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The mathematical model

Our basic model is given in terms of the function u(x, s), x ∈ Rd , d = 2, 3
which depends on the pseudo-frequency s > const . > 0:

4u(x, s) − s2a(x)u(x, s) = −sa(x)f0(x), x ∈ Rd , d = 2, 3, (1)

Here, the space-dependent function a(x) = 1/c(x)2, where c(x) is the
sound speed.
To solve the problem (1) numerically in Rd , d = 2, 3 we will use the
domain decomposition finite element/finite difference method of
[BeilinaHyb]. We introduce a convex bounded domain Ω ⊂ R2 with
boundary Γ such that Ω2 := Ω \ Ω1, where Ω1 ⊂ Ω, ∂Ω ∩ ∂Ω1 = ∅ with
∂Ω2 = ∂Ω ∪ ∂Ω1, Ω = Ω1 ∪ Ω2, Ω1 = Ω \ Ω2 and Ω̄1 ∩ Ω̄2 = ∂Ω1, where
∂Ω, ∂Ω1, ∂Ω2 are boundaries of the domains Ω,Ω1,Ω2, respectively. To
introduce boundary conditions on Γ := ∂Ω we denote Γ = Γ1 ∪ Γ2 ∪ Γ3

such that Γ1 and Γ2 are the top and bottom sides of the domain Ω,
respectively, and Γ3 denotes the rest of the boundary, see Figure 1.
[BeilinaHyb] Beilina, Domain decomposition finite element/finite difference method for the conductivity reconstruction in a

hyperbolic equation, Communications in Nonlinear Science and Numerical Simulation, Elsevier, 2016,

doi:10.1016/j.cnsns.2016.01.016, https://arxiv.org/pdf/1509.01399.pdf
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Domain decomposition in Ω

Ω1

Ω2a = 1

a ∈ [1,M]

Ω2a = 1

a) Ω = Ω1 ∪ Ω2 b) Ω2

Figure: Domain decomposition in Ω.
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Laplace transform in time

The model equation (1) can be obtained by applying the Laplace
transform in time,

u(x, s) :=

∫ +∞

0
u(x, t)e−stdt , s = const . > 0 (2)

to the function U (x, t) satisfying the time-dependent acoustic wave
equation

a(x)
∂2U(x, t)
∂t2

− 4U(x, t) = 0, x ∈ Ω, t ∈ (0,T ].

U(x, 0) = f0(x),
∂U
∂t

(x, 0) = 0, x ∈ Ω

(3)

www.math.chalmers.se/∼larisa Lecture 4



Laplace transform in time

After applying the Laplace transform for the problem (3) and to the
absorbing and Neumann boundary conditions

∂νU + ∂tU = 0, (x, t) ∈ (Γ1 ∪ Γ2) × (0,T ],

∂νU = 0, (x, t) ∈ Γ3 × (0,T ].
(4)

we get the following model problem

4u(x, s) − s2a(x)u(x, s) = −sa(x)f0(x), x ∈ Rd , d = 2, 3,

∂νu(x, s) = 0, x ∈ Γ3,

∂νu(x, s) = f0(x) − su(x, s), x ∈ Γ1 ∪ Γ2.

(5)

Here, ∂ν(·) denotes the normal derivative on Γ, where ν is the outward
unit normal vector on the boundary Γ.
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We will assume that for some known constant M > 1 the wave speed
function a(x) is such that

a(x) ∈ [1,M] , for x ∈ Ω1,

a(x) = 1, for x ∈ Ω \ Ω1.
(6)

and assume that
f0 ∈ H1(Ω), a(x) ∈ C(Ω) (7)

Inverse Problem (IP1)
Let the coefficient a (x) in the problem (5) satisfies conditions (6) and
assume that a (x) is unknown in the domain Ω1. Determine the function
a (x) in (5) for x ∈ Ω1 for a single known pseudo-frequency s assuming
that the following function ũ(x) is known

u(x) = ũ(x) ∀x ∈ Γ. (8)

Inverse Problem (IP2)
Let the coefficient a (x) in the problem (5) satisfies conditions (6) and
assume that a (x) is unknown in the domain Ω1. Determine the function
a (x) in (5) for x ∈ Ω1 assuming that the following function ũ(x) is known

u(x, s) = ũ(x, s) ∀x ∈ Γ. (9)
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Lagrangian approach for solution IP
The reconstruction method to solve inverse problem IP1 is based on the
finding of the stationary point of the following Tikhonov functional

F(u, a) =
1
2

∫
Γ
(u − ũ)2zδ(x)dS +

1
2
γ

∫
Ω

(a − a0)2 dx, (10)

where u satisfies the equations (5) for a single pseudo-frequency s, a0 is
the initial guess for a, ũ is the observed field at Γ, γ > 0 is the
regularization parameter and zδ(x) is the compatibility function.
To find minimum of (10) we apply the Lagrangian approach and define
the following Lagrangian using definition of the forward model problem (5)

L(v) = F(u, a) + (λ,4u − s2au + saf0)Ω (11)

The Lagrangian in the week form using definition of the forward model
problem (5) is

L(v) = F(u, a) + (λ, f0 − su)Γ1∪Γ2 − (∇u,∇λ)Ω − (λ, s2au)Ω + (λ, saf0)Ω,

(12)

where (·, ·) denote the standard scalar product in L2(Ω)d , d = 2, 3, and
v = (u, λ, a) ∈ U1.
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Fréchet derivative of the Lagrangian

We now search for a stationary point of the Lagrangian with respect to v
satisfying for all v̄ = (ū, λ̄, ¯̃a) ∈ U1

L ′(v; v̄) = 0, (13)

where L ′(v; ·) is the Jacobian of L at v.
To find the Fréchet derivative (13) of the Lagrangian (12) we consider
L(v + v̄) − L(v) ∀v̄ ∈ U1 and single out the linear part of the obtained
expression with respect to v̄ ignoring all nonlinear terms. The optimality
condition (13) for the Lagrangian (12) for all v̄ ∈ U1 is

L ′(v; v̄) =
∂L
∂λ

(v)(λ̄) +
∂L
∂u

(v)(ū) +
∂L
∂a

(v)(ā) = 0. (14)

Thus, to satisfy optimum condition L ′(v; v̄) = 0 every component of (14)
should be zero out.
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Fréchet derivative of the Lagrangian

Using integration by parts together with boundary conditions in (5) we get

0 =
∂L
∂λ

(v)(λ̄) = −

∫
Ω
∇u∇λ̄ dx +

∫
Ω

(−s2au + saf0)λ̄ dx

+

∫
Γ1∪Γ2

(f0 − su)λ̄ dS, ∀λ̄ ∈ H1(Ω),
(15)

0 =
∂L
∂u

(v)(ū) =

∫
Γ
(u − ũ) ū zδ dS −

∫
Ω
∇λ∇ū dx −

∫
Ω

s2aλū dx

−

∫
Γ1∪Γ2

sλū dS, ∀ū ∈ H1(Ω),
(16)

0 =
∂L
∂a

(v)(ā) =

∫
Ω

(−s2λu + sλf0) ā dx + γ

∫
Ω1

(a − a0) ā dx, ∀ā ∈ C
(
Ω
)
.

(17)
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Fréchet derivative of the Tikhonov functional
It is clear that (15) corresponds to the state equation (5) and (16)
corresponds to the following adjoint problem

4λ − s2aλ = 0, x ∈ Ω,

∂nλ = (u − ũ)Γzδ, x on Γ3,

∂nλ = −λs + (u − ũ)Γzδ, x on Γ1 ∪ Γ2.

(18)

Let us define by u(a), λ(a) exact solutions of the forward and adjoint
problems, respectively, for the known wave speed function a. Then

F(u(a), a) = L(v(a)), (19)

and the Fréchet derivative of the Tikhonov functional can be written as

F ′(a) :=F ′(u(a), a) =
∂F
∂a

(u(a), a) =
∂L
∂a

(v(a)). (20)

Inserting (17) into (20), we get the expression for the gradient with
respect to the wave speed function which we will use for updating this
function in the conjugate gradient method

F ′(a)(x) := F ′(u(a), a)(x) = −s2λu + sλf0 + γ(a − a0). (21)
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Conjugate gradient algorithm

Recall that we denote the standard inner product in [L2(Ω)]d as
(·, ·), d ∈ {1, 2, 3}, and the corresponding norm by ‖ · ‖. To compute
minimum of the functional (10) we use the conjugate gradient method
(CGM). Let us define the gradient with respect to the wave speed
function at the iteration m in CGM as

gm(x) = −s2λm
h um

h + sλmf0 + γm(am
h − a0), (22)

where am
h is approximation of the function ah on the iteration step m in

GCM, uh(x, am
h ), λh(x, am

h ) are computed by solving the state problem (5)
and the adjoint problem (18), respectively, with a := am

h , γm is iteratively
computed regularization parameter via rules of [BKS] as

γm =
γ0

(m + 1)p , p ∈ (0, 1). (23)

[BKS] Bakushinsky A., Kokurin M.Y., Smirnova A.,
Iterative Methods for Ill-posed Problems,

Inverse and Ill-Posed Problems Series 54, De Gruyter, 2011.
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Conjugate gradient algorithm

The usual gradient method (GM) is the special case of the conjugate
gradient method (CGM) such that functions am are computed as

am+1(x) = am(x) + αmdm(x), (24)

where αm are iteratively updated pstep size in the gradient update and
dm is the direction which is computed for usual gradient method as

dm = −gm (25)

and for the conjugate gradient method as

dm = −gm + βmdm−1, (26)

at the iteration m where parameters βm are computed as in (32).
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Step-size in the gradient update

Step-size in the gradient update αm is computed such that it gives
minimum to the Lagrangian L(um

h , λ
m
h , a

m
h + αmdm), or such that

L ′αm (um
h , λ

m
h , a

m
h + αmdm) = 0. More precisely, using definition of the

Lagrangian (12) we have

L(um
h , λ

m
h , a

m
h + αmdm) = F(um

h , a
m
h + αmdm) +∫

Ω
λm

h [−s2(am
h + αmdm)um

h + s(am
h + αmdm)f0] dx

−

∫
Ω
∇λm

h ∇um
h dx +

∫
Γ1∪Γ2

(f0 − sum
h )λm

h dS,

(27)

L ′αm (um
h , λ

m
h , a

m
h + αmdm) = γm

∫
Ω

(am
h + αmdm − a0)dm dx

+

∫
Ω
λm

h (−s2dmum
h + sdmf0) dx = 0.

(28)
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Step-size in the gradient update

We can obtain directly from (28)

αm =
(λm

h (s2um
h − sf0) − γmam

h + γma0, dm)

γm(dm, dm)
(29)

or using definition (22) for gm we obtain following expression for
computation of the iterative parameter αm:

αm = −
(gm, dm)

γm(dm, dm)
. (30)
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Algorithm (CGM)
Step 0. Choose the computational space mesh Kh in Ω. Start with the initial approximation a0

h = a0 at Kh and
compute the sequences of am

h via the following steps:

Step 1. Compute solutions uh (x, am
h ) and λh (x, am

h ) of state (5) and adjoint (18) problems, respectively, on Kh .

Step 2. Update the coefficient ah := am+1
h on Kh (only inside the discretized domain Ω1) using

am+1
h = am

h + αmdm(x), (31)

where

dm(x) = −gm(x) + βmdm−1(x),

with

βm =
‖gm(x)‖2

‖gm−1(x)‖2
, (32)

where d0(x) = −g0(x) and

αm = −
(gm , dm)

γm‖dm‖2
. (33)

and the regularization parameter γm at iteration m is computed iteratively accordingly to

γm =
γ0

(m + 1)p , p ∈ (0, 1). (34)

Step 3. Stop computing am
h and obtain the function ah at M = m if either ‖gm‖L2(Ω) ≤ θ or norms ‖gm‖L2(Ω) are

stabilized. Here θ is the tolerance in updates m of gradient method. Otherwise set m := m + 1 and go to step 1.
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Goal of the project

In the project report should be presented numerical simulations for
reconstruction of the function a(x) in

4u(x) − s2a(x)u(x) = −sa(x)f0(x), x ∈ Rd , d = 2, 3,

∂νu(x) = 0, x ∈ Γ3,

∂νu(x) = f0(x) − su(x, s), x ∈ Γ1 ∪ Γ2.

taking f0 = 0, via CGM algorithm in the domain Ω = [0, 1] × [0, 1] using
data generated at the boundary Γ of Ω described in the course project at

www.waves24.com/download

Alternatively, you can generate your own data as it is described in the
course project at

www.waves24.com/download

and solve IP via CGM.
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Functions a(x) in Test 1 and Test 2
We assume that a(x) = 1 is known inside Ω2. The wave speed
function was chosen as (35) in Test 1 and as (36) in Test 2. Then
the Laplace transform (2) was applied to the computed
time-dependent solution u(x, t) of the problem (37) at the
pseudo-frequency interval for s ∈ [2.0, 7.0], then additive noise σ
was added to the obtained solution.

Test 1
In this test should be reconstructed one smooth function given
by

a(x) = 1.0 + 2.0 · e−((x1−0.5)2+(x2−0.7)2)/0.001. (35)

Test 2
In this test should be reconstructed two smooth functions
given by

a(x) = 1.0

+ 2.0 · e−((x1−0.5)2+(x2−0.7)2)/0.001 + 3.0 · e−((x1−0.2)2+(x2−0.6)2)/0.001.

(36)
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Functions a(x) in Test 1 and Test 2

a) Test 1 b) Test 2

c) s = 3 d) s = 7

Figure: a), b) Functions a(x) in Ω1 used in Test 1 (left figure) and Test 2
(right figure). s), d) Laplace transform of data Ũ(x, t) with 3% noise at the
backscattered boundary Γ1.
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Description of the process of data generation via
FEM/FDM domain decomposition method

We set the dimensionless computational domain
Ω = [−0.5, 1.5] × [−0.5, 1.5] such that it is divided into two subdomains
Ω2 and Ω1 = [0, 1] × [0, 1] where Ω = Ω1 ∪ Ω2 with two layers of
structured overlapping nodes between these domains, see Figure 1. The
mesh size h in Ω = Ω1 ∪ Ω2 is h = 0.03125. In computations
time-dependent observations are collected at (Γ1 ∪ Γ2) × (0,T) at the
backscattering Γ1 and transmitted Γ2 sides of Ω, respectively. We define
Γ1,1 := Γ1 × (0, t1], Γ1,2 := Γ1 × (t1,T).
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Time-dependent scalar wave equation
For generation of data at the boundary Γ of the domain Ω = [0, 1] × [0, 1]
was solved the time-dependent problem (3) with first order absorbing
boundary conditions in time T = [0, 2.0] with the time step τ = 0.002
which satisfies to the CFL condition. More precisely, the model problem
for time-dependent wave equation is

a(x)∂2
t U(x, t) − 4U(x, t) = 0 in Ω × (0,T),

U(x, 0) = 0, Ut (x, 0) = 0 in Ω,

∂nU = f(t) on Γ1,1,

∂nU = −∂tU on Γ1,2 ∪ Γ2,

∂nU = 0 on Γ3.

(37)

In (37) the function f(t) is defined as

f(t) =

 sin (ωs t) , if t ∈
(
0, 2π

ωs

)
,

0, if t > 2π
ωs
.

(38)

and represents the single direction of a plane wave initialized at Γ1 in
time t = [0, 2.0]. In all computations we take ωs = 80.
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Laplace transform of the wave equation
Let us take now the Laplace transform

u(x, s) :=

∫ +∞

0
U(x, t)e−stdt , s = const . > 0

of the function U (x, t) in the time-dependent wave equation (37). Then
with f(t) defined by (38) on Γ1 we obtain the following problem:

4u(x) − s2a(x)u(x) = 0, x ∈ Rd , d = 2, 3,

∂νu(x) = 0, x ∈ Γ3,

∂νu(x) = I1 + I2 − suωs (x, s), x ∈ Γ1,

∂νu(x) = −su(x, s), x ∈ Γ2,

where I1

I1 =
C

1 + s2

ωs
2

,C = −
exp−

2πs
ωs

ωs
+

1
ωs
,

I2 = exp−
2πs
ωs · U(x,

2π
ωs

), uωs (x, s) =

∫ +∞

2π
ωs

U(x, t)e−stdt .
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Hints for solution IP in Matlab or C++/PETSc

1. Study Examples 8.2, 8.4.4 or 12.5 of [BKK] where is presented
solution of the Dirichlet problem for the Poisson’s equation using
Matlab and C++/ PETSc. Matlab and PETSc programs for solution
of this problem are available download from the course homepage:
go to the link of the book [BKK] and click to “GitHub Page with
MATLAB Source Codes” on the bottom of this page, or copy the link
below:

https://github.com/springer-math/Numerical_Linear_Algebra_Theory_and_Applications

2. Modify Matlab or PETSc code of the Example 12.5 of [BKK], or
PETSc code in this note (this code is also available for download
from waves24.com/download) such that it can be applied for the
solution of CIP presented on the slide 6 of this lecture. More
precisely, implement CGM algorithm presneted on the slide 15 in
order to reconstruct function a(x) in the problem (5) from noisy data
given at waves24.com/download.

[BKK] L. Beilina, E. Karchevskii, M. Karchevskii, Numerical Linear Algebra: Theory and Applications, Springer, 2017.
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Example: solution of Poisson’s equation in Matlab and
C++/PETSc [BKK]

The model problem is the following Dirichlet problem for Poisson’s
equation:

−4u(x) = f(x) in Ω,

u = 0 on ∂Ω.
(39)

Here f(x) is a given function, u(x) is the unknown function, and the
domain Ω is the unit square Ω = {(x1, x2) ∈ (0, 1) × (0, 1)}. To solve
numerically (39) we first discretize the domain Ω with x1 i = ih1 and
x2 j = jh2, where h1 = 1/(ni − 1) and h2 = 1/(nj − 1) are the mesh sizes
in the directions x1, x2, respectively, ni and nj are the numbers of
discretization points in the directions x1, x2, respectively. In this example
we choose ni = nj = n with n = N + 2, where N is the number of inner
nodes in the directions x1, x2, respectively.
Indices (i, j) are such that 0 < i, j ≤ n and are associated with every
global node nglob of the finite difference mesh. Global nodes numbers
nglob in two-dimensional case can be computed as:

nglob = i + nj · (j − 1). (40)

www.math.chalmers.se/∼larisa Lecture 4



We use the standard finite difference discretization of the Laplace
operator ∆u in two dimensions and obtain discrete laplacian ∆ui,j :

∆ui,j =
ui+1,j − 2ui,j + ui−1,j

h2
+

ui,j+1 − 2ui,j + ui,j−1

h2
, (41)

where ui,j is the solution at the discrete point (i, j). Using (41), we obtain
the following scheme for solving problem (39):

−

(
ui+1,j − 2ui,j + ui−1,j

h2
+

ui,j+1 − 2ui,j + ui,j−1

h2

)
= fi,j , (42)

where fi,j are the value of the function f at the discrete point (i, j).
Then (42) can be rewritten as

− (ui+1,j − 2ui,j + ui−1,j + ui,j+1 − 2ui,j + ui,j−1) = h2fi,j , (43)

or in the more convenient form as

− ui+1,j + 4ui,j − ui−1,j − ui,j+1 − ui,j−1 = h2fi,j . (44)
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System (44) can be written in the form Au = b. The vector b has the
components bi,j = h2fi,j . The explicit elements of the matrix A are given
by the following block matrix

A =


AN −IN

−IN
. . .

. . .

. . .
. . . −IN
−IN AN


with blocks AN of order N given by

AN =


4 −1 0 0 · · · 0
−1 4 −1 0 · · · 0

0 −1 4 0 · · · 0
· · · · · · · · · · · · · · · · · ·

0 · · · · · · 0 −1 4

 ,
which are located on the diagonal of the matrix A , and blocks with the
identity matrices −IN of order N on its off-diagonals. The matrix A is
symmetric and positive definite and we can use the LU factorization
algorithm without pivoting.
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Suppose, that we have discretized the two-dimensional domain Ω as
described above with N = ni = nj = 3. We present the schematic
discretization via the global nodes numbering

nglob = i + nj · (j − 1).

in the following scheme: a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 =⇒

 n1 n2 n3

n4 n5 n6

n7 n8 n9

 =⇒

 1 2 3
4 5 6
7 8 9

 . (45)

Then the explicit form of the block matrix A will be:

A =



4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4


.
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Example 8.2: Gaussian elimination for solution of
Poisson’s equation in Matlab

We illustrate the numerical solution of problem (39). We define the right
hand side f(x) of (39) as

f(x1, x2) = Af exp

− (x1 − c1)2

2s2
1

−
(x2 − c2)2

2s2
2

 1
a(x1, x2)

, (46)

The coefficient a(x1, x2) in (46) is given by the following Gaussian
function:

a(x1, x2) = 1 + A exp

− (x1 − c1)2

2s2
1

−
(x2 − c2)2

2s2
2

, (47)

Here A , Af are the amplitudes of these functions, c1, c2 are constants
which show the location of the center of the Gaussian functions, and
s1, s2 are constants which show spreading of the functions in x1 and x2

directions.
We produce the mesh with the points (x1 i , x2 j) such that x1 i = ih, x2 j = jh
with h = 1/(N + 1), where N is the number of the inner points in x1 and
x2 directions. The linear system of equations Au = f is solved then via
the LU factorization of the matrix A without pivoting.
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Example 8.2: solution of Poisson’s equation using LU
factorization in MATLAB

/chalmers/users/larisa/NumLinAlg/Lectures/Lectures2018//PoissonLUex1-eps-converted-to.pdf/chalmers/users/larisa/NumLinAlg/Lectures/Lectures2018//PoissonLUex2-eps-converted-to.pdf

/chalmers/users/larisa/NumLinAlg/Lectures/Lectures2018//PoissonLUex3-eps-converted-to.pdf/chalmers/users/larisa/NumLinAlg/Lectures/Lectures2018//PoissonLUex4-eps-converted-to.pdf

Figure: Solution of Poisson’s equation (39) with f(x1, x2) as in (46) and
a(x1, x2) as in (47).
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Example 8.4.4: solution of Poisson’s equation using
Cholesky factorization

f(x1, x2) = 1 + 10e
(
−

(x1−0.25)2

0.02 −
(x2−0.25)2

0.02

)
+ 10e

(
−

(x1−0.75)2

0.02 −
(x2−0.75)2

0.02

)
(48)

/chalmers/users/larisa/NumLinAlg/Lectures/Lectures2018//PoissonCholex1-eps-converted-to.pdf/chalmers/users/larisa/NumLinAlg/Lectures/Lectures2018//PoissonCholex2-eps-converted-to.pdf

/chalmers/users/larisa/NumLinAlg/Lectures/Lectures2018//PoissonCholex3-eps-converted-to.pdf/chalmers/users/larisa/NumLinAlg/Lectures/Lectures2018//PoissonCholex4-eps-converted-to.pdf

Figure: Solution of Poisson’s equation (39) with f(x1, x2) as in (48).
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Solution of the test problem in C++/PETSc

Now we illustrate how C++/PETSc solver can be used for solution of the
following Dirichlet problem for Helmholtz equation in two dimensions:

4u(x) + ω2ε(x)u = f(x) in Ω,

u = 0 on ∂Ω.
(49)

Here f(x) is a given function, u(x) is the unknown function to be
computed, and the domain Ω is the unit square
Ω = {(x1, x2) ∈ (0, 1) × (0, 1)}.
The exact solution of (49) with the right hand side

f(x1, x2) = −(8π2) sin(2πx1) sin(2πx2) − 2ix1(1 − x1) − 2ix2(1 − x2)

+ ω2ε(x)(sin(2πx1) sin(2πx2) + ix1(1 − x1)x2(1 − x2))
(50)

is the function

u(x1, x2) = sin(2πx1) sin(2πx2) + ix1(1 − x1)x2(1 − x2). (51)
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Description of C++/PETSc solver

PETSc libraries are a suite of data structures and routines for
the scalable (parallel) solution of scientific applications.

Link to the PETSc documentation:

http://www.mcs.anl.gov/petsc/documentation/
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Description of C++/PETSc solver

We set the computational domain to be the unit square
Ω = {(x1, x2) ∈ (0, 1) × (0, 1)} and discretize it as it described in the
previous section. The main program

cplxmaxwell.cpp

is compiled using version of PETSc

petsc-3.10.4c

on 64 bits Red Hat Linux Workstation as

make runmaxwell
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Makefile
An example of Makefile used for compilation of PETSc program
cplxmaxwell.cpp which we present below is:

PETSC_ARCH=/chalmers/sw/sup64/petsc-3.10.4c
include ${PETSC_ARCH}/lib/petsc/conf/variables
include ${PETSC_ARCH}/lib/petsc/conf/rules
MPI_INCLUDE = ${PETSC_ARCH}/include/mpiuni
CXX = g++
CXXFLAGS = -Wall -Wextra -g -O0 -c
-Iinclude -I${PETSC_ARCH}/include -I${MPI_INCLUDE}
LD = g++
LFLAGS =
OBJECTS = cplxmaxwell.o
RUNMAXWELL = runmaxwell
all: $(RUNMAXWELL)
%.o: %.cpp
$(CXX) $(CXXFLAGS) -o $@ $<
$(RUNMAXWELL): $(OBJECTS)
$(LD) $(LFLAGS) $(OBJECTS) $(PETSC_LIB) -o $@
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For solution of system of linear equations Ax = b was used inbuilt
PETSc function with the scalable linear equations solvers (KSP)
component. This component provides interface to the combination of a
Krylov subspace iterative method and a preconditioner which can be
chosen by user [PETSc]. It is possible choose between three different
preconditioners which are encoded by numbers:

1- Jacobi’s method
2 - Gauss-Seidel method
3 - Successive Overrelaxation method (SOR)

To run the main program cplxmaxwell.cpp one need to write:

>runmaxwellv2 argv[1] argv[2]

Here, arguments are defined as follows:

argv[1] - preconditioner (should be 1,2 or 3)
argv[2] - number of discretization points in x and y directions

[PETSc] Portable, Extensible Toolkit for Scientific Computation PETSc at http://www.mcs.anl.gov/petsc/
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Preconditioning for Linear Systems
Preconditioning technique is used for the reduction of the condition
number of the considered problem. For the solution of linear system of
equations Ax = b the preconditioner matrix P of a matrix A is a matrix
P−1A such that P−1A has a smaller condition number then the original
matrix A . This means that instead of the solution of a system Ax = b we
will consider solution of the system

P−1Ax = P−1b . (52)

The matrix P should have the following properties:

P is s.p.d. matrix;

P−1A is well conditioned;

The system Px = b should be easy solvable.

The preconditioned conjugate gradient method is derived as follows. First
we multiply both sides of (52) by P1/2 to get

(P−1/2AP−1/2)(P1/2x) = P−1/2b . (53)
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Preconditioning for Linear Systems

We note that the system (53) is s.p.d. since we have chosen the matrix P
such that P = QQT which is the eigendecomposition of P. Then the
matrix P1/2 will be s.p.d. if it is defined as

P1/2 = Q1/2QT .

Defining
Ã := P−1/2AP−1/2, x̃ := P1/2x, b̃ = P−1/2b

we can rewrite (53) as the system Ã x̃ = b̃. Matrices Ã and P−1A are
similar since P−1A = P−1/2ÃP1/2. Thus, Ã and P−1A have the same
eigenvalues. Thus, instead of the solution of P−1Ax = P−1b we will
present preconditioned conjugate gradient (PCG) algorithm for the
solution of Ã x̃ = b̃.
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Preconditioned conjugate gradient algorithm

Initialization: r = 0; x0 = 0; R0 = b; p1 = P−1b; y0 = P−1R0

repeat
r = r + 1
z = A · pr

νr = (yT
r−1Rr−1)/(pT

r z)
xr = xr−1 + νrpr

Rr = Rr−1 − νrz
yr = P−1Rr

µr+1 = (yT
r Rr )/(yT

r−1Rr−1)
pr+1 = yr + µr+1pr

until ||Rr ||2 is small enough
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Common preconditioners

Common preconditioner matrices P are:

Jacobi preconditioner P = (a11, ..., ann). Such choice of the
preconditioner reduces the condition number of P−1A around factor
n of its minimal value.

block Jacobi preconditioner

P =

 P1,1 ... 0
... ... ...
0 ... Pr ,r

 (54)

with Pi,i = Ai,i , i = 1, ..., r , for the block matrix A given by

A =

 A1,1 ... A1,r

... ... ...
Ar ,1 ... Ar ,r

 (55)

with square blocks Ai,i , i = 1, ..., r . Such choice of preconditioner P
minimizes the condition number of P−1/2AP−1/2 within a factor of r .
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Method of SSOR can be used as a block preconditioner as well. If
the original matrix A can be split into diagonal, lower and upper
triangular as A = D + L + LT ï¿¼ then the SSOR preconditioner
matrix is defined as

P = (D + L)D−1(D + L)T

It can also be parametrised by ωï¿¼ as follows:

P(ω) =
ω

2 − ω

(
1
ω

D + L
)

D−1
(

1
ω

D + L
)T

Incomplete Cholesky factorization with A = LLT is often used for
PCG algorithm. In this case a sparse lower triangular matrix L̃ is
chosen to be close to L . Then the preconditioner is defined as
P = L̃ L̃T .

Incomplete LU preconditioner.
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Solution of the problem (49) using the C++/PETSc
program cplmaxwell.cpp via SOR with nx = ny = 21.

For example, to execute the main program cplxmaxwell.cpp using SOR
method and 21 discretization points in x and y directions, one should run
this program, as follows:

>runmaxwell 3 21

The results will be printed in the files

nodes.m
values.m

and can be visualized in Matlab using the file

viewer.m

which is available for download on the course homepage, see also below.
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Solution of the problem (49) using the C++/PETSc
program cplmaxwell.cpp via SOR with nx = ny = 21.

/chalmers/users/larisa/NumLinAlg/Lectures/Lectures2019/FIGURES//HomoHelmh-eps-converted-to.pdf

Figure: Solution of the problem (49) using the C++/PETSc program
cplmaxwell.cpp via SOR with nx = ny = 21.
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Program cplxmaxwell.cpp

// to run
// runmaxwell argv[1] argv[2]
// Arguments:
// argv[1] - preconditioner (should be 1,2 or 3)
// argv[2] - number of discretization points in x and y directions

static char help[] ="";
#include<iostream>
#include<fstream>
#include<petsc.h>
#include<petscvec.h>
#include<petscmat.h>
#include<petscksp.h>
#include<complex>

using namespace std;

char METHOD_NAMES[8][70] = {
"invalid method",
"Jacobi’s method",
"Gauss-Seidel method",
"Successive Overrelaxation method (SOR)"};

char *GetMethodName(PetscInt method) {
if (method < 0 || method > 3)

return METHOD_NAMES[0];
else

return METHOD_NAMES[method];
}
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PetscScalar epsilon(const PetscReal x, const PetscReal y)
{
PetscReal rpart, ipart;

PetscReal x_0=0.5;
PetscReal y_0=0.5;
PetscReal c_x=1;
PetscReal c_y=1;
rpart=2*exp(-((x-x_0)*(x-x_0)/(2*c_x*c_x) +(y-y_0)*(y-y_0)/(2*c_y*c_y)));
ipart = 0;
PetscScalar scalareps(rpart, ipart);
return scalareps;
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PetscScalar right_hand_side(const PetscReal x, const PetscReal y,
const PetscReal omega)

{
PetscReal rpart, ipart, pi = 3.14159265359;

PetscReal x_0=0.5;
PetscReal y_0=0.5;
PetscReal c_x=1;
PetscReal c_y=1;
PetscReal epsilon_real =
2*exp(-((x-x_0)*(x-x_0)/(2*c_x*c_x) +(y-y_0)*(y-y_0)/(2*c_y*c_y)));

rpart = -(8*pi*pi)*sin(2*pi*x)*sin(2*pi*y)
+ omega*omega*epsilon_real*(sin(2*pi*x)*sin(2*pi*y));

ipart = -2*(x - x*x + y - y*y)
+ omega*omega*epsilon_real*x*(1-x)*y*(1-y);

PetscScalar f(rpart, ipart);
return f;
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PetscScalar wave_number(const PetscReal kreal, const PetscReal kimag)
{
//PetscReal rpart, ipart;
//rpart = 1;
//ipart = 1;
PetscScalar k(kreal, kimag);
return k;

}
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int main(int argc, char **argv)
{
PetscErrorCode ierr;

cout << "Initializing ..." << endl;
// PetscInitialize(&argc, &argv, NULL, NULL);

ierr = PetscInitialize(&argc, &argv,(char *)0, help);CHKERRQ(ierr);

PetscInt method = atoi(argv[1]);
PetscBool methodSet = PETSC_FALSE;

ierr = PetscOptionsGetInt(NULL, NULL, "-m", &method, &methodSet);
if (method < 1 || method > 7) {

cout << "Invalid number of the selected method: "
<< method << ".\nExiting..." << endl;
exit(-1);

}

PetscPrintf(PETSC_COMM_WORLD, "Using %s\n", GetMethodName(method));

cout << "Setting parameters..." << endl;
Vec b, u;
Mat A;
KSP ksp;
PC preconditioner;
PetscInt Nx = atoi(argv[2]), Ny = Nx, Nsys, node_idx = 0, col[5], nadj;

Nsys = Nx*Ny; // dimension of linear system = number of nodes
PetscReal x[Nx], y[Ny], nodes[Nsys][2];
PetscScalar value, value_epsilon, diffpoints[5], h;
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// Set up vectors
cout << "Setting up vectors..." << endl;
ierr = VecCreate(PETSC_COMM_WORLD, &b); CHKERRQ(ierr);
ierr = VecSetSizes(b, PETSC_DECIDE, Nsys); CHKERRQ(ierr);
ierr = VecSetType(b, VECSTANDARD); CHKERRQ(ierr);
ierr = VecDuplicate(b, &u);

// Set up matrix
cout << "Setting up matrix..." << endl;
ierr = MatCreate(PETSC_COMM_WORLD, &A); CHKERRQ(ierr);
ierr = MatSetSizes(A,PETSC_DECIDE, PETSC_DECIDE, Nsys, Nsys);
CHKERRQ(ierr);
ierr = MatSetFromOptions(A); CHKERRQ(ierr);
ierr = MatSetUp(A); CHKERRQ(ierr);

// Create grid
cout << "Constructing grid..." << endl;
h = 1.0/(Nx - 1);
for (int i = 0; i < Nx; i++)
x[i] = 1.0*i/(Nx - 1);

for (int j = 0; j < Ny; j++)
y[j] = 1.0*j/(Ny - 1);
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// Assemble linear system ...
cout << "Assembling system..." << endl;

PetscScalar k;
double omegareal=40;
for (int i = 0; i < Nx; i++)
{
for (int j = 0; j < Ny; j++)

{
nodes[node_idx][0] = x[i];
nodes[node_idx][1] = y[j];

k = omegareal*omegareal*epsilon(x[i], y[j]);
value_epsilon = h*h*k;

diffpoints[0] = -4.0 + h*h*k;
diffpoints[1] = 1.0;
diffpoints[2] = 1.0;
diffpoints[3] = 1.0;
diffpoints[4] = 1.0;

if (i > 0 && i < Nx - 1 && j > 0 && j < Ny - 1) // interior
{

col[0] = node_idx;
col[1] = node_idx - 1;
col[2] = node_idx + 1;
col[3] = node_idx - Ny;
col[4] = node_idx + Ny;

nadj = 5;
value = h*h*right_hand_side(x[i], y[j],omegareal);

} else
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// on boundary
{
col[0] = node_idx;
nadj = 1;
value = 0.0;

}
ierr = MatSetValues(A, 1, &node_idx, nadj, col, diffpoints, INSERT_VALUES);
CHKERRQ(ierr);
ierr = VecSetValues(b, 1, &node_idx, &value, INSERT_VALUES);
CHKERRQ(ierr);

node_idx++;
}

}
ierr = MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);
ierr = MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);

// Solve linear system
cout << "Solving linear system ..." << endl;
ierr = KSPCreate(PETSC_COMM_WORLD, &ksp); CHKERRQ(ierr);
ierr = KSPSetOperators(ksp, A, A); CHKERRQ(ierr);
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// set preconditioner
ierr = KSPGetPC(ksp, &preconditioner); CHKERRQ(ierr);

if (method == 1)
{

ierr = PCSetType(preconditioner,PCJACOBI); CHKERRQ(ierr);
}

else if (method == 2)
{

ierr = PCSetType(preconditioner, PCSOR);
CHKERRQ(ierr);

}
else if (method == 3)
{
const PetscReal omega = 1.5;
ierr = PCSetType(preconditioner, PCSOR); CHKERRQ(ierr);
ierr = PCSORSetOmega(preconditioner, omega); CHKERRQ(ierr);

}

ierr = KSPSetFromOptions(ksp); CHKERRQ(ierr);
ierr = KSPSolve(ksp, b, u); CHKERRQ(ierr);
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// Print to files
cout << "Writing to files..." << endl;
FILE* nodefile = fopen("nodes.m", "w");
for (int idx = 0; idx < Nsys; idx++)
fprintf(nodefile, "%f \t %f \n", nodes[idx][0], nodes[idx][1]);

fclose(nodefile);
FILE* solfile = fopen("values.m", "w");
for (int idx = 0; idx < Nsys; idx++)
{
ierr = VecGetValues(u, 1, &idx, &value);
fprintf(solfile, "%f \t %f \n", real(value), imag(value));

}
fclose(solfile);

// Clean up
ierr = VecDestroy(&b); CHKERRQ(ierr);
ierr = VecDestroy(&u); CHKERRQ(ierr);
ierr = MatDestroy(&A); CHKERRQ(ierr);
ierr = KSPDestroy(&ksp); CHKERRQ(ierr);

// Finalize and finish
ierr = PetscFinalize();
return 0;

}
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Matlab program viewer.m for visualization of results

load nodes.m
load values.m
u = @(x, y) sin(2*pi*x).*sin(2*pi*y) + 1i*x.*(1 - x).*y.*(1 - y);
x_0=0.5;
y_0=0.5;
c_x= 0.1;
c_y=0.1;
epsilon = @(x, y) 2*exp(-((x-x_0).*(x-x_0)/(2*c_x.*c_x) ...
+(y-y_0).*(y-y_0)/(2*c_y.*c_y)));
% for test 2
%epsilon = @(x, y) 1+2*exp(-((x-0.5).*(x-0.5) +(y-0.7).*(y-0.7))/0.001) ...
+ 3*exp(-((x-0.2).*(x-0.2) +(y-0.6).*(y-0.6))/0.001);
n = sqrt(size(nodes, 1));
X = reshape(nodes(:, 1), n, n);
Y = reshape(nodes(:, 2), n, n);
Ur = reshape(values(:, 1), n, n);
Ui = reshape(values(:, 2), n, n);
[Xe, Ye] = meshgrid(linspace(0, 1, 30), linspace(0, 1, 30));
ur = real(u(Xe, Ye));
ui = imag(u(Xe, Ye));
Eps = epsilon(Xe, Ye)
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subplot(3, 2, 1)
surf(X’, Y’, Ur)
title(’u_h Real, computed’)
view(2)

subplot(3, 2, 2)
surf(Xe, Ye, ur)
title(’u Real, exact’)
view(2)

subplot(3, 2, 3)
surf(X’, Y’, Ui)
title(’u_h Imag, computed’)
view(2)

subplot(3, 2, 4)
surf(Xe, Ye, ui)
title(’u Imag, exact’)
view(2)

subplot(3, 2, 5)
surf(Xe, Ye, Eps)
title(’exact epsilon, 3D view’)

subplot(3, 2, 6)
surf(Xe, Ye, Eps)
view(2)
title(’exact epsilon, 2D’)
shg
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