
Numerical Linear Algebra TMA265/MMA600
Computer Labs

Larisa Beilina, larisa@chalmers.se

Instructions

• To pass this course you should do any 2 computer assignments described below.

• You can work in groups by 2 persons.

• Sent final report for every computer assignment with description of your work together
with Matlab or C++/PETSc programs to my e-mail before deadline. Report should
have description of used techniques, tables and figures confirming your investigations.
Analysis of obtained results is necessary to present in section “Numerical examples”
and summarized results - in section “Conclusions”. You can download latex or pdf-
template for report from the course homepage.

• Matlab and C++ programs for examples in the book [1] are available for download
from the course homepage: go to the link of the book [1] and click to “GitHub Page
with MATLAB R© Source Codes” on the bottom of this page, or copy the link below:

https://github.com/springer-math/Numerical_Linear_Algebra_Theory_and_Applications
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Computer exercise 1 (1 b.p.)

Solution of least squares problem

Consider the nonlinear model equation

y(T ) = A · exp
E

T−T0

presenting one of the models of the viscosity of glasses (see paper G. S. Fulcher, “ANALYSIS
OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES” on the course
homepage). Here, T is the known temperature, y(T ) is the known output data. Determine
parameters A,E, T0 which are positive constants by knowing T and output data y(T ).

Hints:

1. Transform first the nonlinear function y(T ) to the linear one and formulate then the
linear least squares problem. Discretize T by N points and compute discrete values
of y(T ) as yi = y(Ti) for the known values of parameters A,E, T0. Then forget about
these parameters (we will call them exact parameters A∗, E∗, T ∗0 ) and solve the linear
least squares problem to recover these exact parameters.

2. You can choose exact parameters A∗, E∗, T ∗0 as well as the interval for the temper-
ature T as some positive constants accordingly to the Table II of the paper G. S.
Fulcher, “ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF
GLASSES”.

For example, take E∗ = 6 · 103, A∗ = exp−2.64, T ∗0 = 400, T = 750 + 10 ∗ i, i = 1, ..., N ,
where N is the number of discretization points. Interval for T can be, for example,
T = [750, 2000].

3. Investigate effect of random initialization noise δ in data Y (T ) obtained after trans-
formation procedure, on the reconstruction of parameters A,E, T0.

Random noise δ to data Y (T ) can be added using the formula

Yδ(T ) = Y (T )(1 + δα), (0.1)

where α ∈ (−1, 1) is randomly distributed number and δ ∈ [0, 1] is the noise level. For
example, if noise in data is 5%, then δ = 0.05. You can use several Matlab’s functions
to test adding of the noise. Below is an example of the Matlab code which shows how
to add noise for solution of Poisson’s equation (example of section 8.4.4 of the course
book [1]) (see Figure 0.1):

r = randi([-1 1],size(u),1)

for j=1:n

for i=1:n

udelta(n*(i-1)+j) = u(n*(i-1)+j)*(1 + 0.1*r(n*(i-1)+j));

end

end
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Try also add normally distributed Gaussian noise

N(y|µ, σ2) =
1

σ
√

2π
e

−(y−µ)2

2σ2 .

Here, µ is mean, σ2 is variance, σ is standard deviation.

Below is example how to add Gaussian noise N(y|µ, σ2) with mean µ = 0 and variance
σ2 = 0.01 to matrix A in MATLAB:

Anoise = A + 0.01*randn(size(A)) + 0;

4. Solve the linear least squares problem using the method of normal equations, QR and
then SVD decompositions. Analyze obtained results by computing the relative errors
eA, eE , eT0

in the computed parameters depending on the different noise level δ ∈ [0, 1]
in data Yσ(T ) for every method.

The relative errors eA, eE , eT0 in the computed parameters A,E, T0 compute as:

eA =
|A−A∗|
|A∗|

,

eE =
|E − E∗|
|E∗|

,

eT0 =
|T0 − T ∗0 |
|T ∗0 |

.

(0.2)

Here, A∗, E∗, T ∗0 are exact values and A,E, T0 are computed one. Present results how
relative errors (0.2) depend on the random noise δ ∈ [0, 1] in graphical form and in
the corresponding table.

5. Choose different number of discretization points N in the interval for temperature
T and present results of computations in graphical form and in the corresponding
table. More precisely, present how relative errors (0.2) depend on the number of
measurements N if you solve the linear least squares problem using 3 methods: the
method of normal equations, QR and then SVD decomposition.

6. Using results obtained in items 4 and 5, analyze, what is the minimal number of
observations N to get reasonable reconstruction of parameters A,E, T0 within the
noise level σ ?
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Figure 0.1: Top figures: Solution of Poisson’s equation (example of section 8.4.4 of the
course book [1]). Middle figures: Noisy solution obtained via (0.1). Bottom figures: noisy
solution obtained via adding normally distributed Gaussian noise N(y|0, 0.01).
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Computer exercise 2 (1 b.p.)

Least squares and machine learning algorithms for classifica-
tion problem

Figure 0.2: Examples of linear regression for classification for different number of input
points.

In this exercise we will study different linear and quadratic classifiers: least squares
classifier and perceptron learning algorithm using training sets described below.

Computer exercise 2

Implement in MATLAB least squares classifier and perceptron learning algorithm and
present decision lines for following training sets:

• For randomly distributed data yi, i = 1, ...,m generated by the line

−1.2 + 0.5x+ y = 0 (0.3)

on the interval x = [−10, 10]. Generate random data (x, yσ(x)) using the formula
(similar with comp.ex. 1)

yσ(x) = y(x)(1 + δα),

where α ∈ (−1, 1) is randomly distributed number and δ ∈ [0, 1] is the noise level. For
example, if the noise level in data is 5%, then δ = 0.05. Then separate your points
into 2 classes as follows: all points (xi, yσi) which will be on the left side of the line
(0.3) mark with code 1, and all points (xi, yσi) which will be on the right side of the
line (0.3) mark with code 0. In this way you will construct also your target vector t.
Your points separated into 2 classes should look similarly as in Figure 0.3.

• Perform different experiments with different number of generated data points m > 0
which you choose as you want (for example, m = 10, 100, 1000).

• Add again noise as in (0.3) to already separated points into 2 classes and obtain new
noisy data yσ(x). When you will add large noise σ you will observe that two classes
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are not more linearly separated. Check if classification algorithms are still working.
Explain why some of algorithms are not working properly.

Optional (not necessary): compute missclassification rate E using the formula (see [4],
p. 211-214):

E =

∑K
i=1NF,i∑K

i=1(NT,i +NF,i)
, (0.4)

where K is the number of classes, NT,i is the number of points of the class i which
are classified correctly, NF,i is the number of points of the class i which are classified
wrong. Precision for class i can be computed as

P(i) =
NT,i

NT,i +NF,j
. (0.5)

Try answer to the following questions:

• Analyze what happens with performance of perceptron learning algorithm if we take
different learning rates η ∈ (0, 1] ? For what values of η perceptron learning algorithm
is more sensitive and when the iterative process is too slow?

• Analyze which one of the studied classification algorithms perform best and why?

• Try to explain in which case the perceptron algorithm will fail to separate data.

Hints:

1. In this exercise we will assume that we will work in domains with two classes: positive
class and negative class. We will assume that each training example x can have values
0 or 1 and we will label positive examples with c(x) = 1 and negative with c(x) = 0.

2. We will also assume that these classes are linearly separable. These two classes can
be separated by a linear function of the form

ω0 + ω1x+ ω2y = 0, (0.6)

where x, y are Cartesian coordinates. Note that the equation (0.6) can be rewritten
for the case of a linear least squares problem as

ω0 + ω1x = −ω2y (0.7)

or as
−ω0

ω2
− ω1

ω2
x = y. (0.8)

3. We can determine coefficients ω0, ω1, ω2 in (0.6) by solving 2 different least squares
problem:

– By solving the following least squares problem for fitting the data y:

min
ω
‖Aω − y‖22 (0.9)

with ω = [ω1, ω2]T = [−ω0

ω2
,−ω1

ω2
]T , where rows in the matrix A are given by

[1, xk], k = 1, ...,m,

and the known data vector is y = [y1, ...., ym]T .
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– Or by solving the following least squares problem:

min
ω
‖f(x, y, ω)− t‖22 (0.10)

with the linear model equation

f(x, y, ω) = ω0 + ω1x+ ω2y (0.11)

and the target values of the vector t = {ti}, i = 1, ...,m which are defined as

ti =

{
1 point of 1 class,
0 point of 2 class.

(0.12)

Thus, in the least squares problem

min
ω
‖Aω − y‖22 (0.13)

rows in matrix A will be:

[1, xk, yk], k = 1, ...,m.

4. The Perceptron learning algorithm is taken from [4] and is presented below. Decision
line then can be presented in Matlab for already computed weights by Perceptron
learning algorithm using the formula (0.8).

5. Useful links for the literature in AI: [2, 3, 4]. Details about linear and quadratic
perceptron learning algorithm and their implementation can be found in the paper
Numerical analysis of least squares and perceptron learning for classification problems
which can be downloaded from the link

https://arxiv.org/pdf/2004.01138.pdf

6. Example of the Matlab code for classification of 2 classes using least squares, linear
and quadratic perceptron on IRIS flower data set

http://www.math.chalmers.se/Math/Grundutb/CTH/tma265/2021/Matlab/iris.csv

is available on the course homepage:

http://www.math.chalmers.se/Math/Grundutb/CTH/tma265/2021/Matlab/testiris2.

m

The complete dataset IRIS can be downloaded from the link:

https://en.wikipedia.org/wiki/Iris_flower_data_set

Perceptron learning algorithm [4]

Assume that two classes c(x)=1 and c(x)=0 are linearly separable.

Step 0. Initialize all weights ωi in

n∑
i=0

ωixi = 0

https://arxiv.org/pdf/2004.01138.pdf
http://www.math.chalmers.se/Math/Grundutb/CTH/tma265/2021/Matlab/iris.csv
http://www.math.chalmers.se/Math/Grundutb/CTH/tma265/2021/Matlab/testiris2.m
http://www.math.chalmers.se/Math/Grundutb/CTH/tma265/2021/Matlab/testiris2.m
https://en.wikipedia.org/wiki/Iris_flower_data_set
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to small random numbers (note x0 = 1). Choose an appropriate learning rate η ∈ (0, 1].
Step 1. For each training example x = (x1, ..., xn) whose class is c(x) do:

• (i) Assign h(x) = 1 if
n∑
i=0

ωixi > 0

and assign h(x) = 0 otherwise.

• (ii) Update each weight using the formula

ωi = ωi + η · [c(x)− h(x)] · xi.

Step 2. If c(x) = h(x) for all training examples stop, otherwise go to Step 1.
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Computer exercise 3 (2 b.p.)

Regularized Least squares and machine learning algorithms for
classification problem

This exercise can be viewed as beginning for the Master’s project “Classification
of skin cancer using regularized neural networks” for the skin images from the ISIC
project, see link

https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main

In this exercise we will study regularized versions of least squares and perceptron learn-
ing algorithms for solution of classification problem. Tikhonov’s regularization techniques
are presented in the paper Numerical analysis of least squares and perceptron learning for
classification problems which can be downloaded from the link

https://arxiv.org/pdf/2004.01138.pdf

Details about AI algorithms for classification together with machine learning techniques
for choosing the reg.parameter can be found in [2, 3, 4].

2 2.5 3 3.5 4 4.5
4
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LS
quadratic perceptron
linear perceptron
  class 1
   class 2

Figure 0.3: Decision lines computed by least squares and the perceptron learning algorithm
for separation of two classes using Iris dataset. The dataset iris.csv is available for download
from the course page.

Computer exercise 3

Implement in MATLAB all these classification algorithms and present decision lines for
following training sets:

https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main
https://arxiv.org/pdf/2004.01138.pdf
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• I) Classify IRIS flower data set into several classes using regularized versions of least
squares and perceptron learning algorithms. The dataset can be downloaded from the
link:

https://en.wikipedia.org/wiki/Iris_flower_data_set

• II) Try to test different regularization techniques (1-2 techniques is enough to test,
choose any Tikhonovs technique or machine learning technique) for choosing the reg-
ularization parameter. More precisely, test some of Tikhonov’s techniques (a priori
rule, Morozov’s discrepancy, balancing principle) described in Section 5 in the paper
Numerical analysis of least squares and perceptron learning for classification problems
which can be downloaded from the link

https://arxiv.org/pdf/2004.01138.pdf

Machine learning techniques for choosing the regularization parameter are presented
in Section 7 of [3], see http://www.deeplearningbook.org.

• III) Optional (not necessary): compute missclassification rate E using the formula (see
[4], p. 211-214):

E =

∑K
i=1NF,i∑K

i=1(NT,i +NF,i)
, (0.14)

where K is the number of classes, NT,i is the number of points of the class i which
are classified correctly, NF,i is the number of points of the class i which are classified
wrong. Precision for class i can be computed as

P(i) =
NT,i

NT,i +NF,j
. (0.15)

• IV) Optional (not necessary, but if you want to obtain 2 b.p. for this comp.lab.): take
some experimental data for classification from the link

https://archive.ics.uci.edu/ml/datasets.html

or the link for skin images:

https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main

and classify them using regularized versions of least squares and perceptron learning
algorithms.

Try answer to the following questions:

• Analyze different proposed techniques for choosing the regularization parameter. Which
one of techniques works best ?

• Analyze what happens with performance of perceptron learning algorithm if we take
different learning rates η ∈ (0, 1] ? For what values of η perceptron learning algorithm
is more sensitive and when the iterative process is too slow?

• Analyze which one of the studied classification algorithms perform best and why?

• Try to explain in which case the perceptron algorithm will fail to separate data.

https://en.wikipedia.org/wiki/Iris_flower_data_set
https://arxiv.org/pdf/2004.01138.pdf
http://www.deeplearningbook.org
https://archive.ics.uci.edu/ml/datasets.html
https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main
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Computer exercise 4 (1 b.p. - 3 b.p.)

Principal Component Analysis for image recognition

This exercise can be viewed as background for the Master’s project “Applica-
tions of Principal Component Analysis in computer vision”
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Figure 0.4: Images from MNIST dataset mnist test 10.csv visualised via the program loadm-
nist matlab.m

• Principal component analysis (PCA) is a machine learning technique which is widely
used for data compression in image processing (data visualization) or in the determi-
nation of object orientation.

• PCA problem is closely related to the numerical linear algebra (NLA) problem of
finding eigenvalues and eigenvectors for the covariance matrix.

• Further reading for AI algorithms: [2, 3, 4].

Computer exercise 4

• Use PCA to find patterns (recognize handwritten numbers) in MNIST Dataset of
Handwitten Digits which can be downloaded from the link

http://makeyourownneuralnetwork.blogspot.com/2015/03/the-mnist-dataset-of-handwitten-digits.

html

or from the course homepage. Test the code for different test and train sets.

http://makeyourownneuralnetwork.blogspot.com/2015/03/the-mnist-dataset-of-handwitten-digits.html
http://makeyourownneuralnetwork.blogspot.com/2015/03/the-mnist-dataset-of-handwitten-digits.html
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• Optional: use PCA to classify skin images from the ISIC project, see link

https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main

Hints:

• Study the lecture about PCA and the Matlab program which performs PCA for 2
datasets

ExamplePCA.m

on the course homepage.

• Use Matlab programs

loadmnist_matlab.m

import_mnist.m

on the course homepage to download MNIST Datasets

mnist_test_10.csv

mnist_train.csv

• Study and modify the Matlab programs of section 1 which recognize 10 handwritten
numbers via PCA analysis.

• Create your own training and test datasets from MNIST dataset and apply the Matlab
code on them.

• Compute missclassification rate E using the formula (see [4], p. 211-214):

E =

∑K
i=1NF,i∑K

i=1(NT,i +NF,i)
, (0.16)

where K is the number of classes, NT,i is the number of images of the class i which
are classified correctly, NF,i is the number of images of the class i which are classified
wrong. Precision for class i can be computed as

P(i) =
NT,i

NT,i +NF,j
. (0.17)

• Optional: use PCA to classify skin images from the ISIC project, see link

https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main

Choose the test dataset from ISIC database and compare with other images from the
training dataset in order to determine to which one class belongs image from the train
dataset. During classification assume that you don’t know true class of images from
train dataset. Compare then classified images with true ones.

https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main
https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main
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Figure 1.1: Recognition of handwritten numbers with Matlab code of this section using
PCA for different number of principal components k.

Programs

1.1 Main Matlab program for recognition of handwritten dig-
its

clear

close all

clc

all_examples = 1;

number_examples_train = 31857;
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Figure 1.2: Prediction rate in the recognition of handwritten numbers for different number
N of samples in the test set.

% number of principle components

N_dim_to_keep = 100;

plotting = 1;

% import data from test and training sets

% here, Xdata is set of images with handwritten numbers

% and ydata is label for every image in this set

[Xdata, ydata] = import_mnist(all_examples, number_examples_train);

d = size(Xdata,2);

N = size(Xdata,1);

% Choose 10 sample images as a test set

[Xdata_n, ydata_n] = import_mnist(0, 10);

testSet = 11;

% The rest of the training set will be training set used for computations

Xdata = Xdata(testSet:end,:);

ydata = ydata(testSet:end);

xmean=mean(Xdata,1);

% compute adjusted data for training set
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Xdata_adj = (Xdata-xmean);

%compute adjusted data for test set

Xdata_n_adj = (Xdata_n-xmean);

C = cov(Xdata_adj);

[U,S,V] = svd(C);

%projection in principal directions

% for training set

PCA = Xdata_adj*V(:,1:N_dim_to_keep);

% for test set

PCA_n = Xdata_n_adj*V(:,1:N_dim_to_keep);

n_correct = 0;

y_pred_data = [];

%y_pred_datatest = [];

for i=1:length(ydata_n)

min_d=100000;

for j=1:length(ydata)

d=norm(PCA_n(i,:)-PCA(j,:));

if d<min_d

min_d=d;

number=j;

% y_pred_datatest(j) =ydata(number);

end

end

if ydata_n(i)==ydata(number)

n_correct = n_correct+1;

end

y_pred_data(i) = ydata(number);

end

sprintf(’Prediction rate %d with k = %d’,n_correct/length(ydata_n),N_dim_to_keep)

%% plot images from tne test set and their labels (recognition)

if plotting==true

XdataPlot = (PCA_n*V(:,1:N_dim_to_keep)’);

sch=0;

Nx = 5;

Ny = 2;
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figure

for i=1:Nx

for j=1:Ny

sch = sch+1;

Ximage1 = reshape(XdataPlot(sch,:),[28 28]);

subplot(2, 5, sch);

%plot transposed data

image(Ximage1’);

title([’Label: ’,num2str(y_pred_data(sch))]);

end

end

end

% Plot prediction rate for the training set

figure

k = [1,2,3,4,5,6,12,25,50,100,200];

Vec = [0.3,0.5,0.4,0.6,0.8,0.8,0.8,0.8,0.9,0.9,0.9];

semilogx(k,Vec,’ok’,’linewidth’,1.5)

title([’Prediction rate for 10 samples in training set ’]);

axis([0 200 0 1])

xlabel(’k’)

ylabel(’Prediction Rate’)

grid on

1.2 The function import mnist.m

function [X_train, y_train] = import_mnist(all_examples,number_examples)

% load data mnist

if all_examples == true

data = csvread(’mnist_train.csv’);

% data = csvread(’mnist_test_10.csv’);

X_train = data(1:end, 2:end);

y_train = data(1:end, 1)’;

disp("Loaded data")

else

data = csvread(’mnist_test_10.csv’);

X_train = data(1:number_examples, 2:end);

y_train = data(1:number_examples, 1)’;

disp("Loaded data")

end

end
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Computer exercise 5 (3 b.p.).

1.3 Solution of Helmholtz equation

This exercise can be viewed as part of the Master’s project “Efficient implemen-
tation of Helmholtz equation with applications in medical imaging”, see Master’s
projects homepage for description of this project or go to the link

http://www.math.chalmers.se/Math/Grundutb/CTH/tma265/1617/BOOK/MasterProject_

Helmholtz.pdf

Solve the Helmholtz equation

∆u(x, ω) + ω2ε′(x)u(x, ω) = iωJ,

lim
|x|→∞

u (x, ω) = 0. (1.1)

in two dimensions using C++/PETSC. Here, ε′(x) is the spatially distributed complex
dielectric function which can be expressed as

ε′(x) = εr(x)
1

c2
− iµ0

σ(x)

ω
, (1.2)

where εr(x) = ε(x)/ε0 and σ(x) are the dimensionless relative dielectric permittivity and
electric conductivity functions, respectively, ε0, µ0 are the permittivity and permeability of
the free space, respectively, and c = 1/

√
ε0µ0 is the speed of light in free space., and ω is

the angular frequency.
Take appropriate values for ω, ε′, J . For example, take

ω = {40, 60, 80, 100}, εr = {2, 4, 6};σ = {5, 0.5, 0.05}, J = 1.

Analyze obtained results for different ω, εr, σ, J .
Information about PETSc can be found on the link:
https://www.mcs.anl.gov/petsc/

Hints:

1. Study Example 12.5 of the course book [1] where is presented solution of the Dirichlet
problem for the Poisson’s equation on a unit square using different iterative methods
implemented in C++/PETSc. C++/PETSc programs for solution of this problem are
available for download from the course homepage: go to the link of the book [1] and
click to “GitHub Page with MATLAB R© Source Codes” on the bottom of this page or
go to the link

https://github.com/springer-math/Numerical_Linear_Algebra_Theory_and_Applications

Choose then

PETSC_code

The different iterative methods are encoded by numbers 1-7 in the main program

http://www.math.chalmers.se/Math/Grundutb/CTH/tma265/1617/BOOK/MasterProject_Helmholtz.pdf
http://www.math.chalmers.se/Math/Grundutb/CTH/tma265/1617/BOOK/MasterProject_Helmholtz.pdf
https://www.mcs.anl.gov/petsc/
https://github.com/springer-math/Numerical_Linear_Algebra_Theory_and_Applications
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Main.cpp

in the following order:

– 1 - Jacobi’s method,

– 2 - Gauss-Seidel method,

– 3 - Successive Overrelaxation method (SOR),

– 4 - Conjugate Gradient method,

– 5 - Conjugate Gradient method (Algorithm 12.13),

– 6 - Preconditioned Conjugate Gradient method,

– 7 - Preconditioned Conjugate Gradient method (Algorithm 12.14).

Methods 1-5 use inbuilt PETSc functions, and methods 6,7 implement algorithms
12.13, 12.14 of the book [1], respectively. For example, we can run the program
Main.cpp using SOR method as follows:

> nohup Main 3 > result.m

After running the results will be printed in the file result.m and can be viewed in
Matlab using the command

surf(result).

2. Modify PETSc code of the Example 12.5 of [1] such that the equation (1.1) can be
solved. Note that solution of the equation (1.1) is complex. You should include

#include <complex>

to be able work with complex numbers in C++. For example, below is example of
definition of the complex array in C++ and assigning values to the real and imaginary
parts:

complex<double> *complex2d = new complex<double>[nno];

double a = 5.4;

double b = 3.1;

for (int i=0; i < nno; i++)

{

complex2d[i].real() = a;

complex2d[i].imag() = b;

}

delete[] complex2d;

Example of the definition of the complex right hand side in PETSc is presented below:
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PetscScalar right_hand_side(const PetscReal x, const PetscReal y)

{

PetscReal realpart, imagpart;

PetscReal pi = 3.14159265359;

realpart = pi*sin(2*pi*x)*cos(2*pi*y);

imagpart = x*x + y*y;

PetscScalar f(rpart, ipart);

return f;

}

3. Example of Makefile for running C++/PETSc code at Chalmers is presented in Ex-
ample 12.5 of [1] and can be as follows:

PETSC_ARCH=/chalmers/sw/sup64/petsc-3.7.4

include ${PETSC_ARCH}/lib/petsc/conf/variables

include ${PETSC_ARCH}/lib/petsc/conf/rules

CXX=g++

CXXFLAGS=-Wall -Wextra -g -O0 -c -Iinclude -I${PETSC_ARCH}/include

LD=g++

LFLAGS=

OBJECTS=Main.o CG.o Create.o DiscretePoisson2D.o GaussSeidel.o

Jacobi.o PCG.o Solver.o SOR.o

Run=Main

all: $(Run)

$(CXX) $(CXXFLAGS) -o $@ $<

$(Run): $(OBJECTS)

$(LD) $(LFLAGS) $(OBJECTS) $(PETSC_LIB) -o $@

To compile PETSc with complex numbers you need to write in Makefile:

PETSC_ARCH=/chalmers/sw/sup64/petsc-3.7.4c

4. Choose the two-dimensional convex computational domain Ω Ω = [0, 1]×[0, 1]. Choose
boundary condition at the boundary of ∂Ω such that the condition lim|x|→∞ u (x, ω) =

0 is satisfied, for example, take some functions in the form of Gaussian exp−x
2

.

5. Choose the following boundary condition u(x, ω) = −ωg(x, ω), where g(x, ω) is given
by (1.4). More precisely, solve the Helmholtz equation

∆u(x, ω) + ω2ε(x)u(x, ω) = f(x, ω),

u(x, ω) = −ωg(x, ω).
(1.3)
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Take as g(x, ω), x = (x1, x2), the function

u(x1, x2) = sin(2πx1) sin(2πx2) + ix1(1− x1)x2(1− x2) (1.4)

which is the exact solution of the equation (1.3) with the right hand side

f(x1, x2) = −(8π2) sin(2πx1) sin(2πx2)− 2ix1(1− x1)− 2ix2(1− x2)

+ ω2ε(x)(sin(2πx1) sin(2πx2) + ix1(1− x1)x2(1− x2))
(1.5)

6. Try also the following boundary condition ∂nu(x, ω) = −ωg(x, ω).

7. Values of c, µ0, ε0 in (1.2) are known constants.

– Vacuum permittivity, sometimes called the electric constant ε0 and measured in
F/m (farad per meter):

ε0 ≈ 8.85 · 10−12

– The permeability of free space,or the magnetic constant µ0 measured in H/m
(henries per meter):

µ0 ≈ 12.57 · 10−7

– The speed of light in a free space is given by formula c = 1/
√
ε0µ0 and is

measured in m/c (metres per second):

c ≈ 300 000 000
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