorkWith(1);

n_low=LineToWorkWith(2);

up=LineToWorkWith(3);

n_up=LineToWorkWith(4);

% if the upper and lower bounds are close enough we print out this interval

if (up-low)< tol

NrOfEigVal = n_up-n_low;

fprintf('There are %4.4f eigenvalues in the interval [%4.4f,%4.4f) \n', ...

NrOfEigVal,low,up);

else

% Perform the bisection step

mid= (low+up)/2;

n_mid= Negcount(A,mid);

if n_mid > n_low

Worklist = InsertRowInWorklist(Worklist,[low,n_low,mid,n_mid]);

end

if n_up>n_mid

Worklist = InsertRowInWorklist(Worklist,[mid,n_mid,up,n_up]);

end

end

end

%%

% Add or remove rows to the WorkList

% If action = 'add' then add a line to the Worklist, return Worklist and

% new line

% If action = 'delete' then delete the given line from the Worklist, return

% Worklist and deleted line

%%

function [Worklist , LineInQuestion] = ChangeRowInWorklist(Worklist,LINE,action)

if strcmp(action,'delete')

if (length(Worklist(:,1)) == 1)

A.18 Matlab Program Bisection.m which implements the Bisection algorithm 11.4 463

LineInQuestion=Worklist;

Worklist=[];

elseif (LINE==length(Worklist(:,1)))

LineInQuestion = Worklist(LINE,:);

Worklist=Worklist(1:(end-1),:);

elseif (LINE==1)

LineInQuestion = Worklist(LINE,:);

Worklist=Worklist(2:end,:);

else

LineInQuestion = Worklist(LINE,:);

Worklist=[Worklist(1:(LINE-1),:);Worklist((LINE+1):end,:)];

end

elseif strcmp(action,'add')

LineInQuestion = LINE;

if (length(Worklist) == 0)

Worklist=LINE;

else

Worklist = [Worklist;LINE];

end

else

fprintf('The third argument must be either delete or add!')

end

end

%%

%Compute number of eigenvalues of a tridiagonal matrix A

%(without pivoting) which are less then z

%%

function [neg] = Negcount(A,z)

d=zeros(length(A),1);

d(1)=A(1,1)-z;

for i = 2:length(A)

d(i)=(A(i,i)-z)-(A(i,i-1)ˆ2)/d(i-1);

end

%compute number of negative eigenvalues of A

neg=0;

for i = 1:length(A)

if d(i)<0

neg = neg+1;

end

end

end

%%

464 A Matlab Programs

% generation of the random tridiagonal symmetric matrix

%%

function [A] = randomTridiag(n)

A=zeros(n);

for i=2:n

num = rand*30;

A(i,i)=rand*20;

A(i,i-1)=num;

A(i-1,i)=num;

end

A(1,1)=22*rand;

end

%%%

A.19 Matlab Program testClassicalJacobi.m

%%

% Program which generates predefined random tridiagonal matrices A

% and the calls the function RunJacobi.m

%%

n=5;

A=zeros(n);

for i=2:n

tal = rand*30;

A(i,i)=rand*20;

A(i,i-1)=tal;

A(i-1,i)=tal;

end

A(1,1)=22*rand;

% initialization of matrix

%A=rand(5,5)*10;

Ainit=A

%Ainit =A*A'

% run classical Jacobi algorithm

A= RunJacobi(Ainit)

%Print out computed by Jacobi algorithm eigenvalues

disp('computed by Jacobi algorithm eigenvalues:');

eig(A)

A.19 Matlab Program testClassicalJacobi.mwhich computes the classical Jacobi algorithm 11.7465

% Print out eigenvalues of the initial matrix A using eig(Ainit)

disp('eigenvalues of the initial matrix Ainit using eig(Ainit):');

eig(Ainit)

%%

% Run Classical Jacobi rotation algorithm.

% until the matrix A is sufficiently diagonal or off(A) < tol

%%

function [A] = RunJacobi(A)

tol=0.005;

iter=1;

%compute initial off's

[sum,v]=off(A);

while sum >tol && iter<100000

% search for maximal values of off's

j=v(2,max(v(1,:)) == v(1,:)); %get index j

k=v(3,max(v(1,:)) == v(1,:)); %get index k

%perform Jacobi rotation for indices (j,k)

A=jacobiRot(A,j,k);

[sum,v]=off(A);

iter=iter+1;

end

end

% Run one Jacobi rotation

function [A] = jacobiRot(A,j,k)

tol=0.0001;

if abs(A(j,k))>tol

tau=(A(j,j)-A(k,k))/(2*A(j,k));

t=sign(tau)/(abs(tau)+sqrt(1+tauˆ2));

c=1/(sqrt(1+tˆ2));

s=c*t;

R=eye(length(A));

R(j,j)=c;

R(k,k)=c;

R(j,k)=-s;

R(k,j)=s;

A=R'*A*R;

466 A Matlab Programs

end

end

% Compute off's: the square root of the sum of squares

% of the upper off-diagonal elements.

% v is a matrix that holds the information needed.

function [sum,v] = off(A)

sum=0;

%create array v for off's:

% in the first row will be sum of square root of the squares of computed off's

% in the second row: the index j

% in the third row: the index k

v=[0;0;0];

for i=1:(length(A)-1)

for j=(i+1):length(A)

sum=sum+A(i,j)*A(i,j);

v=[v,[sqrt(A(i,j)*A(i,j));i;j]];

end

end

sum=sqrt(sum);

v=v(:,2:end);

end

A.20 Matlab Program testSVDJacobi.m

%%

% Program which generates predefined random tridiagonal matrices A

% and the calls the function RunSVDJacobi.m

%%

n=5;

A=zeros(n);

for i=2:n

tal = rand*30;

A(i,i)=rand*20;

A(i,i-1)=tal;

A(i-1,i)=tal;

end

A(1,1)=22*rand;

Ainit=A

disp('computed by one-sided Jacobi algorithm SVD decomposition:');

[U,S,V]= RunSVDJacobi(Ainit)

A.20 Matlab Program testSVDJacobi.mwhich computes the SVD decomposition using the one-sided Jacobi algorithm 11.14467

disp('computed SVD decomposition using svd command (for comparison):');

[u,sigma,v]=svd(Ainit)

%%

% Computes the SVD decomposition of the matrix G

% using the one-sided Jacobi rotation.

%%

function [U,S,V] = RunSVDJacobi(G)

% input tolerance

tol=0.005;

J=eye(length(G));

iter=1;

[sum,v]=off(G'*G);

while sum>tol && iter<1000

for j=1:(length(G)-1)

for k=j+1:length(G)

[G,J]=oneSidedJacobiRot(G,J,j,k);

end

end

[sum,v]=off(G'*G);

iter=iter+1;

end

% elements in the matrix sigma will be the two-norm

% of i-column of the matrix G

for i=1:length(G)

sigma(i)=norm(G(:,i));

end

U=[];

for i=1:length(G)

U=[U,G(:,i)/sigma(i)];

end

V=J;

S=diag(sigma);

end

% compute one-sided Jacobi rotation for G

function [G,J] = oneSidedJacobiRot(G,J,j,k)

468 A Matlab Programs

tol=0.0001;

A=(G'*G);

ajj=A(j,j);

ajk=A(j,k);

akk=A(k,k);

if abs(ajk)>tol

tau=(ajj-akk)/(2*ajk);

t=sign(tau)/(abs(tau)+sqrt(1+tauˆ2));

c=1/(sqrt(1+tˆ2));

s=c*t;

R=eye(length(G));

R(j,j)=c;

R(k,k)=c;

R(j,k)=-s;

R(k,j)=s;

G=G*R;

% if eigenvectors are desired

J=J*R;

end

end

% Compute off's: the square root of the sum of squares

% of the upper off-diagonal elements.

% v is a matrix that holds the information needed.

function [sum,v] = off(A)

sum=0;

%create array v for off's:

% in the first row will be sum of square root of the squares of computed off's

% in the second row: the index j

% in the third row: the index k

v=[0;0;0];

for i=1:(length(A)-1)

for j=(i+1):length(A)

sum=sum+A(i,j)*A(i,j);

v=[v,[sqrt(A(i,j)*A(i,j));i;j]];

end

end

sum=sqrt(sum);

v=v(:,2:end);

end

A.21 Matlab Program Poisson2D Jacobi.m 469

A.21 Matlab Program Poisson2D Jacobi.m. The function

DiscretePoisson2D.m is given in section A.1.

%%

% Main program for the solution of Poisson's equation

% - a laplace = f in 2D using iterative Jacobi method

%%

close all

clc

clear

clf

%Define input parameters

n=20; % number of inner nodes in one direction.

a_amp = 12; % amplitude for the function a(x_1,x_2)

f_amp = 1; % we can choose f=1, 50, 100

x_0=0.5;

y_0=0.5;

c_x=1;

c_y=1;

h = 1/(n+1); % define step length

%%---

% Computing all matrices and vectors

%--

% Generate a n*n by n*n stiffness matrix

S = DiscretePoisson2D(n);

%% generate coefficient matrix of a((x_1)_i,(x_2)_j) = a(i*h,j*h)

C = zeros(n,n);

for i=1:n

for j=1:n

C(i,j) = 1 + a_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

% create diagonal matrix from C

D = zeros(nˆ2,nˆ2);

for i=1:n

for j=1:n

D(j+n*(i-1),j+n*(i-1)) = C(i,j);

end

end

% If f is constant.

% f = f_amp*ones(nˆ2,1);

% If f is Gaussian function.

470 A Matlab Programs

f=zeros(nˆ2,1);

for i=1:n

for j=1:n

f(n*(i-1)+j)= f_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

% Compute vector of right hand side

% b = Dˆ(-1)*f computed as b(i,j)=f(i,j)/a(i,j)

b=zeros(nˆ2,1);

for i=1:n

for j=1:n

b(n*(i-1)+j)= f(n*(i-1)+j)/C(i,j); % Use coefficient matrix C or

% diagonal matrix D to get a(i,j)

end

end

%---

% --- Solution of 1/hˆ2 S*u = b using Jacobi's method, version I

%---

err = 1; k=0; tol=10ˆ(-9);

w_old = ones(length(S),1);

L=tril(S,-1);

U=L';

Dinv=diag(diag(S).ˆ(-1));

R=Dinv*(-L-U);

c=Dinv*hˆ2*b;

while(err>tol)

w_new = R*w_old +c;

k=k+1;

% stopping criterion: choose one of two

err = norm(w_new-w_old);

% err = norm(S*w_new - hˆ2*b);

w_old = w_new;

end

disp('-- Number of iterations in the version I of Jacobi method ----------')

k

%%---

% Plots and figures for version I

%--

% sort the data in u into the mesh-grid, the boundary nodes are zero.

A.21 Matlab Program Poisson2D Jacobi.m 471

V_new = zeros(n+2,n+2);

for i=1:n

for j=1:n

V_new(i+1,j+1) = w_new(j+n*(i-1));

end

end

%% plotting

x1=0:h:1;

y1=0:h:1;

figure(1)

subplot (2,2,1)

surf(x1,y1,V_new) % same plot as above, (x1, y1 are vectors)

view(2)

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['solution u(x_1,x_2) Jacobi version I ',...

', N = ',num2str(n),', iter. = ',num2str(k)])

subplot (2,2,2)

surf(x1,y1,V_new) % same plot as above

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['solution u(x_1,x_2) Jacobi version I',...

', N = ',num2str(n),', iter. = ',num2str(k)])

% Plotting a(x,y)

Z_a= zeros(n+2);

for i=1:(n+2)

for j=1:(n+2)

Z_a(i,j)= 1 + a_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

subplot (2,2,3)

surf(x1,y1,Z_a)

xlabel('x_1')

ylabel('x_2')

zlabel('a(x_1,x_2)')

title(['coefficient a(x_1,x_2) with A = ',num2str(a_amp)])

% plott the function f(x,y)

472 A Matlab Programs

Z_f= zeros(n+2);

for i=1:(n+2)

for j=1:(n+2)

Z_f(i,j)=f_amp*exp(-((x1(i)-x_0)ˆ2/(2*c_xˆ2)...

+(y1(j)-y_0)ˆ2/(2*c_yˆ2)));

end

end

subplot (2,2,4)

surf(x1,y1,Z_f)

xlabel('x_1')

ylabel('x_2')

zlabel('f(x_1,x_2)')

title(['f(x_1,x_2) with A_f = ',num2str(f_amp)])

%---

% --- Jacobi's method, version II --------------------------

%---

k=0; err = 1;

V_old = zeros(n,n);

V_new = zeros(n,n);

F=vec2mat(b,n)';

X=diag(ones(1,n-1),-1);

X=X+X';

while(err>tol)

V_new = (X*V_old + V_old*X' + hˆ2*F)/4;

k=k+1;

err = norm(V_new-V_old);

V_old = V_new;

end

%apply boundary conditions

V_new = [zeros(1,n+2); zeros(n,1) V_new zeros(n,1);zeros(1,n+2)]

disp('-- Number of iterations in the version II of Jacobi method ----------')

k

figure(2)

%%---

% Plots and figures for version II

%--

%% plotting

x1=0:h:1;

y1=0:h:1;

subplot (1,2,1)

A.21 Matlab Program Poisson2D Jacobi.m 473

surf(x1,y1,V_new) % same plot as above, (x1, y1 are vectors)

view(2)

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['solution u(x_1,x_2) Jacobi version II ',...

', N = ',num2str(n),', iter. = ',num2str(k)])

subplot (1,2,2)

surf(x1,y1,V_new) % same plot as above

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['solution u(x_1,x_2) Jacobi version II',...

', N = ',num2str(n),', iter. = ',num2str(k)])

%---

% --- Jacobi's method, version III --------------------------

%---

err = 1; k=0; tol=10ˆ(-9);

% Initial guess

uold = zeros(n+2, n+2);

unew= uold;

% counter for iterations

k = 0;

while(err > tol)

for i = 2:n+1

for j = 2:n+1

unew(i, j) = (uold(i-1, j) + uold(i+1, j) + uold(i, j-1) + uold(i, j+1)

+ hˆ2*b(n*(i-2)+j-1))/4.0;

end

end

k = k+1;

err = norm(unew-uold);

uold = unew;

end

u = reshape(unew(2:end-1, 2:end-1)', n*n, 1);

disp('-- Number of iterations in the version III of Jacobi method ----------')

k

474 A Matlab Programs

figure(3)

%%---

% Plots and figures for version III

%--

% sort the data in u into the mesh-grid, the boundary nodes are zero.

V_new = zeros(n+2,n+2);

for i=1:n

for j=1:n

V_new(i+1,j+1) = u(j+n*(i-1));

end

end

%% plotting

x1=0:h:1;

y1=0:h:1;

subplot (1,2,1)

surf(x1,y1,V_new) % same plot as above, (x1, y1 are vectors)

view(2)

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['solution u(x_1,x_2) Jacobi version III ',...

', N = ',num2str(n),', iter. = ',num2str(k)])

subplot (1,2,2)

surf(x1,y1,V_new) % same plot as above

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['solution u(x_1,x_2) Jacobi version III',...

', N = ',num2str(n),', iter. = ',num2str(k)])

A.22 Matlab Program Poisson2D Gauss Seidel.m. The

function DiscretePoisson2D.m is given in section A.1.

%%

% Main program for the solution of Poisson's equation

% - a laplace = f in 2D using iterative Gauss-Seidel method

%%

close all

A.22 Matlab Program Poisson2D Gauss Seidel.m 475

clc

clear

clf

%Define input parameters

n=20; % number of inner nodes in one direction.

a_amp = 12; % amplitude for the function a(x_1,x_2)

f_amp = 1; % we can choose f=1, 50, 100

x_0=0.5;

y_0=0.5;

c_x=1;

c_y=1;

h = 1/(n+1); % define step length

%%---

% Computing all matrices and vectors

%--

% Generate a n*n by n*n stiffness matrix

S = DiscretePoisson2D(n);

%% generate coefficient matrix of a((x_1)_i,(x_2)_j) = a(i*h,j*h)

C = zeros(n,n);

for i=1:n

for j=1:n

C(i,j) = 1 + a_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

% create diagonal matrix from C

D = zeros(nˆ2,nˆ2);

for i=1:n

for j=1:n

D(j+n*(i-1),j+n*(i-1)) = C(i,j);

end

end

% If f is constant.

% f = f_amp*ones(nˆ2,1);

% If f is Gaussian function.

f=zeros(nˆ2,1);

for i=1:n

for j=1:n

f(n*(i-1)+j)=f_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

% Compute vector of right hand side

% b = Dˆ(-1)*f computed as b(i,j)=f(i,j)/a(i,j)

476 A Matlab Programs

b=zeros(nˆ2,1);

for i=1:n

for j=1:n

b(n*(i-1)+j)= hˆ2*(f(n*(i-1)+j))/C(i,j); % Use coefficient matrix C or

% diagonal matrix D to get a(i,j)

end

end

%%---

% Solution of S*u = b using iterative Gauss-Seidel method

%--

residual = 1; k=0; tol=10ˆ(-9);

u = zeros(nˆ2,1);

u_old = u;

% use Gauss-Seidel algorithm without red-black ordering:

% values u(1:(j-1)) are already updated, and u_old((j+1):nˆ2)

% are older, computed on the previous iteration

while (norm(residual)> tol)

for j = 1:nˆ2

u(j) = 1/S(j,j) * (b(j) ...

- S(j,1:(j-1))*u(1:(j-1)) - S(j,(j+1):nˆ2)*u_old((j+1):nˆ2));

end

u_old = u;

residual = S*u- b;

k = k+1;

end

disp('-- Number of iterations in Gauss-Seidel method ----------')

k

%%---

% Plots and figures for Gauss-Seidel method

%--

% sort the data in u into the mesh-grid, the boundary nodes are zero.

Z = zeros(n+2,n+2);

for i=1:n

for j=1:n

Z(i+1,j+1) = u(j+n*(i-1));

end

end

%% plotting

x1=0:h:1;

y1=0:h:1;

subplot (2,2,1)

A.22 Matlab Program Poisson2D Gauss Seidel.m 477

surf(x1,y1, Z) % same plot as above, (x1, y1 are vectors)

view(2)

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['solution u(x_1,x_2) Gauss-Seidel method ',...

', N = ',num2str(n),', iter. = ',num2str(k)])

subplot (2,2,2)

surf(x1,y1, Z) % same plot as above

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['solution u(x_1,x_2) Gauss-Seidel method',...

', N = ',num2str(n),', iter. = ',num2str(k)])

% Plotting a(x,y)

Z_a= zeros(n+2);

for i=1:(n+2)

for j=1:(n+2)

Z_a(i,j)= 1 + a_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

subplot (2,2,3)

surf(x1,y1,Z_a)

xlabel('x_1')

ylabel('x_2')

zlabel('a(x_1,x_2)')

title(['coefficient a(x_1,x_2) with A = ',num2str(a_amp)])

% plott the function f(x,y)

Z_f= zeros(n+2);

for i=1:(n+2)

for j=1:(n+2)

Z_f(i,j)=f_amp*exp(-((x1(i)-x_0)ˆ2/(2*c_xˆ2)...

+(y1(j)-y_0)ˆ2/(2*c_yˆ2)));

end

end

subplot (2,2,4)

surf(x1,y1,Z_f)

xlabel('x_1')

ylabel('x_2')

478 A Matlab Programs

zlabel('f(x_1,x_2)')

title(['f(x_1,x_2) with A_f = ',num2str(f_amp)])

A.23 Matlab Program

Poisson2D Gauss SeidelRedBlack.m. The function

DiscretePoisson2D.m is given in section A.1.

%%

% Main program for the solution of Poisson's equation

% - a laplace = f in 2D using iterative Gauss-Seidel method

% with Red-Black ordering

%%

close all

clc

clear

clf

%Define input parameters

n=20; % number of inner nodes in one direction.

a_amp = 12; % amplitude for the function a(x_1,x_2)

f_amp = 1; % we can choose f=1, 50, 100

x_0=0.5;

y_0=0.5;

c_x=1;

c_y=1;

h = 1/(n+1); % define step length

%%---

% Computing all matrices and vectors

%--

% Generate a n*n by n*n stiffness matrix

S = DiscretePoisson2D(n);

%% generate coefficient matrix of a((x_1)_i,(x_2)_j) = a(i*h,j*h)

C = zeros(n,n);

for i=1:n

for j=1:n

C(i,j) = 1 + a_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

% create diagonal matrix from C

D = zeros(nˆ2,nˆ2);

for i=1:n

for j=1:n

D(j+n*(i-1),j+n*(i-1)) = C(i,j);

end

end

A.23 Matlab Program Poisson2D Gauss SeidelRedBlack.m 479

% If f is constant.

% f = f_amp*ones(nˆ2,1);

% If f is Gaussian function.

f=zeros(nˆ2,1);

for i=1:n

for j=1:n

f(n*(i-1)+j)=f_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

% Compute vector of right hand side

% b = Dˆ(-1)*f computed as b(i,j)=f(i,j)/a(i,j)

b=zeros(nˆ2,1);

for i=1:n

for j=1:n

b(n*(i-1)+j)=f(n*(i-1)+j)/C(i,j); % Use coefficient matrix C or

% diagonal matrix D to get a(i,j)

end

end

%%---

% Solution of 1/hˆ2 S u = b using iterative Gauss-Seidel method

% with red-black ordering, version I

%--

err = 1; k=0; tol=10ˆ(-9);

V = zeros(n,n);

V_old = zeros(n,n);

F=vec2mat(b,n)';

X=diag(ones(1,n-1),-1);

X=X+X';

blackindex = invhilb(n) < 0;

redindex = fliplr(blackindex);

B=V;

V(redindex)=0;

R=V;

V(blackindex)=0;

redF = F; redF(blackindex)=0;

blackF = F; blackF(redindex)=0;

while(err>tol)

R = (X*B + B*X + hˆ2*redF)/4;

B = (X*R + R*X + hˆ2*blackF)/4;

k=k+1;

480 A Matlab Programs

V_new =R+B;

err = norm(V_new - V_old);

V_old = V_new;

end

V_new = [zeros(1,n+2); zeros(n,1) V_new zeros(n,1);zeros(1,n+2)]

disp('-- Number of iterations in Gauss-Seidel method ----------')

k

%%---

% Plots and figures for Gauss-Seidel method

%--

figure(1)

%% plotting

x1=0:h:1;

y1=0:h:1;

subplot (2,2,1)

surf(x1,y1,V_new) % same plot as above, (x1, y1 are vectors)

view(2)

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['solution u(x_1,x_2) in Gauss-Seidel Red-Black ordering',...

', N = ',num2str(n),', iter. = ',num2str(k)])

subplot (2,2,2)

surf(x1,y1,V_new) % same plot as above

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['solution u(x_1,x_2) in Gauss-Seidel Red-Black ordering',...

', N = ',num2str(n),', iter. = ',num2str(k)])

% Plotting a(x,y)

Z_a= zeros(n+2);

for i=1:(n+2)

for j=1:(n+2)

Z_a(i,j)= 1 + a_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

A.23 Matlab Program Poisson2D Gauss SeidelRedBlack.m 481

subplot (2,2,3)

surf(x1,y1,Z_a)

xlabel('x_1')

ylabel('x_2')

zlabel('a(x_1,x_2)')

title(['coefficient a(x_1,x_2) with A = ',num2str(a_amp)])

% plott the function f(x,y)

Z_f= zeros(n+2);

for i=1:(n+2)

for j=1:(n+2)

Z_f(i,j)=f_amp*exp(-((x1(i)-x_0)ˆ2/(2*c_xˆ2)...

+(y1(j)-y_0)ˆ2/(2*c_yˆ2)));

end

end

subplot (2,2,4)

surf(x1,y1,Z_f)

xlabel('x_1')

ylabel('x_2')

zlabel('f(x_1,x_2)')

title(['f(x_1,x_2) with A_f = ',num2str(f_amp)])

%%---

% Solution of 1/hˆ2 S u = b using iterative Gauss-Seidel method

% with red-black ordering, version II

%--

err = 1; k=0; tol=10ˆ(-9);

% Initial guess

uold = zeros(n+2, n+2);

unew= uold;

while(err > tol)

% Red nodes

for i = 2:n+1

for j = 2:n+1

if(mod(i+j,2) == 0)

unew(i, j) = (uold(i-1, j) + uold(i+1, j) + uold(i, j-1) + uold(i, j+1)

+ hˆ2*b(n*(i-2)+j-1))/4.0;

% for computation of residual

u(j-1 + n*(i-2)) = unew(i,j);

end

end

end

% Black nodes

for i = 2:n+1

for j = 2:n+1

if(mod(i+j,2) == 1)

482 A Matlab Programs

unew(i,j) = 0.25*(unew(i-1,j) + unew(i+1,j) ...

+ unew(i,j-1) + unew(i,j+1) + hˆ2*b(n*(i-2)+j-1));

% for computation of residual

u(j-1 + n*(i-2)) = unew(i,j);

end

end

end

k = k+1;

% different stopping rules

err = norm(unew-uold);

%computation of residual

% err = norm(S*u' - hˆ2*b);

uold = unew;

end

u = reshape(unew(2:end-1, 2:end-1)', n*n, 1);

disp('-- Number of iterations in the version II of Gauss-Seidel method----------')

k

%%---

% Plots and figures for version II

%--

figure(2)

% sort the data in u into the mesh-grid, the boundary nodes are zero.

V_new = zeros(n+2,n+2);

for i=1:n

for j=1:n

V_new(i+1,j+1) = u(j+n*(i-1));

end

end

%% plotting

x1=0:h:1;

y1=0:h:1;

subplot (1,2,1)

surf(x1,y1,V_new) % same plot as above, (x1, y1 are vectors)

view(2)

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['solution u(x_1,x_2) in Gauss-Seidel Red-Black ordering, version II',...

', N = ',num2str(n),', iter. = ',num2str(k)])

subplot (1,2,2)

A.24 Matlab Program Poisson2D SOR.m 483

surf(x1,y1,V_new) % same plot as above

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['solution u(x_1,x_2) in Gauss-Seidel Red-Black ordering, version II',...

', N = ',num2str(n),', iter. = ',num2str(k)])

A.24 Matlab Program Poisson2D SOR.m. The function

DiscretePoisson2D.m is given in section A.1.

%%

% Main program for the solution of Poisson's equation

% - a laplace = f in 2D using iterative SOR method

%%

close all

clc

clear

clf

%Define input parameters

n=20; % number of inner nodes in one direction.

a_amp = 12; % amplitude for the function a(x_1,x_2)

f_amp = 1; % we can choose f=1, 50, 100

x_0=0.5;

y_0=0.5;

c_x=1;

c_y=1;

h = 1/(n+1); % define step length

%%---

% Computing all matrices and vectors

%--

% Generate a n*n by n*n stiffness matrix

S = DiscretePoisson2D(n);

%% generate coefficient matrix of a((x_1)_i,(x_2)_j) = a(i*h,j*h)

C = zeros(n,n);

for i=1:n

for j=1:n

C(i,j) = 1 + a_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

% create diagonal matrix from C

484 A Matlab Programs

D = zeros(nˆ2,nˆ2);

for i=1:n

for j=1:n

D(j+n*(i-1),j+n*(i-1)) = C(i,j);

end

end

% If f is constant.

% f = f_amp*ones(nˆ2,1);

% If f is Gaussian function.

f=zeros(nˆ2,1);

for i=1:n

for j=1:n

f(n*(i-1)+j)=f_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

% Compute vector of right hand side

% b = Dˆ(-1)*f computed as b(i,j)=f(i,j)/a(i,j)

b=zeros(nˆ2,1);

for i=1:n

for j=1:n

b(n*(i-1)+j)=f(n*(i-1)+j)/C(i,j); % Use coefficient matrix C or

% diagonal matrix D to get a(i,j)

end

end

%%---

% Solution of 1/hˆ2 S u = b using SOR method

% with red-black ordering, version I

%--

err = 1; k=0; sch = 0; tol=10ˆ(-9);

V = zeros(n,n);

V_old = zeros(n,n);

F=vec2mat(b,n)';

X=diag(ones(1,n-1),-1);

X=X+X';

%arrange red-black indexing

blackindex = invhilb(n) < 0;

redindex = fliplr(blackindex);

B=V;

V(redindex)=0;

R=V;

V(blackindex)=0;

A.24 Matlab Program Poisson2D SOR.m 485

redF = F; redF(blackindex)=0;

blackF = F; blackF(redindex)=0;

% extract matrices L and U for matrix RSOR

L=tril(S,-1);

U=L';

Dinv=diag(diag(S).ˆ(-1));

L = Dinv*(-L);

U = Dinv*(-U);

D=diag(ones(1,n*n));

omegas = 1.05:0.05:1.95;

for omega = omegas

k=0;

err =1;

B=V;

V(redindex)=0;

R=V;

V(blackindex)=0;

% counter for omega

sch = sch+1;

while(err>tol)

R = (1 - omega)*R + omega*(X*B + B*X + hˆ2*redF)/4;

B = (1- omega)*B + omega*(X*R + R*X + hˆ2*blackF)/4;

k=k+1;

V_new =R+B;

err = norm(V_new - V_old);

V_old = V_new;

end

% the matrix RSOR in the method SOR: x_m+1 = RSOR*x_m + c_SOR

RSOR = inv(D - omega*L)*((1-omega)*D + omega*U);

lambda = max(abs(eig(RSOR)));

mu = (lambda + omega -1)/(sqrt(lambda)*omega);

disp('-- Relaxation parameter in SOR method ----------')

omega

disp('-- Computed optimal relaxation parameter ----------')

omega_opt = 2/(1 + sqrt(1 - muˆ2))

if (omega <= 2.0 && omega >=omega_opt)

disp('-- omega_opt < omega < 2.0 ----------')

radius = omega -1

486 A Matlab Programs

elseif(omega <= omega_opt && omega > 0)

disp('-- omega < omega_opt ----------')

omega_tail = -omega +0.5*omegaˆ2*muˆ2 ...

+ omega*mu*sqrt(1 - omega + 0.25*omegaˆ2*muˆ2)

radius = 1 + omega_tail

end

disp('-- Number of iterations in SOR method ----------')

k

iterations(sch) = k;

spectral_radius(sch)= radius;

omega_optimal(sch) = omega_opt;

end

% apply zero boundary conditions

V_new = [zeros(1,n+2); zeros(n,1) V_new zeros(n,1);zeros(1,n+2)];

%%---

% Plots and figures for SOR method, version I

%--

figure(1)

%% plotting

x1=0:h:1;

y1=0:h:1;

subplot (2,2,1)

surf(x1,y1,V_new) % same plot as above, (x1, y1 are vectors)

view(2)

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['solution u(x_1,x_2) in SOR method ',...

', N = ',num2str(n),', iter. = ',num2str(k)])

subplot (2,2,2)

surf(x1,y1,V_new) % same plot as above

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['solution u(x_1,x_2) in SOR method',...

', N = ',num2str(n),', iter. = ',num2str(k)])

% Plotting a(x,y)

Z_a= zeros(n+2);

A.24 Matlab Program Poisson2D SOR.m 487

for i=1:(n+2)

for j=1:(n+2)

Z_a(i,j)= 1 + a_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

subplot (2,2,3)

surf(x1,y1,Z_a)

xlabel('x_1')

ylabel('x_2')

zlabel('a(x_1,x_2)')

title(['coefficient a(x_1,x_2) with A = ',num2str(a_amp)])

% plott the function f(x,y)

Z_f= zeros(n+2);

for i=1:(n+2)

for j=1:(n+2)

Z_f(i,j)=f_amp*exp(-((x1(i)-x_0)ˆ2/(2*c_xˆ2)...

+(y1(j)-y_0)ˆ2/(2*c_yˆ2)));

end

end

subplot (2,2,4)

surf(x1,y1,Z_f)

xlabel('x_1')

ylabel('x_2')

zlabel('f(x_1,x_2)')

title(['f(x_1,x_2) with A_f = ',num2str(f_amp)])

% plot convergence of SOR depending on omega

figure(2)

plot(omegas, iterations,'b o-', 'LineWidth',2)

hold on

plot(omega_optimal, iterations,'r o ', 'LineWidth',2)

xlabel('Relaxation parameter \omega')

ylabel('Number of iterations in SOR')

legend('SOR(\omega)','Computed optimal \omega')

title(['Mesh: ',num2str(n),' by ',num2str(n),' points'])

% plot convergence of SOR depending on omega

figure(3)

plot(omegas, spectral_radius,'b o-', 'LineWidth',2)

xlabel('Relaxation parameter \omega')

ylabel(' Spectral radius \rho(R_{SOR(\omega)})')

legend('\rho(R_{SOR(\omega)})')

488 A Matlab Programs

title(['Mesh: ',num2str(n),' by ',num2str(n),' points'])

%%---

% Solution of 1/hˆ2 S u = b using iterative SOR

% with red-black ordering, version II

%--

disp('-- Works SOR method, version II ----------')

err = 1; k=0; tol=10ˆ(-9);

% choose relaxation parameter 0 < omega < 2

% optimal omega can be computed as

omega_opt = 2/(1 + sin(pi/(n+1)))

% Initial guess

uold = zeros(n+2, n+2);

unew= uold;

while(err > tol)

% Red nodes

for i = 2:n+1

for j = 2:n+1

if(mod(i+j,2) == 0)

unew(i, j) = (1-omega)*unew(i,j) + ...

omega*(uold(i-1, j) + uold(i+1, j) + uold(i, j-1) + uold(i, j+1) ...

+ hˆ2*b(n*(i-2)+j-1))/4.0;

% for computation of residual

u(j-1 + n*(i-2)) = unew(i,j);

end

end

end

% Black nodes

for i = 2:n+1

for j = 2:n+1

if(mod(i+j,2) == 1)

unew(i,j) = (1-omega)*unew(i,j) + ...

omega*0.25*(unew(i-1,j) + unew(i+1,j) + unew(i,j-1) + unew(i,j+1) + ...

hˆ2*b(n*(i-2)+j-1));

% for computation of residual

u(j-1 + n*(i-2)) = unew(i,j);

end

end

end

k = k+1;

% different stopping rules

err = norm(unew-uold);

%computation of residual

% err = norm(S*u' - hˆ2*b);

uold = unew;

end

A.25 Matlab Program Poisson2D ConjugateGrad.m 489

u = reshape(unew(2:end-1, 2:end-1)', n*n, 1);

disp('-- Number of iterations in the version II of SOR ----------')

k

%%---

% Plots and figures for version II

%--

figure(4)

% sort the data in u into the mesh-grid, the boundary nodes are zero.

V_new = zeros(n+2,n+2);

for i=1:n

for j=1:n

V_new(i+1,j+1) = u(j+n*(i-1));

end

end

%% plotting

x1=0:h:1;

y1=0:h:1;

subplot (1,2,1)

surf(x1,y1,V_new) % same plot as above, (x1, y1 are vectors)

view(2)

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['solution u(x_1,x_2) in SOR with Red-Black ordering, version II',...

', N = ',num2str(n),', iter. = ',num2str(k)])

subplot (1,2,2)

surf(x1,y1,V_new) % same plot as above

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['solution u(x_1,x_2) in SOR with Red-Black ordering, version II',...

', N = ',num2str(n),', iter. = ',num2str(k)])

A.25 Matlab Program Poisson2D ConjugateGrad.m. The

function DiscretePoisson2D.m is given in section A.1.

490 A Matlab Programs

%%

% Main program for the solution of Poisson's equation

% - a laplace = f in 2D using Conjugate Gradient Method

%%

close all

%Define input parameters

n=20; % number of inner nodes in one direction.

a_amp = 12; % amplitude for the function a(x_1,x_2)

f_amp = 1; % 1, 50, 100 choose const. f value

x_0=0.5;

y_0=0.5;

c_x=1;

c_y=1;

h = 1/(n+1); % define step length

%%---

% Computing all matrices and vectors

%--

% Generate a n*n by n*n stiffness matrix

S = DiscretePoisson2D(n);

%% generate coefficient matrix of a((x_1)_i,(x_2)_j) = a(i*h,j*h)

C = zeros(n,n);

for i=1:n

for j=1:n

C(i,j) = 1 + a_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

% create diagonal matrix from C

D = zeros(nˆ2,nˆ2);

for i=1:n

for j=1:n

D(j+n*(i-1),j+n*(i-1)) = C(i,j);

end

end

%% calculate load vector f

% If f is constant.

% f = f_amp*ones(nˆ2,1);

% If f is Gaussian function.

f=zeros(nˆ2,1);

for i=1:n

for j=1:n

f(n*(i-1)+j)=f_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

A.25 Matlab Program Poisson2D ConjugateGrad.m 491

% Compute vector of right hand side

% b = Dˆ(-1)*f given by b(i,j)=f(i,j)/a(i,j)

b=zeros(nˆ2,1);

for i=1:n

for j=1:n

b(n*(i-1)+j)=f(n*(i-1)+j)/C(i,j); % Use coefficient matrix C or

% diagonal matrix D to get a(i,j)

end

end

%--

% ----------- Conjugate gradient method

%--

% We should solve: 1/hˆ2 S u = b

k=0;

err = 1; x=0; r0= hˆ2*b; p= hˆ2*b; tol=10ˆ(-9);

while(err>tol)

k=k+1;

z = S*p;

nu = (r0'*r0)/(p'*z);

x = x + nu*p;

r1 = r0 - nu*z;

mu = (r1'*r1)/(r0'*r0);

p = r1 + mu*p;

r0=r1;

err = norm(r0);

end

disp('-- Number of iterations in Conjugate gradient method ----------')

k

%%---

% Plots and figures.

%--

% sort the data in u into the mesh-grid, the boundary nodes are zero.

Z = zeros(n+2,n+2);

for i=1:n

for j=1:n

Z(i+1,j+1) = x(j+n*(i-1));

end

end

%% plotting

x1=0:h:1;

y1=0:h:1;

subplot(2,2,1)

surf(x1,y1,Z) % same plot as above, (x1, y1 are vectors)

492 A Matlab Programs

view(2)

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['u(x_1,x_2) in Conjugate gradient method ',...

', N = ',num2str(n)])

subplot(2,2,2)

surf(x1,y1,Z) % same plot as above

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['u(x_1,x_2) in Conjugate gradient method ', ...

', N = ',num2str(n)])

% Plotting a(x,y)

Z_a= zeros(n+2);

for i=1:(n+2)

for j=1:(n+2)

Z_a(i,j)= 1 + a_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

subplot(2,2,3)

surf(x1,y1,Z_a)

xlabel('x_1')

ylabel('x_2')

zlabel('a(x_1,x_2)')

title(['a(x_1,x_2) with A = ',num2str(a_amp)])

% plott the function f(x,y)

Z_f= zeros(n+2);

for i=1:(n+2)

for j=1:(n+2)

Z_f(i,j)=f_amp*exp(-((x1(i)-x_0)ˆ2/(2*c_xˆ2)...

+(y1(j)-y_0)ˆ2/(2*c_yˆ2)));

end

end

subplot(2,2,4)

surf(x1,y1,Z_f)

xlabel('x_1')

ylabel('x_2')

zlabel('f(x_1,x_2)')

title(['f(x_1,x_2) with A_f = ',num2str(f_amp)])

A.26 Matlab Program Poisson2D PrecConjugateGrad.m 493

A.26 Matlab Program Poisson2D PrecConjugateGrad.m.

The function DiscretePoisson2D.m is given in section

A.1

%%

% Main program for the solution of Poisson's equation

% - a laplace = f in 2D using Preconditioned Conjugate Gradient Method

%%

close all

%Define input parameters

n=20; % number of inner nodes in one direction.

a_amp = 12; % amplitude for the function a(x_1,x_2)

f_amp = 1; % we can set f = 1, 50, 100

x_0=0.5;

y_0=0.5;

c_x=1;

c_y=1;

h = 1/(n+1); % define step length

%%---

% Computing all matrices and vectors

%--

% Generate a n*n by n*n stiffness matrix

S = DiscretePoisson2D(n);

%% generate coefficient matrix of a((x_1)_i,(x_2)_j) = a(i*h,j*h)

C = zeros(n,n);

for i=1:n

for j=1:n

C(i,j) = 1 + a_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

% create diagonal matrix from C

D = zeros(nˆ2,nˆ2);

for i=1:n

for j=1:n

D(j+n*(i-1),j+n*(i-1)) = C(i,j);

end

end

%% calculate load vector f

% If f is constant.

% f = f_amp*ones(nˆ2,1);

% If f is Gaussian function.

f=zeros(nˆ2,1);

494 A Matlab Programs

for i=1:n

for j=1:n

f(n*(i-1)+j)=f_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

% 1. Compute vector of right hand side

% b = Dˆ(-1)*f given by b(i,j)=f(i,j)/a(i,j)

b=zeros(nˆ2,1);

for i=1:n

for j=1:n

b(n*(i-1)+j)=f(n*(i-1)+j)/C(i,j); % Use coefficient matrix C or

% diagonal matrix D to get a(i,j)

end

end

%---

% --- Preconditioned conjugate gradient method (PCGM):

% choose different preconditioners:

% Cholesky factorization, Jacobi preconditioner, block Jacobi preconditioner

%---

% We now have system to solve: 1/hˆ2 S u = b

%initialize preconditioner

Ssparse = sparse(S);

% Preconditioner: preconditioner matrix here is incomplete

% Cholesky factorization of S

cond = ichol(Ssparse); cond=cond*cond'; cond=full(inv(cond));

% Preconditioner: preconditioner matrix here is

% Jacobi preconditioner.

% Results are the same as in usual conjugate gradient update

%M = diag(diag(S));

%cond = diag(1.0./diag(M));

% Preconditioner: preconditioner matrix here is

%Block Jacobi Preconditioner

%blockSize = 2; % size of blocks

%cond = zeros(nˆ2);

%Iinds = ceil((1:(blockSize*nˆ2))/blockSize);

%Jinds = blockSize*ceil((1:(blockSize*nˆ2))/blockSizeˆ2)-(blockSize-1) ...

% + repmat%(0:blockSize-1,1,nˆ2);

%vecInds = sub2ind(size(S),Iinds, Jinds);

%cond(vecInds) = S(vecInds);

A.26 Matlab Program Poisson2D PrecConjugateGrad.m 495

%initialize parameters in the method

err = 1; x=0; r0= hˆ2*b; p=cond*hˆ2*b; y0=cond*r0; tol=10ˆ(-9);

k=0;

while(err>tol)

z = S*p;

nu = (y0'*r0)/(p'*z);

x = x + nu*p;

r1 = r0 - nu*z;

y1 = cond*r1;

mu = (y1'*r1)/(y0'*r0);

p = y1 + mu*p;

r0=r1;

y0=y1;

err = norm(r0);

k=k+1;

end

disp('-- Number of iterations in Preconditioned conjugate gradient method (PCGM) ')

k

%%---

% Plots and figures.

%--

% sort the data in u into the mesh-grid, the boundary nodes are zero.

Z = zeros(n+2,n+2);

for i=1:n

for j=1:n

Z(i+1,j+1) = x(j+n*(i-1));

end

end

%% plotting

x1=0:h:1;

y1=0:h:1;

subplot(2,2,1)

surf(x1,y1,Z) % same plot as above, (x1, y1 are vectors)

view(2)

colorbar

xlabel('x_1')

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['u(x_1,x_2) in PCGM',...

', N = ',num2str(n)])

subplot(2,2,2)

surf(x1,y1,Z) % same plot as above

colorbar

xlabel('x_1')

496 A Matlab Programs

ylabel('x_2')

zlabel('u(x_1,x_2)')

title(['u(x_1,x_2) in PCGM ',...

', N = ',num2str(n)])

% Plotting a(x,y)

Z_a= zeros(n+2);

for i=1:(n+2)

for j=1:(n+2)

Z_a(i,j)= 1 + a_amp*exp(-((i*h-x_0)ˆ2/(2*c_xˆ2)...

+(j*h-y_0)ˆ2/(2*c_yˆ2)));

end

end

subplot(2,2,3)

surf(x1,y1,Z_a)

xlabel('x_1')

ylabel('x_2')

zlabel('a(x_1,x_2)')

title(['a(x_1,x_2) with A = ',num2str(a_amp)])

% plott the function f(x,y)

Z_f= zeros(n+2);

for i=1:(n+2)

for j=1:(n+2)

Z_f(i,j)=f_amp*exp(-((x1(i)-x_0)ˆ2/(2*c_xˆ2)...

+(y1(j)-y_0)ˆ2/(2*c_yˆ2)));

end

end

subplot(2,2,4)

surf(x1,y1,Z_f)

xlabel('x_1')

ylabel('x_2')

zlabel('f(x_1,x_2)')

title(['f(x_1,x_2) with A_f = ',num2str(f_amp)])

A.27 PETSc programs for the solution of the Poisson’s equation

in two dimensions.

// The Main program Main.cpp

// Solution of the Dirichlet problem for the Poisson's equation in 2D

// using PETSC.

static char help[] ="";

#include <iostream>

#include <petsc.h>

A.27 PETSc programs 497

#include <petscmat.h>

#include <petscvec.h>

#include <cmath>

#include <time.h>

#include "Poisson.h"

const PetscInt n = 20;

const PetscScalar h = 1 / (PetscScalar)(n + 1);

const bool VERBOSE = true;

using namespace std;

char METHOD_NAMES[8][50] = {

"invalid method",

"Jacobi's method",

"Gauss-Seidel method",

"Successive Overrelaxation method (SOR)",

"Conjugate Gradient method",

"Conjugate Gradient method (custom)",

"Preconditioned Conjugate Gradient method",

"Preconditioned Conjugate Gradient method (custom)"

};

char *GetMethodName(PetscInt method) {

if (method < 0 || method > 7)

return METHOD_NAMES[0];

else

return METHOD_NAMES[method];

}

int main(int argc, char **argv) {

PetscErrorCode ierr;

ierr = PetscInitialize(&argc, &argv,(char *)0, help);CHKERRQ(ierr);

PetscInt method = atoi(argv[1]);

PetscBool methodSet = PETSC_FALSE;

Mat S;

Vec h2b, u;

ierr = PetscOptionsGetInt(NULL, NULL, "-m", &method, &methodSet);

if (method < 1 || method > 7) {

cout << "Invalid number of the selected method: "

<< method << ".\nExiting..." << endl;

exit(-1);

}

// To use SOR with omega != 1, we need to disable inodes

if (method == METHOD_SOR)

PetscOptionsSetValue(NULL, "-mat_no_inode", NULL);

ierr = CreateMatrix(&S, n*n, n*n); CHKERRQ(ierr);

ierr = CreateVector(&h2b, n*n); CHKERRQ(ierr);

498 A Matlab Programs

ierr = CreateVector(&u, n*n); CHKERRQ(ierr);

// create discrete Laplacian

ierr = DiscretePoisson2D(n, &S);

// create right hand side

ierr = DiscretePoisson2D_coeffs(n, h, &h2b);

ierr = MatAssemblyBegin(S, MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);

ierr = MatAssemblyEnd(S, MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);

ierr = VecAssemblyBegin(h2b); CHKERRQ(ierr);

ierr = VecAssemblyEnd(h2b); CHKERRQ(ierr);

ierr = VecAssemblyBegin(u); CHKERRQ(ierr);

ierr = VecAssemblyEnd(u); CHKERRQ(ierr);

/*
Below we solve system S*u= h2b

*/

if (VERBOSE)

PetscPrintf(PETSC_COMM_WORLD, "Using %s\n", GetMethodName(method));

if (method == METHOD_CG_FULL)

ConjugateGradient_full(S, h2b, u, VERBOSE);

else if (method == METHOD_PCG_FULL)

PreconditionedConjugateGradient_full(S, h2b, u, VERBOSE);

else

Solve(S, h2b, u, method, VERBOSE);

// Print out solution

FILE* resultfile = fopen("solution.m", "w");

if (VERBOSE) {

PetscInt i, j, matsize, *idx = new PetscInt[n*n];

PetscScalar *vecu = new PetscScalar[n*n];

matsize = n*n;

for (i = 0; i < matsize; i++)

idx[i] = i;

ierr = VecGetValues(u, matsize, idx, vecu);

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {

PetscPrintf(PETSC_COMM_WORLD, "%.12e ", vecu[n*i + j]);

fprintf(resultfile, "%.12e ", vecu[n*i + j]);

}

PetscPrintf(PETSC_COMM_WORLD, "\n");

fprintf(resultfile, "\n");

}

delete [] vecu;

delete [] idx;

}

fclose(resultfile);

A.27 PETSc programs 499

ierr = PetscFinalize(); CHKERRQ(ierr);

return 0;

}

/* Program to create matrix and vector in PETSc. */

#include <petsc.h>

#include <petscmat.h>

#include <petscvec.h>

PetscErrorCode CreateMatrix(Mat *A, PetscInt rows, PetscInt cols) {

PetscErrorCode ierr;

ierr = MatCreate(PETSC_COMM_WORLD, A); CHKERRQ(ierr);

ierr = MatSetSizes(*A, PETSC_DECIDE, PETSC_DECIDE, rows, cols); CHKERRQ(ierr);

ierr = MatSetFromOptions(*A); CHKERRQ(ierr);

ierr = MatSetUp(*A); CHKERRQ(ierr);

return 0;

}

PetscErrorCode CreateVector(Vec *v, PetscInt N) {

PetscErrorCode ierr;

ierr = VecCreate(PETSC_COMM_WORLD, v); CHKERRQ(ierr);

ierr = VecSetSizes(*v, PETSC_DECIDE, N); CHKERRQ(ierr);

ierr = VecSetFromOptions(*v); CHKERRQ(ierr);

return 0;

}

/* Program for generatation of the discretized Laplacian */

#include <petsc.h>

#include <petscmat.h>

#include <petscvec.h>

#include <cmath>

const PetscScalar A_amplitude = 12.;

const PetscScalar f_amplitude = 1.;

const PetscScalar c_x = 1.;

const PetscScalar c_y = 1.;

const PetscScalar poisson_x0 = 0.5;

const PetscScalar poisson_y0 = 0.5;

/**

* Compute coefficient matrices.

*

* n: Number of rows of matrices

* h: Timestep length

500 A Matlab Programs

* C: n-by-n matrix

* D: (n*n)-by-(n*n) matrix

* f:

**/

PetscErrorCode DiscretePoisson2D_coeffs(PetscInt n, PetscScalar h, Vec *h2b) {

PetscErrorCode ierr;

PetscInt i, j, idx2[n*n];

PetscScalar *vecb = new PetscScalar[n*n];

// Compute C, D and f

PetscScalar xarg, yarg, expfunc, a, f;

for (i = 0; i < n; i++) {

xarg = (((i+1) * h - poisson_x0)) / c_x;

for (j = 0; j < n; j++) {

idx2[i*n + j] = i*n + j;

yarg = (((j+1) * h - poisson_y0)) / c_y;

expfunc = exp(-(xarg*xarg/2 + yarg*yarg/2));

f = f_amplitude * expfunc;

a = 1 + A_amplitude * expfunc;

vecb[i*n + j] = h*h * f / a;

}

}

ierr = VecSetValues(*h2b, n*n, idx2, vecb, INSERT_VALUES); CHKERRQ(ierr);

delete [] vecb;

return 0;

}

PetscErrorCode DiscretePoisson2D(PetscInt n, Mat *A) {

PetscErrorCode ierr;

PetscInt i, k, curr, next, matsize = n*n, idx[matsize];

PetscScalar *matrep = new PetscScalar[matsize*matsize];

// Initialize all elements to 0

for (i = 0; i < matsize; i++) {

// Create index vectors

idx[i] = i;

for (k = 0; k < matsize; k++) {

matrep[i*matsize + k] = 0;

}

}

// Set main diagonal

for (i = 0; i < matsize; i++)

matrep[i*matsize + i] = 4.;

// 1st and 2nd off-diagonals

for (k = 0; k < n; k++) {

A.27 PETSc programs 501

for (i = 0; i < n-1; i++) {

curr = (n*k + i);

next = (n*k + i + 1);

matrep[curr*matsize + next] = -1;

matrep[next*matsize + curr] = -1;

}

}

// 3rd and 4th off-diagonals

for (i = 0; i < n*(n-1); i++) {

matrep[i*matsize + (i+n)] = -1;

matrep[(i+n)*matsize + i] = -1;

}

ierr = MatSetValues(*A, matsize, idx, matsize, idx, matrep, INSERT_VALUES);

CHKERRQ(ierr);

delete [] matrep;

return 0;

}

/* Program for choosing different PETSc preconditioners. */

#include <petsc.h>

#include <petscmat.h>

#include <petscvec.h>

#include <petscksp.h>

#include <cmath>

#include "Poisson.h"

PetscErrorCode Solve(Mat S, Vec h2b, Vec u, PetscInt method, bool VERBOSE) {

PetscErrorCode ierr;

KSP ksp;

KSPConvergedReason convergedReason;

PC preconditioner;

PetscInt number_of_iterations;

ierr = KSPCreate(PETSC_COMM_WORLD, &ksp); CHKERRQ(ierr);

ierr = KSPSetOperators(ksp, S, S); CHKERRQ(ierr);

//ierr = KSPSetOperators(ksp, S, S, DIFFERENT_NONZERO_PATTERN); CHKERRQ(ierr);

ierr = KSPGetPC(ksp, &preconditioner); CHKERRQ(ierr);

if (method == METHOD_JACOBI) {

ierr = Jacobi(preconditioner); CHKERRQ(ierr);

} else if (method == METHOD_GAUSS_SEIDEL) {

ierr = GaussSeidel(preconditioner); CHKERRQ(ierr);

} else if (method == METHOD_SOR) {

ierr = SOR(preconditioner); CHKERRQ(ierr);

} else if (method == METHOD_CG) {

ierr = ConjugateGradient(ksp, preconditioner); CHKERRQ(ierr);

502 A Matlab Programs

} else if (method == METHOD_PCG) {

ierr = PreconditionedConjugateGradient(ksp, preconditioner); CHKERRQ(ierr);

}

ierr = KSPSetFromOptions(ksp); CHKERRQ(ierr);

ierr = KSPSolve(ksp, h2b, u); CHKERRQ(ierr);

ierr = KSPGetIterationNumber(ksp, &number_of_iterations); CHKERRQ(ierr);

ierr = KSPGetConvergedReason(ksp, &convergedReason); CHKERRQ(ierr);

if (convergedReason < 0) {

PetscPrintf(PETSC_COMM_WORLD,

"KSP solver failed to converge! Reason: %d\n", convergedReason);

}

if (VERBOSE) {

PetscPrintf(PETSC_COMM_WORLD, "Number of iterations: %d\n", number_of_iterations);

}

ierr = KSPDestroy(&ksp); CHKERRQ(ierr);

return 0;

}

/*Program for using Jacobi's method */

#include <petsc.h>

#include <petscmat.h>

#include <petscvec.h>

#include <petscksp.h>

#include <cmath>

/**

* Returns the preconditioner used for Jacobi's method

*/

PetscErrorCode Jacobi(PC preconditioner) {

PetscErrorCode ierr;

ierr = PCSetType(preconditioner, PCJACOBI); CHKERRQ(ierr);

return 0;

}

/*Program for using Gauss-Seidel method */

#include <petsc.h>

#include <petscmat.h>

A.27 PETSc programs 503

#include <petscvec.h>

#include <petscksp.h>

#include <cmath>

#include "Poisson.h"

PetscErrorCode GaussSeidel(PC preconditioner) {

PetscErrorCode ierr;

ierr = PCSetType(preconditioner, PCSOR); CHKERRQ(ierr);

/**

* To use the Gauss-Seidel method we set

* omega = 1.

*/

// By default, omega = 1, so the below line is not necessary

//ierr = PCSORSetOmega(preconditioner, 1.0); CHKERRQ(ierr);

return 0;

}

/* Program implementing SOR */

#include <petsc.h>

#include <petscmat.h>

#include <petscvec.h>

#include <petscksp.h>

#include <cmath>

#include "Poisson.h"

const PetscScalar omega = 1.5;

PetscErrorCode SOR(PC preconditioner) {

PetscErrorCode ierr;

ierr = PCSetType(preconditioner, PCSOR); CHKERRQ(ierr);

ierr = PCSORSetOmega(preconditioner, omega); CHKERRQ(ierr);

return 0;

}

/**

* Program for two versions of the Conjugate gradient method.

*/

#include <petsc.h>

#include <petscmat.h>

#include <petscvec.h>

#include <petscksp.h>

#include <cmath>

#include "Poisson.h"

/**

504 A Matlab Programs

* Conjugate gradient method using inbuilt PETSc functions.

*/

PetscErrorCode ConjugateGradient(KSP ksp, PC preconditioner) {

PetscErrorCode ierr;

ierr = KSPSetType(ksp, KSPCG);

ierr = PCSetType(preconditioner, PCNONE); CHKERRQ(ierr);

return 0;

}

/**

* An implementation of the conjugate gradient method

* not utilizing the PETSc KSP interface, but

* implementing the matrix/vector operations directly.

*/

PetscErrorCode ConjugateGradient_full(Mat A, Vec b, Vec x, bool VERBOSE) {

PetscErrorCode ierr;

PetscInt k=0, n;

PetscScalar mu, nu, rTr, pTz, rNorm, tol = 1e-12;

Vec p, r, z;

ierr = MatGetSize(A, &n, NULL); CHKERRQ(ierr);

CreateVector(&p, n);

CreateVector(&r, n);

CreateVector(&z, n);

VecCopy(b, p);

VecCopy(b, r);

ierr = VecAssemblyBegin(p); CHKERRQ(ierr);

ierr = VecAssemblyEnd(p); CHKERRQ(ierr);

ierr = VecAssemblyBegin(r); CHKERRQ(ierr);

ierr = VecAssemblyEnd(r); CHKERRQ(ierr);

ierr = VecAssemblyBegin(z); CHKERRQ(ierr);

ierr = VecAssemblyEnd(z); CHKERRQ(ierr);

ierr = VecZeroEntries(x);

// Pre-compute first (rˆT r)

ierr = VecDot(r, r, &rTr); CHKERRQ(ierr);

do {

k++;

// z = A * p_k

ierr = MatMult(A, p, z); CHKERRQ(ierr);

// nu_k = r_{k-1}ˆT r_{k-1} / p_kˆT z

ierr = VecDot(p, z, &pTz); CHKERRQ(ierr);

nu = rTr / pTz;

A.27 PETSc programs 505

// x_k = x_{k-1} + nu_k p_k

ierr = VecAXPY(x, nu, p); CHKERRQ(ierr);

// r_k = r_{k-1} - nu_k z

ierr = VecAXPY(r, -nu, z); CHKERRQ(ierr);

// r_kˆT r_k

mu = 1 / rTr;

ierr = VecDot(r, r, &rTr); CHKERRQ(ierr);

// mu_{k+1}

mu = rTr * mu;

// p_{k+1} = r_k + mu_{k+1} p_k

ierr = VecAYPX(p, mu, r);

// || r_k ||_2

ierr = VecNorm(r, NORM_2, &rNorm);

} while (rNorm > tol);

if (VERBOSE) {

PetscPrintf(PETSC_COMM_WORLD, "Number of iterations: %d\n", k);

}

return 0;

}

/*Program for using Preconditioned Conjugate gradient method */

#include <petsc.h>

#include <petscmat.h>

#include <petscvec.h>

#include <petscksp.h>

#include <cmath>

#include "Poisson.h"

PetscErrorCode PreconditionedConjugateGradient(KSP ksp, PC preconditioner) {

PetscErrorCode ierr;

ierr = KSPSetType(ksp, KSPCG);

//ierr = PCSetType(preconditioner, PCJACOBI); CHKERRQ(ierr);

ierr = PCSetType(preconditioner, PCCHOLESKY); CHKERRQ(ierr);

return 0;

}

/**

* Implements the preconditioned conjugate gradient

* method with Jacobi preconditioning.

*/

506 A Matlab Programs

PetscErrorCode PreconditionedConjugateGradient_full(Mat A, Vec b, Vec x,

bool VERBOSE) {

PetscErrorCode ierr;

Mat Minv;

Vec diagonal, unity;

PetscInt n;

ierr = MatGetSize(A, &n, NULL); CHKERRQ(ierr);

ierr = CreateMatrix(&Minv, n, n); CHKERRQ(ierr);

ierr = CreateVector(&diagonal, n); CHKERRQ(ierr);

ierr = CreateVector(&unity, n); CHKERRQ(ierr);

ierr = MatAssemblyBegin(Minv, MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);

ierr = MatAssemblyEnd(Minv, MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);

ierr = VecAssemblyBegin(diagonal); CHKERRQ(ierr);

ierr = VecAssemblyEnd(diagonal); CHKERRQ(ierr);

ierr = VecAssemblyBegin(unity); CHKERRQ(ierr);

ierr = VecAssemblyEnd(unity); CHKERRQ(ierr);

// We use the diagonal preconditioner for simplicity

ierr = MatGetDiagonal(A, diagonal); CHKERRQ(ierr);

// Compute inverse of all diagonal entries

ierr = VecSet(unity, 1.0); CHKERRQ(ierr);

ierr = VecPointwiseDivide(diagonal, unity, diagonal);

// Create Mˆ{-1}

ierr = MatDiagonalSet(Minv, diagonal, INSERT_VALUES); CHKERRQ(ierr);

return PreconditionedConjugateGradient_inner(A, b, x, Minv, VERBOSE);

}

PetscErrorCode PreconditionedConjugateGradient_inner(Mat A, Vec b, Vec x,

Mat Minv, bool VERBOSE) {

PetscErrorCode ierr;

PetscInt k=0, n;

PetscScalar mu, nu, yTr, pTz, rNorm, tol = 1e-12;

Vec p, r, y, z;

ierr = MatGetSize(A, &n, NULL); CHKERRQ(ierr);

CreateVector(&p, n);

CreateVector(&r, n);

CreateVector(&y, n);

CreateVector(&z, n);

VecCopy(b, r);

ierr = MatMult(Minv, b, p); CHKERRQ(ierr);

VecCopy(p, y);

ierr = VecAssemblyBegin(p); CHKERRQ(ierr);

ierr = VecAssemblyEnd(p); CHKERRQ(ierr);

ierr = VecAssemblyBegin(r); CHKERRQ(ierr);

ierr = VecAssemblyEnd(r); CHKERRQ(ierr);

ierr = VecAssemblyBegin(y); CHKERRQ(ierr);

A.27 PETSc programs 507

ierr = VecAssemblyEnd(y); CHKERRQ(ierr);

ierr = VecAssemblyBegin(z); CHKERRQ(ierr);

ierr = VecAssemblyEnd(z); CHKERRQ(ierr);

ierr = VecZeroEntries(x);

// Pre-compute first (yˆT r)

ierr = VecDot(y, r, &yTr); CHKERRQ(ierr);

do {

k++;

// z = A * p_k

ierr = MatMult(A, p, z); CHKERRQ(ierr);

// nu_k = y_{k-1}ˆT r_{k-1} / p_kˆT z

ierr = VecDot(p, z, &pTz); CHKERRQ(ierr);

nu = yTr / pTz;

// x_k = x_{k-1} + nu_k p_k

ierr = VecAXPY(x, nu, p); CHKERRQ(ierr);

// r_k = r_{k-1} - nu_k z

ierr = VecAXPY(r, -nu, z); CHKERRQ(ierr);

// y_k = Mˆ{-1} r_k

ierr = MatMult(Minv, r, y); CHKERRQ(ierr);

// y_kˆT r_k

mu = 1 / yTr;

ierr = VecDot(y, r, &yTr); CHKERRQ(ierr);

// mu_{k+1}

mu = yTr * mu;

// p_{k+1} = r_k + mu_{k+1} p_k

ierr = VecAYPX(p, mu, y);

// || r_k ||_2

ierr = VecNorm(r, NORM_2, &rNorm);

} while (rNorm > tol);

if (VERBOSE) {

PetscPrintf(PETSC_COMM_WORLD, "Number of iterations: %d\n", k);

}

return 0;

}

References

1. Allen G.D. Lectures on Linear Algebra and Matrices. Texas A&M University. — URL:

http://www.math.tamu.edu/˜dallen / m640_03c / readings.htm
2. M. Arioli, J. Demmel, and I. S. Duff, Solving sparse linear systems with sparse backward error,

SIAM J. Matrix Anal. AppL, 10, pp. 165-190, 1989.
3. E. Anderson, Z. Baiu, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-

baum, S. Hammarling, A.McKenney, D.Sorensen, LAPACK Users’ Guide Third Edition, 2012.
4. O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, UK, 1996.
5. Z. Bai, Error analysis of the Lanczoz algorithm for the nonsymmetric eigenvalue problem,

Math.Comp., 62, pp. 209 – 226, 1994.
6. Z. Bai, Progress in the numerical solution of the nonsymmetric eigenvalue problem, J.

Num.Lin.Alg. Appl., 2, pp. 210 – 234, 1995.
7. Bakushinsky A., Kokurin M.Y., Smirnova A., Iterative Methods for Ill-posed Problems, Inverse

and Ill-Posed Problems Series 54, De Gruyter, 2011.
8. S. Batterson, Convergence of the shifted QR algorithm on 3 by 3 normal matrices, Numer.Math,

58, pp. 341-352, 1990.
9. R. Barrett, M. Berry, T. F. Chan, James Demmel J. M. Donato, J. Dongarra, V. Eijkhout, R.

Pozo, C. Romine, H. Van der Vorst, Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods, SIAM Philadelphia, PA, 1994.
10. Belitskii G.R., Lyubich Yu.I. Matrix norms and their applications, Birkhäuser Verlag, Basel,

1988.
11. Bellman R. Introduction to matrix analysis, SIAM, 1997.
12. R. L. Burden, J. Douglas Faire, Numerical Analysis, ISBN-10: 0534392008 Edition: 8-th,

2004.
13. R. H. Byrd, R. B. Schnabel, and G. A. Shultz, A Trust Region Algorithm for Nonlinearly Con-

strained Optimization, SIAM J. Numer. Anal., 24(5), 11521170, 1987. DOI:10.1137/0724076
14. Å. Björck, Numerical Methods for Least Squares Problems, SIAM, 1996.
15. C. Bischof, Incremental condition estimation, SIAM J.Matrix Anal.Appl., 11, pp. 312-322,

1990.
16. J. Bunch and L. Kaufman, Some stable methods for calculating inertia and solving symmetric

linear systems. Math. Comp., 31, pp. 163-179, 1977.
17. R. Calinger, A Contextual History of Mathematics, Prentice Hall, ISBN 978-0-02-318285-3,

1999.
18. T.Chan, Rank revealing QR factorizations, Linear Algebra Applications, 88/89, pp. 67-82,

1987.
19. Ciarlet P. Introduction to numerical linear algebra and optimisation, Cambridge University

Press, 1989.
20. J. Cullum, W. Kerner, and R. Willoughby, A generalized nonsymmetric Lanczos procedure,

Comput. Phys. Comm., 53, pp. 19 – 48, 1989.

509

510 References

21. J. J. M. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenproblem,

Numer. Math., 36, pp. 177-195, 1981.
22. D. Day, How the QR algorithm fails to converge and how to fix it, Technical Report 96-0913J,

Sandia National Laboratory, NM, 1996.
23. James W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.
24. James W. Demmel, The condition number of equivalence transformations that block diagonal-

ize matrix pencils, SIAM J. Num.Anal., 20, pp. 599-610, 1983.
Applied Numerical Linear Algebra, SIAM, 1997.

25. J. Demmel and K. Veselic, Jacobi’s method is more accurate than QR, SIAM J. Matrix Anal.

Appl., 13, pp. 1204-1246, 1992.
26. J. Demmel, Dillon and H. Ren, On the correctness on some bisection-like parallel eigenvalue

algorithms in floating point arithmetic, Electronic Trans. Num. Anal., 3, pp.116-140, 1995.
27. J. Demmel, W. Gragg, On computing accurate singular values and eigenvalues of matrices with

acyclic graphs, Linear algebra and its applications, pp.203-217, 1993.
28. J. Demmel and W. Kahan, Accurate singular values of bidiagonal matrices,SIAM J. Sci. Statist.

Comput., 11, pp. 873-912, 1990.
29. I. S. Dhillon, A new O(n2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector

problem, Ph.D. thesis, Computer Science Division, University of California, Berkeley, 1997.
30. S. Eisenstat. A stable algorithm for the rank-1 modification of the symmetric eigenproblem.

Computer Science Dept. Report YALEU/DCS/RR-916, Yale University, September 1992.
31. H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Aca-

demic Publishers, Boston, 2000.
32. K. Fernando and B. Parlett, Accurate singular values and differential qd algorithms, Numer.

Math., 67, pp. 191-229, 1994.
33. Gantmaher F.R. The theory of matrices. AMS Chelsea Publishing, Vol. 1, Vol. 2, 2000.
34. Gantmacher F.R. Applications of the theory of matrices, Dover Publications, 2005.
35. Gelfand I.M. Lectures on linear algebra, Dover Books on Mathematics, 1989.
36. Glazman I.M., Ljubich Yu.I. Finite-dimensional linear analysis: a systematic presentation in

problem form, Dover Publications, 2006.
37. Godunov S.K. Modern aspects of linear algebra, American Mathematical Society, 1998.
38. M. Gu and S. C. Eisenstat, A divide-and-conquer algorithm for the symmetric tridiagonal

eigenproblem, SIAM J. Matrix Anal. Appl., 16, pp. 172-191, 1995.
39. J. F. Grcar, Mathematicians of Gaussian elimination, Notices of the American Mathematical

Society, 58 (6), pp. 782–792, 2011.
40. R. Grimes, J. Lewis, and H. Simon, A shifted block Lanczoz algorithm for solving sparce

symmetric generalized problems, SIAM J. Matrix Anal. Appl., 15, pp.228-272, 1994.
41. Faddeev D.K. Lectures in algebra, Nauka, 1984 [in Russian].
42. V. Fernando, B. Parlett, and I. Dhillon, A way to find the most redundant equation in a tridiag-

onal system, Preprint at California University, Berkeley Center, 1995.
43. K. Fernando and B. Parlett, Accurate singular values and differential qd algorithms, Numer.

Math., 67, pp. 191-229, 1994.
44. R. Freund , G. H. Golub , N. M. Nachtigal, Iterative Solution of Linear Systems, Acta Numer-

ica, pp. 97-100, 1992.
45. W. W. Hager, Condition estimators, SIAM J. Sci. Statist. Comput., 5, pp. 311-316, 1984.
46. L. A. Hageman and D. M. Young, Applied Iterative Methods, Academic Press, New York,

1981.
47. P. Halmos, Finite Dimensional Vector Spaces, Van Nostrand, New York, 1958.
48. Halmos P.R. Linear Algebra Problem Book, The Mathematical Association of America, 1995.
49. W. Hackbusch, Iterative solution of large sparse systems of equations, Springer, Berlin, 1994.
50. N. J. Higham, A survey of condition number estimation for triangular matrices, SIAM Rev.,

29, pp. 575-596, 1987.
51. N. J. Higham, Experience with a matrix norm estimator, SIAM J. Sci. Statist. Comput., 11, pp.

804-809, 1990.
52. N. J. Higham, FORTRAN codes for estimating the one-norm of a real or complex matrix,

SIAM Review, 29, pp. 575-596, 1987.

References 511

53. N. Higham, Accuracy and Stability of Numerical Algorithms, (2 ed). SIAM, 2002.
54. Higham N.J. Functions of matrices. Theory and computation, Society for Industrial and Ap-

plied Mathematics, 2008.
55. Horn R.A., Johnson C.R. Topics in matrix analysis, Cambridge University Press, 1999.
56. Horn R.A., Johnson C.R. Matrix analysis, Cambridge University Press, 2012.
57. B. Fine, G. Rosenberger, The Fundamental Theorem of Algebra, Springer, 1997.
58. G. E. Forsythe, M. A. Malcolm, C. B. Moler, Computer methods for mathematical computa-

tions, Prentice Hall, Englewood Cliffs, NJ, 1977.
59. Ikramov Kh.D. Numerical solution of matrix equations, Nauka, Moscow, 1984 [in Russian].
60. Ikramov Kh.D. Matrix pencils-theory, applications, numerical methods. Journal of Soviet

Mathematics, 1993, 64:2, 783-853.
61. D. Kahaner, C. Moler, S. Nash, Numerical Methods and Software, Prentice Hall, Englewood

Cliffs, NJ, 1989.
62. C.T. Kelley, Frontiers in Applied Mathematics: Iterative Methods for Linear and Nonlinear

Equations, SIAM, Philadelphia, 1995.
63. Krasnosel’skii M.A., Vainikko G.M., Zabreiko P.P., Rutitskii Ya.B., Stetsenko V.Ya. Approxi-

mate solution of operator equations. Wolters-Noordhoff Publishing, Groningen, 1972.
64. Kurosh A. Higher algebra, Mir Publishers, 1980.
65. Kuttler K. Elementary linear algebra, Brigham Young University, 2009.
66. Lancaster P., Tismenetsky M. The theory of matrices, Academic Press, 1985.
67. Lau D. Übungsbuch zur Linearen Algebra und analytischen Geometrie. Aufgaben mit

Lösungen, Springer-Verlag, Berlin, Heidelberg, 2011.
68. C. L. Lawson, R. J. Hanson, Solving Least Squares Problems, SIAM, Philadelphia, PA, 1995.
69. J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, Linpack Users Guide, SIAM,

Philadelphia, PA, 2d edition, 1979.
70. Mal’cev A.I. Foundations of linear algebra, W.H. Freeman and Company, 1963.
71. Marcus M., Min H. A survey of matrix theory and matrix inequalities, Dover Publica-

tions, 2010.
72. Meyer C.D. Matrix analysis and applied linear algebra. With solutions to problems.

SIAM, 2000.
73. Mirsky L. An introduction to linear algebra, Dover Publications, 2011.
74. Moré, The Levenberg-Marquardt algorithm: implementation and theory, In Watson, editor,

Numerical Analysis, Proceedings of the Biennial Conference Held at Dundee pp. 105-116,

1977.
75. Prasolov V.V. Problems and theorems in linear algebra, American Mathematical Society, 1994.
76. Shilov G.E. Linear Algebra, Dover Publications, 1977.
77. Stewart F.M. Introduction to linear algebra, D.Van Nostrand Company Inc, 1963.
78. Stewart G.W., Sun J. Matrix perturbation theory, Academic Press, Inc., 1990.
79. Strang G. Linear algebra and its applications, Cengage Learning, 2006.
80. Tyrtyshnikov E.E. Matrix analysis and linear algebra, FIZMATLIT, Moscow, 2007 [in Rus-

sian].
81. Varga R.S. Matrix Iterative Analysis, Springer, 2010.
82. Vinberg E.B. A course in algebra, American Mathematical Society, 2003.
83. Voevodin V.V. Linear algebra, Mir Publishers, 1983.
84. Voevodin V.V., Kuznecov Yu.A. Matrices and Calculations, Nauka, Moscow, 1984 [in Rus-

sian].
85. Wildon M. A short proof of the existence of Jordan normal form. — URL:

http://www.ma.rhul.ac.uk/ uvah099/Maths/JNFfinal.pdf
86. Zhan X. Matrix inequalities, Springer, 2002.
87. Zhang F. Matrix theory. Basic results and techniques, Springer-Verlag New York, 1999.
88. W.Hager, Applied Numerical Linear Algebra, Prentice Hall, Englewood Cliffs, NJ, 1988.
89. H. T. Lau, A numerical library in C for scientists and engineers, CRC Press, Boca Raton, FL,

1995.
90. T.-Y. Li, H. Zhang, and X.-H. Sun, Parallel homotopy algorithm for symmetric tridiagonal

eigenvalue problem, SIAM J. Sci. Statist. Comput., 12, pp. 469-487, 1991.

512 References

91. T.-Y. Li and Z. Zeng, Homotopy-determinant algorithm for solving nonsymmetric eigenvalue

problems, Math. Comp., 59, pp. 483-502, 1992.

92. T.-Y. Li, Z. Zeng, and L. Cong, Solving eigenvalue problems of nonsymmetric matrices with

real homotopies, SIAM J. Numer. Anal., 29, pp. 229-248, 1992.

93. C. C. Paige, M. A. Saunders, Solution of sparce indefinite systems of linear equations, SIAM

J. Num.Anal., 12, pp.617-629, 1975.

94. B. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs, NJ, 1980.

95. B. Parlett, The new qd algorithms, Acta Numerica, Cambridge University Press, Cambridge,

UK, pp. 459-491, 1995.

96. B. N. Parlett and I. S. Dhillon, Fernando’s solution to Wilkinson’s problem: An application of

double factorization, Linear Algebra Appl., 1997.

97. B. Parlett, The construction of orthogonal eigenvectors for tight clusters by use of submatrices,

Center for Pure and Applied Mathematics PAM-664, University of California, Berkeley, 1996.

98. PETSc, Portable, Extensible Toolkit for Scientific Computation,

https://www.mcs.anl.gov/petsc/

99. H. Rutishauser, Lectures on Numerical Mathematics, Birkhauser, Basel, 1990.

100. Y. Saad, Iterative methods for sparse linear systems, PWS Publishing, Co. Boston, 1996.

101. Y. Saad, M. H. Schulz, GMRES: a generalized minimal residual algorithm for solving non-

symmetric linear systems, SIAM J. Sci.Stat.Comp., 7, pp. 856-869, 1986.

102. Y. Saad, Numerical solution of large nonsymmetric eigenvalue problems, Com-

put.Phys.Comp., 37, pp. 105 – 126, 1981.

103. Scilab documentation - number properties - determine floating-point parameters, 2013.

104. R. D. Skeel, Scaling for numerical stability in Gaussian elimination, Journal of the ACM,

26:494-526, 1979.

105. R. D. Skeel, Iterative refinement implies numerical stability for Gaussian elimination, Math.

Comp., 35:817-832, 1980.

106. R. D. Skeel, Effect of equilibration on residual size for partial pivoting, SIAM J. Numer.

Anal., 18, pp. 449-454, 1981.

107. H. Simon, The Lanczoz algorithm with partial reorthogonalization, Math. Comp., 42, pp.

115-142, 1984.

108. Van Der Sluis, Condition numbers and equilibration of matrices, Numer.Math., 14, pp.14-23,

1969.

109. G. Szegö, Orthogonal Polynomials, AMS, Providence, RI, 1967.

110. A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov and A.G. Yagola, Numerical Methods for

the Solution of Ill-Posed Problems, London: Kluwer, London, 1995.

111. L. N. Trefethen, D. Bau III, Numerical Linear Algebra, SIAM, Philadelphia, 1997.

112. A. Van Der Sluis, Condition numbers and equilibration of matrices, Numer. Math., 14:14-23,

1969.

113. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, UK,

1965.

114. M. H. Wright, S. Glassman, Fortran subroutines to solve linear least squares problems and

compute the complete orthogonal factorization. Technical report, Stanford University, Stan-

ford, CA, 1978.

115. Z. Zeng, Homotopy-Determinant Algorithm for Solving Matrix Eigenvalue Problems and Its

Parallelizations, Ph.D. thesis, Michigan State University, East Lansing, MI, 1991.

Index

Algorithms for Gaussian Elimination

error analysis, 249

algorithm

bisection, 268

Cholesky, 260

equilibration, 258

backward substitution, 237

condition number, 252

forward substitution, 237

Hager’s estimator, 253, 254

LU factorization with pivoting,

236

relative condition number, 255

Approximation

the best, 82, 86

Arnoldi

algorithm, 405

algorithm, 403, 404, 417

vectors, 404

Axioms

inner product

for a complex vector space, 66

for a real vector space, 65

matrix norm, 205

norm on the space Cn, 199

vector space, 53

Basis

in a finite-dimensional vector

space, 61

in the space Cn

Fourier, 76

standard, 60

in the space of polynomials

Lagrange, 63

natural, 63

Newton, 64

reciprocal, 76

Bauer-Fike theorems, 224

Bauer-Skeel theorem, 230

Bessel’s inequality, 84

Bezout’s theorem, 10

Cauchy-Schwarz inequality, 68, 198

generalized, 205

Cauchy-Schwarz inequality theorem,

68

Cayley-Hamilton theorem, 110

Characteristic equation

of a matrix, 110

of an operator, 110

Characteristic polynomial

of a matrix, 110

of a matrix pencil, 181

of an operator, 110

Characteristic values

of a matrix, 110

of a regular matrix pencil, 182

of an operator, 110

Cofactor, 20

Column matrix, 30

Complement

513

514 INDEX

orthogonal, 86

Complex number

n-th roots, 6

absolute value, 4

argument, 5

conjugate, 4

imaginary part, 2

real part, 2

trigonometric form, 5

zero, 3

Complex numbers

difference, 2

division, 3

multiplication, 3

sum, 2

Condition number, 159, 226

of the linear least squares

problem, 233

relative or Bauer-Skeel, 231

Conjugate gradient

algorithm, 387

Conjugate gradient

algorithm, 405, 411

method, 412, 415

Conjugate gradients, 408

vectors, 408

Convergence

Successive Overrelaxation

SOR(ω) method, 399, 401

Gauss-Seidel method, 398, 399

Jacobi method, 398, 399

componentwise, 200

in norm, 200

Convergent

power series of matrices, 178

sequence of matrices, 124

Convex function, 161

Cramer’s formulas, 28

De Moivre’s formula, 6

Defect of an operator, 96

Determinant, 17

of an operator, 95

Vandermonde, 24

Eigenpair of an operator, 108

Eigenspace of an operator, 108

Eigenvalue of an operator, 108

Eigenvector

of a matrix, 110

of a regular matrix pencil, 182

of an operator, 108

Fan’s theorem, 146

Fourier coefficients, 75

Fredholm theorem, 128

matrix, 103

Fundamental set of solutions of a

homogeneous equation, 101

Fundamental theorem of algebra, 11

Gap between subspaces, 213

Gauss transformation, 130

Gaussian elimination, 40

General solution

of a homogeneous equation, 101

of a linear equation, 101

Generalized Schur theorem, 182

Gershgorin theorem, 223

column sum version, 224

Givens rotation, 151

Gram-Schmidt

orthogonalization process, 73

orthogonalization theorem, 72

Hölder’s inequality, 197

Hahn-Banach theorem, 202

Hessenberg

matrix, 340

lower, 341

unreduced, 351, 352

upper, 341, 343, 344, 351–353

reduction, 340, 341

Horner’s rule, 9, 245

Householder transformation, 152

Hyperplane, 86

Image of an operator, 96

Imaginary unit, 1

Invariant subspace of an operator,

106

trivial, 106

Invariants

of a matrix, 117

of an operator, 117

Inverse map, 89

INDEX 515

Inversion, 16

Isomorphic spaces, 90

Isomorphism, 90

Iterative

Symmetric Successive

Overrelaxation SSOR(ω)

method, 394

Gauss-Seidel method, 391–394

Jacobi method, 389

methods, 387

Successive Overrelaxation

SOR(ω) method, 393

Iterative algorithms, 387

Jensen’s inequality, 162

Jordan

basis, 171

block, 170

canonical form, 169

real, 176

Kernel of an operator, 96

Kronecker canonical form, 192

Kronecker delta, 21

Kronecker-Capelli theorem, 102

Krylov Subspace, 403, 405

methods, 387

methods, 403

Löwner’s theorem, 365, 366

Lagrange interpolation formula, 29

Lanczos

algorithm, 405

algorithm, 408, 410, 417

vectors, 405, 408

Leading principal submatrix, 145

Linear Least Squares Problems, 276

Linear Least Squares Problems,

275–277

normal equations, 287

QR decomposition, 289, 294

rank-deficient, 316, 319

data fitting, 277, 278, 280

SVD decomposition, 309–311,

313, 314

Linear functional, 125

on Cn, 202

real, 202

Linear space of linear operators, 96

real, 96

Majorization, 145

weak, 145

Matrices

commuting, 34

equivalent, 95

similar, 95

sum, 31

Matrix

adjugate, 38

block, 48

diagonal, 50

lower triangular, 50

upper triangular, 50

change of basis, 62

convergent, 180

diagonal, 30

diagonally dominant

column, 227

row, 226

exponential, 180

full rank, 98

Gram, 70

Hermitian, 46

Hermitian adjoint, 46

identity, 30

inverse, 38

left, 37

right, 37

Jordan, 169

nilpotent, 119

non-negative semidefinite, 133

nonnegative, 162

nonsingular, 26

normal, 47

of an operator, 92

orthogonal, 47

partial isometry, 168

permutation, 31

positive definite, 133

product

by a matrix, 34

by a scalar, 31

by a vector, 32

516 INDEX

real, 47

rectangular, 29

singular, 26

skew-Hermitian, 46

skew-symmetric, 47

square, 17

stochastic, 162

doubly, 162

symmetric, 47

transpose, 22, 36

triangular

lower, 24, 31

lower elementary, 31

upper, 24, 31

unitary, 47

zero, 31

Minkowski inequality, 66, 69, 198

Minor, 21

basic, 99

principal, 116

leading, 98

Moore-Penrose pseudoinverse, 316,

317

Multiplicity of an eigenvalue

algebraic, 114

geometric, 114

Neumann series, 179

Newton’s method, 256, 364

Nonlinear Least Squares Problems,

281

Nonsymmetric eigenvalue problems,

327

algorithm

single shift QR algorithm, 352

bidiagonal reduction, 344

Hessenberg reduction, 341, 344

Inverse Iteration, 330

Orthogonal iteration, 333

Power Method, 327

QR Iteration, 337

QR iteration with shifts, 338

tridiagonal reduction, 344,

347–349

Norm

on the space Cn, 199

‖ · ‖A, 199

‖ · ‖∞, 199

‖ · ‖p, 199

absolute, 201

monotone, 201

on the space of matrices, 205

‖ · ‖l1 , 206

absolute column sum, 208

absolute row sum, 209

consistent, 205

Euclidean, 206

Frobenius, 206

induced, 207

Ky Fan, 212

operator, 207

spectral, 209

vector, 205

Normal solution, 129

Norms

dual, 204

equivalent, 200

Number

complex, 2

imaginary, 2

Operator

k-th root , 137

adjoint, 125

diagonalizable, 114

identity, 88

index of nilpotence, 119

inertia, 138

inverse, 89

invertible, 89

linear, 87

nilpotent, 119

non-negative semidefinite, 133

nonsingular, 95

normal, 134

null, 88

orthogonal, 147

positive definite, 133

projection, 88

orthogonal, 88

pseudoinverse, 130

self-adjoint (Hermitian), 131

INDEX 517

skew-Hermitian, 131

skew-symmetric, 147

unitary, 134

Operators

congruent, 138

linear combination, 88

permutable, 109

product, 88

Orthogonal decomposition theorem,

86

Orthogonal projection, 83

Orthogonalization methods

classical Gram-Schmidt, 307, 308

Givens Rotation, 302, 305

Gram-Schmidt orthogonalization,

306, 406

Householder transformations,

291–293

modified Gram-Schmidt, 307

Paige theorem, 406

Pencil of matrices, 181

definite, 186

Hermitian, 186

rank, 187

regular, 181

quasidiagonal form, 184

singular, 181

minimal index, 188

minimal index left, 191

minimal index right, 191

Pencils of matrices

equivalent, 182

Permutation, 15

even, 16

odd, 16

signature, 16

transposition, 16

Pivoting, 235, 236, 238–240, 242,

244, 261–263

complete, 238

partial, 237

Polar decomposition, 160

Polynomial, 7

coefficients, 7

degree, 7

leading coefficient, 7

normalized, 10

root, 10

multiplicity, 10

simple, 10

zero, 7

Polynomials

Chebyshev, 77

division, 9

Legendre, 77

Power series of matrices, 178

Preconditioned conjugate gradient

algorithm, 413

method, 414, 415

Pseudo-solution, 129

normal, 129, 157

Rank

of a matrix, 97

of an operator, 96

Rayleigh quotient, 359, 361

Rayleigh-Ritz procedure, 406

Residual, 129, 255–258

Residual functional, 129

Restriction of an operator, 108

Riesz’s theorem, 125

Rigal-Gaches theorem, 230

Ritz

values, 406

vectors, 406

Rodrigues’s formula, 74

Root of an operator, 137

Rotation

improper, 151

proper, 151

Round-off

analysis, 244

error, 249, 256

Row, 30

product

by a column, 32

by a matrix, 33

Scalar multiplication (multiplication

of a vector by a scalar), 52

Schur form of a matrix, 122

real, 124

518 INDEX

Schur theorem, 120, 145

Shift, 330–332, 338, 339, 351, 354,

359, 377–380

Francis shift, 339, 340

Wilkinson’s shift, 340, 358

Singular

value decomposition, 158

values of an operator, 155

vectors of an operator, 155

Span, 79

Spectral radius of a matrix, 178

Spectral resolution of an operator,

115

Spectrum

of a matrix, 110

of an operator, 110

Subspace, 79

basis, 80

cyclic, 175

dimension, 80

root, 175

zero, 80

Subspaces

intersection, 79

orthogonal, 81

sum, 79

direct, 80, 81

orthogonal, 81

Sylvester equation, 123

Sylvester’s criterion, 144

Sylvester’s formula, 115

Sylvester’s inertia theorem, 367

Sylvester’s law of inertia, 138

Symmetric eigenvalue problems

algorithms, 357

Symmetric eigenvalue problems

algorithm

Divide-and-conquer, 364

Bisection and Inverse Iteration,

368

Classical Jacobi’s algorithm, 372

Cyclic-by-row-Jacobi, 373

dqds, 379, 380

Jacobi rotation, 371, 372

LR iteration, 377

One-sided Jacobi rotation, 381

qds, 380

Rayleigh quotient iteration, 359

Tridiagonal QR Iteration, 358

System of linear algebraic equations,

26, 102

homogeneous, 26

matrix, 26

right-hand side, 26

trivial solution, 26

Tikhonov regularization method, 130

Trace of an operator, 117

Transformation similarity, 95

Triangle inequality, 199

Triangle inequality (Minkowski), 66

Tuple, 51

Vector, 51, 53

addition, 52

components, 51

contravariant, 76

covariant, 76

coordinates, 61, 90

cyclic, 175

height, 175

Euclidean length, 66

length, 69

normalized, 136

standard unit, 52

zero, 51

Vector space

C[a,b], 54

Cn, 52

Rn, 51

Qn, 55

V3, 54

complex, 54

dimension, 61

Euclidean, 67

finite-dimensional, 60

inner product, 67

real, 53

unitary, 67

Vectors

equivalent sets, 57

inner product, 67

INDEX 519

standard on the space Cn, 67

standard on the space Rn, 66

linear combination, 56

maximal linearly independent

subset, 59

orthogonal, 69

proportional, 55

rank of a set, 60

set

linearly dependent, 55

linearly independent, 57

orthogonal, 71

orthonormal, 71

Vieta’s formulas, 14

Wedin’s theorem, 232

Weierstrass canonical form, 185

Weierstrass’s theorem, 185

Weyl’s inequalities, 217

Weyl’s theorem, 166

“relative”, 218

Young’s inequality, 197

