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Types of instruction and assessment

The material of the course includes online lectures in Zoom (slides
and video lectures), description of the computer projects and open
source software (Matlab codes, C++/PETSC codes).

All material of the course is available in CANVAS (contact me for
registration):

https://canvas.gu.se/courses/122370000000042894

Language of instruction is English.

This course gives 7.5 Hp. The grade Pass (G) or Fail (U) is given in
this course.

The examination consists of the computer project and the final oral
exam at the end of the course.
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Computer projects

Examination at this course consists in the oral presentation of
the computer project which can be done in groups by 2-4
persons.

The course projects together with examples of Matlab and
C++/PETSc programs are available for download in CANVAS.
Description of the C++/PETSC project “Solution of
time-harmonic acoustic coefficient inverse problem” together
with examples of Matlab and C++ programs is available fopr
download at the link
www.waves24.com/download

You can do also your own project related to the course and
the course material. The project should be done using
methods studied in the course ( for example, using studied
regularization strategies or implemented in C++/PETSc).
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Organization: projects

To pass this course you should do any computer project presented
in CANVAS. The project can be done in groups by 2-4 persons.

Sent final report for computer project with description of your work
together with Matlab or C++/PETSc programs to my e-mail. Report
should have description of used techniques, tables and figures
confirming your investigations. Analysis of obtained results is
necessary to present in section “Numerical examples” and
summarize results in the section “Conclusion”.

The project should be presented for all participants of the course in
a short presentation (20 min) at the end of the course. The dates for
presentations will be announced in CANVAS. All participants of the
course can act as opponents for the project presenters.

Matlab programs for solution of least squares problem and
C++/PETSc programs for solution of Poisson’s equation on a unite
square are available for download from the link
https://github.com/springer-math/Numerical_Linear_
Algebra_Theory_and_Applications
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The course plan

Physical formulations leading to ill- and well-posed problems

Methods of regularization of inverse and ill-posed problems
(Morozov’s discrepancy, balancing principle, iterative regularization)

Numerical methods of solution of inverse and ill-posed problems:
methods for image reconstruction and image deblurring, Lagrangian
approach and adaptive optimization, methods of analytical
reconstruction and layer-stripping algorithms, least-squares
algorithms.

Machine learning classification algorithms and neural networks
(perceptron algorithm, least squares, SVM and Kernel methods for
classification).

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 1

http://www.math.chalmers.se/~larisa/


Introduction: Inverse and ill-posed problems

Scheme for solution of CIP for 4u(x) − s2a(x)u(x) = −f(x), ∂nu = 0.

Inverse and ill-posed problems include solution of CIPs for PDE,
solution of parameter identification problems governed by system of
ODE, inverse sourse problems, inverse spectral problems, solution
of Fredholm integral equations of the first kind (ill-posed problems).
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Classification problems

Classification problems can be considered as the type of inverse problem
since the goal of classification is to find optimal vector of weights
ω = [ω1, ..., ωn] to separate given data x by the decision line ωT x.

Example of classification: determine the decision line for points presented in the Figure. Two classes are separated by the
linear equation with three weights ωi , i = 1, 2, 3, given by

ω1 + ω2x + ω3y = 0. (1)

Decision lines on the figure computed by the perceptron learning algorithm for separation of two classes using Iris dataset.

Test Matlab program to generate this figures on the course page in CANVAS.
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Introduction: Inverse and ill-posed problems

These applications are modelled by acoustic, elastic or
electromagnetic wave eq. which include different physical
parameters (wave speed c - acoustic equation, elasticity
parameters λ and µ - elastic equations, dielectric permittivity ε,
magnetic permeability µ, conductivity σ - Maxwell’s eq.).

A coefficient inverse problem for a given PDE aims at estimating a
spatially distributed coefficient of the model PDE using
measurements taken on the boundary of the domain of interest.

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 1

http://www.math.chalmers.se/~larisa/


Applications leading to inverse and ill-posed problems

Microwave medical imaging Acoustic 
imaging

Elastic imaging

Examples of CIPs. Biomedical Imaging at the Department of Electrical Engineering at CTH, Chalmers. Left: breast cancer
detection, setup of Stroke Finder; microwave hyperthermia in cancer treatment; Middle: acoustic imaging; right:
subsurface imaging.

Example of ill-posed problem: restoration of MRI images for the parietal lobe http://brain-development.org/

Inverse and ill-posed problems arise in many real-world applications including medical microwave, optical and
ultrasound imaging, MRT, MRI, oil prospecting and shape reconstruction, nondestructive testing of materials and
detection of explosives, seeing through the walls and constructing of new materials.

Physical applications are modelled by acoustic, elastic or electromagnetic wave eq. which include different
physical parameters s. t. wave speed c - acoustic equation; elasticity parameters λ and µ - elastic equations;
dielectric permittivity ε, magnetic permeability µ, conductivity σ - Maxwell’s eq.

A coefficient inverse problem for a given model PDE aims at estimating a spatially distributed coefficient of the
model PDE using measurements taken on the boundary of the domain of interest.
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Notations and Definitions

The theory of Ill-Posed Problems addresses the following
fundamental question: How to obtain a good approximation for the
solution of an ill-posed problem in a stable way?

A numerical method, which provides a stable and accurate solution
of an ill-posed problem, is called the regularization method for this
problem.

Foundations of the theory of Ill-Posed Problems were established by
three Russian mathematicians: A. N. Tikhonov [T1,TA,T], M.M.
Lavrent’ev [L] and V. K. Ivanov [I] in 1960-ies. The first foundational
work was published by Tikhonov in 1943 [T].
[T1] A. N. Tikhonov, On the stability of inverse problems, Doklady of the USSR Academy of Science, 39, 195-198,
1943

[TA] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-Posed Problems, Winston and Sons, Washington, DC,
1977.

[T] A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov and A.G. Yagola, Numerical Methods for the Solution of
Ill-Posed Problems, London: Kluwer, London, 1995.

[L] M.M. Lavrentiev, Some Improperly Posed Problems of Mathematical Physics, Springer, New York, 1967.

[I] V. K. Ivanov, On ill-posed problems, Mat. USSR Sb., 61, 211–223, 1963.
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Theory of inverse and ill-posed problems is developed further and a
lot of new works on this subject are available, some of them are:
S. Arridge, Optical tomography in medical imaging, Inverse Problems, 15, 841–893, 1999.

A.B. Bakushinsky and M.Yu. Kokurin, Iterative Methods for Approximate Solution of Inverse Problems, Springer,
New York, 2004.

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer, New York, 2006.

K. Chadan and P. Sabatier, Inverse Problems in Quantum Scattering Theory, Springer, New York, 1989.

G. Chavent, Nonlinear Least Squares for Inverse Problems: Theoretical Foundations and Step-by-Step Guide for
Applications (Scientific Computation), Springer, New York, 2009.

V. Isakov, Inverse Problems for Partial Differential Equations, Springer, New York, 2005.

B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed
Problems, de Gruyter, New York, 2008.

A. Kirsch, An Introduction To the Mathematical Theory of Inverse Problems, Springer, New York, 2011.

K. Ito, B. Jin, Inverse Problems: Tikhonov theory and algorithms, Series on Applied Mathematics, V.22, World
Scientific, 2015.

Tikhonov, A.N., Goncharsky, A., Stepanov, V.V., Yagola, A.G., Numerical Methods for the Solution of Ill-Posed
Problems,ISBN 978-94-015-8480-7, 1995.
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Notations and Definitions

Let u (x) , x = (x1, ..., xn) ∈ Ω be a k times continuously differentiable
function defined in Ω. Denote

Dαu =
∂|α|u

∂α1 x1 . . . ∂αn xn
, |α| = α1 + . . . + αn

the partial derivative of the order |α| ≤ k , where α = (α1, . . . , αn) is a
multi-index with integers αi ≥ 0. Denote Ck

(
Ω
)

the Banach space of

functions u (x) which are continuous in the closure Ω of the domain Ω
together with their derivatives Dαu, |α| ≤ m. The norm in this space is
defined as

‖u‖Ck (Ω) =
∑
|α|≤m

sup
x∈Ω

∣∣∣Dαu (x)
∣∣∣ < ∞.
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Notations and Definitions

By definition C0
(
Ω
)

= C
(
Ω
)

is the space of functions continuous in Ω
with the norm

‖u‖C(Ω) = sup
x∈Ω

∣∣∣u (x)
∣∣∣ .

We also introduce Hölder spaces Ck+α
(
Ω
)

for any number α ∈ (0, 1) .
The norm in this space is defined as

‖u‖Ck+α(Ω) := |u|k+α := ‖u‖Ck (Ω) + sup
x,y∈Ω, x,y

∣∣∣u (x) − u (y)
∣∣∣

|x − y |α
,

provided that the last term is finite. It is clear that if the function
u ∈ Ck+1

(
Ω
)
, then u ∈ Ck+α

(
Ω
)
,∀α ∈ (0, 1) and

|u|k+α ≤ C ‖u‖Ck+1(Ω) , ∀u ∈ Ck+1
(
Ω
)
,

where C = C (Ω, α) > 0 is a constant independent on the function u.
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Notations and Definitions

Consider the Sobolev space Hk (Ω) of all functions with the norm defined
as

‖u‖2Hk (Ω) =
∑
|α|≤k

∫
Ω

|Dαu|2 dx < ∞,

where Dαu are weak derivatives of the function u. By the definition
H0 (Ω) = L2 (Ω) . It is well known that Hk (Ω) is a Hilbert space with the
inner product defined as

(u, v)Hk (Ω) =
∑
|α|≤k

∫
Ω

DαuDαvdx.
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Notations and Definitions

Let T > 0 and Γ ⊆ ∂Ω be a part of the boundary ∂Ω of the domain Ω. We
will use the following notations

QT = Ω × (0,T) ,ST = ∂Ω × (0,T) , ΓT = Γ × (0,T) ,Dn+1
T = Rn × (0,T) .

The space C2k ,k
(
QT

)
is defined as the set of all functions u (x, t) having

derivatives Dα
x Dβ

t u ∈ C
(
QT

)
with |α|+ 2β ≤ 2k and with the following

norm
‖u‖C2k ,k (QT ) =

∑
|α|+2β≤2k

max
QT

∣∣∣∣Dα
x Dβ

t u (x, t)
∣∣∣∣ .
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Notations and Definitions

V

B

Definition 1. Let B be a Banach space. The set V ⊂ B is called
precompact set if every sequence {xn}

∞
n=1 ⊆ V contains a fundamental

subsequence (i.e., the Cauchy subsequence).
Although by the Cauchy criterion the subsequence in this Definition 1
converges to a certain point, there is no guarantee that this point belongs
to the set V . If we consider the closure of V , i.e. the set V , then all
limiting points of all convergent sequences in V would belong to V .
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Notations and Definitions

 

V

B

Definition 2. Let B be a Banach space. The set V ⊂ B is called compact
set if V is a closed set, V = V , every sequence {xn}

∞
n=1 ⊆ V contains a

fundamental subsequence and the limiting point of this subsequence
belongs to the set V .
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Notations and Definitions

B

U

x
. y

.

B2

A^(-1)(B2)         B1

A(U’)=V’U’

B1

A:U            B2

V’

Definition 3. Let B1 and B2 be two Banach spaces, U ⊆ B1 be a set and
A : U → B2 be a continuous operator. The operator A is called a
compact operator or completely continuous operator if it maps any
bounded subset U′ ⊆ U in a precompact set in B2. Clearly if U′ is a
closed set, then A (U′) is a compact set.
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Notations and Definitions. Ascoli-Archela theorem

The following theorem is well known under the name of Ascoli-Archela
theorem (More general formulations of this theorem can also be found).
Theorem The set of functionsM ⊂ C

(
Ω
)

is a compact set if and only if
it is uniformly bounded and equicontinuous. In other words, if the
following two conditions are satisfied:
1. There exists a constant M > 0 such that

‖f‖C(Ω) ≤ M, ∀f ∈ M.

2. For any ε > 0 there exists δ = δ (ε) > 0 such that∣∣∣f (x) − f (y)
∣∣∣ < ε, ∀x, y ∈ {|x − y | < δ} ∩ Ω, ∀f ∈ M.
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Classical Correctness and Conditional Correctness

The notion of the classical correctness is called sometimes Correctness
by Hadamard.
Definition. Let B1 and B2 be two Banach spaces. Let G ⊆ B1 be an open
set and F : G → B2 be an operator. Consider the equation

F(x) = y, x ∈ G. (2)

The problem of solution of equation (2) is called well-posed by
Hadamard, or simply well-posed, or classically well-posed if the following
three conditions are satisfied:
1. For any y ∈ B2 there exists a solution x = x(y) of equation (2)
(existence theorem).
2. This solution is unique (uniqueness theorem).
3. The solution x(y) depends continuously on y. In other words, the
operator F−1 : B2 → B1 is continuous.
If equation (2) does not satisfy to at least one these three conditions,
then the problem (2) is called ill-posed.
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Classical Correctness

G

x
.

y
.

B1 B2

F:G          B2F:G          B2F:G          B2F:G          B2

F^(-1)(B2)         B1

F(x)=y

The problem is classically well-posed if:
1. For any y ∈ B2 there exists a solution x = x(y) of F(x) = y.
2. This solution is unique (uniqueness theorem).
3. The solution x(y) depends continuously on y. In other words, the
operator F−1 : B2 → B1 is continuous.
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Classical Correctness and Conditional Correctness

We say that the right hand side of equation

F(x) = y, x ∈ G. (3)

is given with an error of the level δ > 0 (small) if ‖y∗ − y‖B2
≤ δ, where y∗

is the exact value.
Definition Let B1 and B2 be two Banach spaces. Let G ⊂ B1 be an a
priori chosen set of the form G = G1, where G1 is an open set in B1. Let
F : G → B2 be a continuos operator. Suppose that ‖y∗ − yδ‖B2

≤ δ. Here
y∗ is the ideal noiseless data, yδ is noisy data . The problem (3) is called
conditionally well-posed on the set G, or well-posed by Tikhonov on the
set G if the following three conditions are satisfied:
1. It is a priori known that there exists an ideal solution x∗ = x∗ (y∗) ∈ G
of this problem for the ideal noiseless data y∗.
2. The operator F : G → B2 is one-to-one.
3. The inverse operator F−1 is continuous on the set F (G).
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Conditional Correctness

G
    x^* .

    
 x
.

B1 B2

F:G          B2F:G          B2F:G          B2F:G          B2

F^(-1)(V)            G

F(x^*)=y^*
V 

.   y^*
y
.

F(x)=y

The problem (3) is called conditionally well-posed on the set G if:
1. It is a priori known that there exists an ideal solution x∗ = x∗ (y∗) ∈ G
of this problem for the ideal noiseless data y∗.
2. The operator F : G → B2 is one-to-one.
3. The inverse operator F−1 is continuous on the set F (G).
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The Fundamental Concept of Tikhonov

This concept consists of the following three conditions which should be in
place when solving the ill-posed problem (3):
1. One should a priori assume that there exists an ideal exact solution x∗

of equation (3) for an ideal noiseless data y∗.
2. The correctness set G should be chosen a priori, meaning that some a
priori bounds imposed on the solution x of equation (3) should be
imposed.
3. To construct a stable numerical method for the problem (3), one should
assume that there exists a family {yδ} of right hand sides of equation (3),
where δ > 0 is the level of the error in the data with ‖y∗ − yδ‖B2

≤ δ. Next,
one should construct a family of approximate solutions {xδ} of equation
(3), where xδ corresponds to yδ. The family {xδ} should be such that

lim
δ→0+

‖xδ − x∗‖ = 0.
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Quasi-solution

Another approach to the solution of ill-posed problem is concept pf
quasi-solution. This concept was introduced by Ivanov in 1962 in the
work [Ivanov, 1962]. Let A be a compact operator, x ∈ M, M is a compact
set such that M ⊂ Q , f ∈ A(M) ⊂ F : Then approximate solution of the
problem

Ax = f

can be obtained by
x = A−1f .

for small perturbations in the rhs f .
The main point here is that f ∈ A(M) ⊂ F otherwise the solution can not
be obtained by x = A−1f . Since it is difficult to check if f ∈ A(M) ⊂ F then
it was introduced the concept of quasi-solution.
V.K.Ivanov, On linear problems which are not well-posed, Dokl.Akad.Nauk SSSR, 145(2), 211-223. 1962 (In Russian)
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Quasi-solution

Definition (Ivanov, 1962)
A quasi-solution to the equation

Ax = f (4)

on a set M ⊂ Q is an element xK ∈ M that minimizes the residual

R(Axk , f) = inf
x∈M

R(Ax, f) (5)

If M is a compact set then there exists a quasi-solution for any f ∈ F .
If in addition f ∈ A(M) the quasi-solutions xk (it can be a lot of such
solutions) are the same as exact solution x.
Here is a sufficient condition for a quasi-solution to be unique and
continuously depend on the rhs f .
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Quasi-solution

Theorem [Ivanov, 2002, Tikhonov Arsenin, 1974]
Assume that the equation (4) has at most one solution on a
compact set M and ∀f ∈ M the projection Pf into A(M) is unique.
Then a quasi-solution of the equation (4) is unique and continuously
depends on f .
We can conclude that the problem of finding a quasi-solution on a
compact set is well-posed problem.
If the quasi-solution is not unique, then its quasi-solutions form a
subset of the compact set M and in this case this set continuously
depends on f (Ivanov, 1963).

V. K. Ivanov, V. V. Vasin, V. P. Tanana, Theory of linear ill-posed problems and its applications, VSP, Utrecht, 2002.
A. N. Tikhonov, V. Ya. Arsenin, Solutions of ill-posed problems, Wiley, 1977.
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Ill-posed problem: differentiation of a function given with
a noise

Suppose that the function f(x), x ∈ [0, 1] is given with a noise, i.e.
suppose that instead of f(x) ∈ C1 [0, 1] the following function fδ(x) is
given

fδ (x) = f (x) + δf(x), x ∈ [0, 1] ,

where δf(x) is the noisy component. Let δ > 0 be a small parameter such
that ‖δf‖C[0,1] ≤ δ. Let us show that the problem of calculating the
derivative f ′δ (x) is unstable.
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Examples of ill-posed problems. Differentiation of a
function given with a noise

For example, take

δf(x) =
sin(n2x)

n
,

where n > 0 is a large integer. Then the C[0, 1]-norm of the noisy
component is small,

‖δf‖C[0,1] ≤
1
n
.

However, the difference between derivatives of noisy and exact functions

f ′δ (x) − f ′ (x) = δf ′(x) = n cos n2x

is not small in any reasonable norm.
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Ill-posed problem: differentiation of a function given with
a noise

A simple regularization method of stable calculation of derivatives is that
the step size h in the corresponding finite difference discretization should
be connected with the level of noise δ.

f ′δ (x) ≈
f (x + h) − f (x)

h
+
δf(x + h) − δf(x)

h
. (6)

The first term in the right hand side of (6) is close to the exact derivative
f ′ (x) , if h is small enough. The second term, however, comes from the
noise and we need to balance these two terms via an appropriate choice
of h = h (δ) .∣∣∣∣∣∣f ′δ (x) −

f (x + h) − f (x)

h

∣∣∣∣∣∣ =

∣∣∣∣∣∣δf(x + h) − δf(x)

h

∣∣∣∣∣∣ ≤ 2δ
h
.

Hence, we should choose h = h (δ) such that

lim
δ→0

2δ
h (δ)

= 0.

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 1

http://www.math.chalmers.se/~larisa/


Ill-posed problem: differentiation of a function given with
a noise

For example, let h (δ) = δµ, where µ ∈ (0, 1) . Then

lim
δ→0

∣∣∣∣∣∣f ′δ (x) −
f (x + h) − f (x)

h

∣∣∣∣∣∣ ≤ 2δ
h

=
2δ
δµ
≤ lim

δ→0

(
2δ1−µ

)
= 0.

Hence, the problem becomes stable for this choice of the grid step size
h (δ) = δµ. This means that h (δ) is the regularization parameter.
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Ill-posed problem: integral equation of the first kind

Let Ω ⊂ Rn is a bounded domain and the function
K (x, y) ∈ C

(
Ω × Ω

)
. Recall that the equation

g (x) +

∫
Ω

K (x, y)f (y)dy = f (x), x ∈ Ω, (7)

is called integral equation of the second kind. The problem is to find
function f(x) by known K (x, y) and g (x). These equations are
considered quite often in the classic theory of PDEs and are solved
by Liouville-Neumann (iterative) series.
Next, let Ω′ ⊂ Rn be a bounded domain and the function
K(x, y) ∈ C

(
Ω × Ω

)
. Unlike (7), the equation∫

Ω

K (x, y)f (y)dy = p (x), x ∈ Ω′ (8)

is called the integral equation of the first kind. The Fredholm theory
does not work for such equations. The problem of solution of
equation (8) is an ill-posed problem.
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Ill-posed problem: integral equation of the first kind

Consider equation (8):∫
Ω

K (x, y) f (y) dy = p (x) , x ∈ Ω′

The function K (x, y) is called kernel of the integral operator. Equation (8)
can be rewritten in the form

Af = p, (9)

where A : C
(
Ω
)
→ C

(
Ω
′)

is the integral operator in (8). It is well known
from the standard Functional Analysis course that A is a compact
operator. We now show that the problem (9) is an ill-posed problem.

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 1

http://www.math.chalmers.se/~larisa/


Example of an integral equation of the first kind

Let Ω = (0, 1) ,Ω′ = (a, b) . Let fn (x) = f (x) + sin nx. Then for x ∈ (0, 1)

1∫
0

K (x, y) fn (y) dy =

1∫
0

K (x, y) f (y) dy +

1∫
0

K (x, y) sin nydy = gn (x) ,

(10)
where gn (x) = p (x) + pn(x) and

pn(x) =

1∫
0

K (x, y) sin nydy.

By the Lebesque lemma

lim
n→∞
‖pn‖C[a,b] = 0.

However, it is clear that∥∥∥fn (x) − f (x)
∥∥∥

C[0,1]
= ‖sin nx‖C[0,1]

is not small for large n.
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Ill-posed problem: the case of a general compact
operator

Let H1 and H2 be two Hilbert spaces with dim H1 = dim H2 = ∞. Remind
that a sphere in an infinitely dimensional Hilbert space is not a compact
set.
Theorem ( Theorem 1.2 of [BK]) Let G =

{
‖x‖H1

≤ 1
}
⊂ H1, G is not a

compact set. Let A : G → H2 be a compact operator and let
R (A) := A (G) be its range. Consider an arbitrary point y0 ∈ R (A). Let
ε > 0 be a number and Uε (y0) =

{
y ∈ H2 : ‖y − y0‖H2

< ε
}
. Then there

exists a point y ∈ Uε (y0)�R (A) . If, in addition, the operator A is
one-to-one, then the inverse operator A−1 : R (A)→ G is not continuous.
Hence, the problem of the solution of the equation

A (x) = z, x ∈ G, z ∈ R (A) (11)

is unstable, i.e. this is an ill-posed problem.
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Tikhonov’s theorem

Theorem (Tikhonov, 1943). Let B1 and B2 be two Banach spaces. Let
U ⊂ B1 be a compact set and F : U → B2 be a continuous operator.
Assume that the operator F is one-to-one. Let V = F(U). Then the
inverse operator F−1 : V → U is continuous.
Proof. Assume the opposite: that the operator F−1 is not continuous on
the set V . Then there exists a point y0 ∈ V and a number ε > 0 such that
for any δ > 0 there exists a point yδ such that although ‖yδ − y0‖B2

< δ, still∥∥∥F−1 (yδ) − F−1 (y0)
∥∥∥

B1
≥ ε. Hence, there exists a sequence {δn}

∞
n=1 ,

limn→∞ δn = 0+ and the corresponding sequence {yn}
∞
n=1 ⊂ V such that∥∥∥yδn − y0

∥∥∥
B2
< δn, ‖F−1 (yn)︸   ︷︷   ︸

xn

−F−1 (y0)︸   ︷︷   ︸
x0

‖B1 ≥ ε. (12)
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Denote
xn = F−1 (yn) , x0 = F−1 (y0) . (13)

Then by (12) we have
‖xn − x0‖B1

≥ ε. (14)

Since U is a compact set and all points xn ∈ U, then one can extract a
convergent subsequence

{
xnk

}∞
k=1 ⊆ {xn}

∞
n=1 from the sequence {xn}

∞
n=1.

Let limk→∞ xnk = x. Then x ∈ U. Since F (xnk ) = ynk and the operator F
is continuous, then by (12) and (13) we have:

xn = F−1 (yn)⇒ F(xn) = yn,

x0 = F−1 (y0)⇒ F(x0) = y0;

F(x̄) = lim
k→∞

F(xnk ) = lim
k→∞

ynk = y0

(15)

So, we obtained, that F(x0) = y0 and F(x̄) = y0. Since the operator F is
one-to one, we should have x = x0. However, by (14)

∥∥∥x − x0

∥∥∥
B1
≥ ε. We

got a contradiction. �
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Model inverse problems

We will consider now following model inverse problems:

Elliptic inverse problems

Elliptic CIPs
Cauchy problem
Inverse source problem
Inverse spectral problem

Hyperbolic CIPs
Parabolic CIPs
Determination of the initial condition in hyperbolic or parabolic PDE

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 1

http://www.math.chalmers.se/~larisa/


Elliptic inverse problems

Let Ω ⊂ Rd , d = 1, 2, 3 be a domain with a boundary Γ.
We will present several inverse problems for a second order elliptic PDE

− ∇ · (a(x)∇u) + b(x) · ∇u + p(x)u = f(x), x ∈ Ω (16)

We can consider the equation (16) with suitable b.c. (for example,
Dirichlet or Neumann b.c.).
Functions a(x), b(x) and p(x) are known as

a(x) - conductivity or diffusion coefficient
b(x) - convection coefficient
p(x) potential coefficient
f(x) - the source term
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The Elliptic Coefficient Inverse Problem

− ∇ · (a(x)∇u) + b(x) · ∇u + p(x)u = f(x), x ∈ Ω (17)

Let the function u(x) ∈ C2 satisfies to the (17) and

u|Γ = p (x) ,
∂u
∂n
|Γ = q (x) . (18)

The Elliptic Coefficient Inverse Problem. Suppose that one of
coefficients in equation (17) is unknown inside of the domain Ω and is
known outside of it. Assume that all other coefficients in (17) are known.
Determine that unknown coefficient inside of Ω, assuming that the
functions p (x) and q (x) in (18) are known.
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Cauchy problem

Cauchy problem arises, for example, in electrocardiography and
geophysical prospectation. This problem is severally ill-posed and lacks a
continuous dependence on data.
Let Γc and Γi = Γ \ Γc be two disjoint parts of the boundary Γ. Here,

Γc - observation boundary
Γi - boundary, where observations are not taken

The Cauchy problem reads: given the Cauchy data g and h on the
boundary Γc , find the function u on the boundary Γi , or:

− ∇ · (a(x)∇u) = 0, x ∈ Ω, (19)

u = g, x ∈ Γc , (20)

a
∂u
∂n

= h, x ∈ Γc . (21)
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Hadamard’s example for the Cauchy problem

This example shows that the Cauchy problem for Laplace equation does’t
depends continuously on data. Let Ω = {(x1, x2) ∈ R2 : x2 > 0} and the
boundary Γc = {(x1, x2) ∈ R2 : x2 = 0}. Consider the solution
u = un, n = 1, 2, ... to the Cauchy problem

4u = 0, x ∈ Ω, (22)

u = 0, x ∈ Γc , (23)
∂u
∂n

= −n−1 sin nx1, x ∈ Γc . (24)

The function

un = n−2 sin nx1 sinh nx2 = n−2 sin nx1(enx2 − e−nx2 )/2

is the solution of the problem (22) and it is a unique solution (by
Holmgren’s theorem for Laplace equation).
We observe that on Γc we have limn→∞

∂un
∂n = 0. However, for all x2 > 0

the solution limn→∞ un(x1, x2) = limn→∞ n−2 sin nx1 sinh nx2 =
limn→∞ n−2 sin nx1(enx2 − e−nx2 )/2 = ∞.
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