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Linear Least Squares Problems

Suppose that we have a matrix A of the size m × n and the vector b
of the size m × 1. The linear least square problem is to find a vector
x of the size n × 1 which will minimize ||Ax − b ||2.

In the case when m = n and the matrix A is nonsingular we can get
solution to this problem as x = A−1b.

When m > n (more equations than unknows) the problem is
overdetermined

When m < n (more unknows than equations) the problem is
underdetermined

Applications: curve fitting, statistical modelling.
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Matrix Factorizations that Solve the Linear Least Squares
Problem

The linear least squares problem has several explicit solutions that we
will discuss:

1 normal equations: the fastest but least accurate; it is adequate
when the condition number is small.

2 QR decomposition,

is the standard one and costs up to twice as much as the first
method.

3 SVD, is of most use on an ill-conditioned problem, i.e., when A is
not of full rank; it is several times more expensive again.

4 Iterative refinement to improve the solution when the problem is
ill-conditioned. Can be adapted to deal efficiently with sparse
matrices [Å. Björck. Numerical Methods for Least Squares
Problems].

We assume initially for methods 1 and 2 that A has full column rank n.
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Linear Least Squares Problems

Further we assume that we will deal with overdetermined problems when
we have more equations than unknowns. This means that we will be
interested in the solution of linear system of equations

Ax = b , (1)

where A is of the size m × n with m > n, b is vector of the size m, and x
is vector of the size n.
In a general case we are not able to get vector b of the size m as a linear
combination of the n columns of the matrix A and n components of the
vector x, or there is no solution to (1) in the usual case. We will consider
methods which can minimize the residual r = b − Ax as a function on x
in principle in any norm, but we will use 2-norm because of the
convenience from theoretical (relationships of 2-norm with the inner
product and orthogonality, smoothness and strict convexity properties)
and computational points of view. Also, because of using 2-norm method
is called least squares.
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We can write the least squares problem as problem of the minimizing of
the squared residuals

‖r‖22 =
m∑

i=1

r2
i =

m∑

i=1

(Axi − b)2. (2)

In other words, our goal is to find minimum of this residual using least
squares:

min
x
‖r‖22 = min

x

m∑

i=1

r2
i = min

x

m∑

i=1

(Axi − b)2. (3)

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 6

http://www.math.chalmers.se/~larisa/


Linear Least Squares Problems
Nonlinear Least Squares Problems

Normal Equations

Our goal is to minimize the residual ‖r(x)‖22 = ||Ax − b ||22. To find
minimum of this functional and derive the normal equations, we look for
the x where the gradient of ||Ax − b ||22 = (Ax − b)T (Ax − b) vanishes, or
where ‖r ′(x)‖22 = 0. So we want

0 = lim
‖e‖→0

(A(x + e) − b)T (A(x + e) − b) − (Ax − b)T (Ax − b)
||e||2

= lim
‖e‖→0

2eT (AT Ax − AT b) + eT AT Ae
||e||2

The second term |eT AT Ae|
||e||2 ≤ ||A ||

2
2 ||e||

2
2

||e||2 = ||A ||22||e||2 approaches 0 as e goes

to 0, so the factor AT Ax − AT b in the first term must also be zero, or
AT Ax = AT b. This is a system of n linear equations in n unknowns, the
normal equations.
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Normal Equations

Thus, normal equations are

AT Ax = AT b , (4)

which is a symmetric linear system of the n × n equations.
Using ‖r(x)‖22 = ||Ax − b ||22 we can compute the Hessian matrix
H = 2AT A . If the Hessian matrix H = 2AT A is positive definite, then x is
indeed a minimum. We can show that the matrix AT A is positive definite
if, and only if, the columns of A are linearly independent, or when
r(A) = n.
If the matrix A has a full rank (r(A) = n) then the system (4) is of the size
n-by-n and is symmetric positive definite system of normal equations. It
has the same solution x as the least squares problem minx ‖Ax − b‖22 of
the size m-by-n.
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Normal Equations

To solve system (4) one can use Cholesky decomposition

AT A = LLT (5)

with L lower triangular matrix. Then the solution of (4) will be given by the
solution of triangular system

Ly = AT b ,

LT x = y.
(6)
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Normal Equations

However, in practice the method of normal equations can be inaccurate
by two reasons.

The condition number of AT A is twice more than twice more than
the condition number of the original matrix A :

cond(AT A) = cond(A)2. (7)

Thus, the method of normal equations can give a squared condition
number even when the fit to data is good and the residual is small.
This makes the computed solution more sensitive. In this sense the
method of normal equations is not stable.

Information can be lost during computation of the product of AT A .
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Normal Equations: loss of information in a given
floating-point system

Example

A =





1 1
δ 0
0 δ




(8)

with 0 < δ <
√
ε in a given floating-point system. In floating-point

arithmetics we can compute AT A :

AT A =

(

1 δ 0
1 0 δ

)

·





1 1
δ 0
0 δ




=

(

1 + δ2 1
1 1 + δ2

)

=

(

1 1
1 1

)

, (9)

which is singular matrix in the working precision.
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Data fitting

In this example we present the typical application of least squares called
data or curve fitting problem. This problem appears in statistical
modelling and experimental engineering when data are generated by
laboratory or other measurements.
Suppose that we have data points (xi , yi), i = 1, ...,m, and our goal is to
find the vector of parameters c of the size n which will fit best to the data
yi of the model function f(xi , c), where f : Rn+1 → R, in the least squares
sense:

min
c

m∑

i=1

(yi − f(xi , c))2. (10)

If the function f(x, c) is linear then we can solve the problem (10) using
least squares method.
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The function f(x, c) is linear if we can write it as a linear combination of
the functions φj(x), j = 1, ..., n as:

f(x, c) = c1φ1(x) + c2φ2(x) + ...+ cnφn(x). (11)

Functions φj(x), j = 1, ..., n are called basis functions.
Let now the matrix A will have entries aij = φj(xi), i = 1, ...,m; j = 1, ..., n,
and vector b will be such that bi = yi , i = 1, ...,m. Then a linear data
fitting problem takes the form of (1) with x = c:

Ac ≈ b (12)

Elements of the matrix A are created by basis functions φj(x), j = 1, ..., n.
We will consider now different examples of choosing basis functions
φj(x), j = 1, ..., n.
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Problem of the fitting to a polynomial

In the problem of the fitting to a polynomial

f(x, c) =
d∑

i=1

cix i−1 (13)

of degree d − 1 to data points (xi , yi), i = 1, ...,m, basis functions
φj(x), j = 1, ..., n can be chosen as φj(x) = x j−1, j = 1, ..., n. The matrix A
constructed by these basis functions in a polynomial fitting problem is a
Vandermonde matrix:

A =





1 x1 x2
1 . . . xd−1

1
1 x2 x2

2 . . . xd−1
2

1 x3 x2
3 . . . xd−1

3
...
...
. . .

. . .
...

1 xm x2
m . . . xd−1

m





. (14)

Here, xi , i = 1, ....,m are discrete points on the interval for x = [xleft , xright ].
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Problem of the fitting to a polynomial

On the next slides we will present several examples of polynomial
fitting to data generated by the function b = sin(πx/5) + x/5.

All examples are supplied by Matlab programs which are available
for download from the link of the book [BKK]:

https://github.com/springer-math/Numerical_Linear_Algebra_Theory_and_Applications

See description of all available programs at the above link in the file

Programs.pdf

[BKK] L. Beilina, E. Karchevskii, M. Karchevskii, Numerical Linear Algebra: theory and applications, Springer, 2017.
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Suppose, that we choose d = 4 in (10). Then we can write the
polynomial as f(x, c) =

∑4
i=1 cix i−1 = c1 + c2x + c3x2 + c4x3 and our

data fitting problem (12) for this polynomial takes the form





1 x1 x2
1 x3

1
1 x2 x2

2 x3
2

1 x3 x2
3 x3

3
...
...
. . .

...

1 xm x2
m x3

m





·





c1

c2

c3

c4





=





b0

b1

b2

...

bm





. (15)
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The right hand side of the above system represents measurements or
function which we want to fit. Our goal is to find such coefficients
c = {c1, c2, c3, c4} which will minimize the residual
ri = f(xi , c) − bi , i = 1...,m. Since we want minimize squared 2-norm of
the residual, or ‖r‖22 =

∑m
i=1 r2

i , then we will solve the linear least squares
problem.
Let us consider an example when the right hand side bi , i = 1, ...m is
taken as a smooth function b = sin(πx/5) + x/5. Figure on the next slide
shows polynomial fitting to the function b = sin(πx/5) + x/5 for different
d in (13) on the interval x ∈ [−10, 10]. Using this figure we observe that
with increasing of the degree of the polynomial d − 1 we have better fit to
the exact function b = sin(πx/5) + x/5. However, for the degree of the
polynomial more than 18 we get erratic fit to the function. This happens
because matrix A becomes more and more ill-conditioned with
increasing of the degree of the polynomial d. And this is, in turn, because
of the linear dependence of the columns in the Vandermonde’s matrix A .
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Figure: Polynomial fitting for different d in (13) to the function b = sin(πx/5) + x/5 on the interval x ∈ [−10, 10]

using the method of normal equations. On the left figures: fit to the 100 points xi , i = 1, ..., 100; on the right figures: fit to

the 10 points xi , i = 1, ..., 10. Lines with blue stars represent computed function and with red circles - exact one.
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Approximation using linear splines

When we want to solve the problem (10) of the approximation to the data
vector yi , i = 1, ...,m with linear splines we use following basis functions
φj(x), j = 1, ..., n, in (11) which are called also hat functions:

φj(x) =






x−Tj−1

Tj−Tj−1
, Tj−1 ≤ x ≤ Tj ,

Tj+1−x

Tj+1−Tj
, Tj ≤ x ≤ Tj+1.

(16)

Here, the column j in the matrix A is constructed by the given values of
φj(x) at points Tj , j = 1, .., n, which are called conjunction points and are
chosen by the user. Using (16) we can conclude that the first basis
function is φ1(x) =

T2−x
T2−T1

and the last one is φn(x) =
x−Tn−1
Tn−Tn−1

.
Figure on the next slide shows approximation of a function
b = sin(πx/5) + x/5 on the interval x ∈ [−10, 10] using linear splines
with different number n of conjunction points Tj , j = 1, ..., n.
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Figure: Polynomial fitting to the function b = sin(πx/5) + x/5 on the interval x ∈ [−10, 10] using linear splines with

different number n of conjunction points Tj , j = 1, ..., n in (16). Blue stars represent computed function and red circles -

exact one.
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Approximation using bellsplines

In the case when we want to solve the problem (10) using bellsplines, the
number of bellsplines which can be constructed are n + 2, and the
function f(x, c) in (10) is written as

f(x, c) = c1φ1(x) + c2φ2(x) + ...+ cn+2φn+2(x). (17)
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We define

φ0
j (x) =

{

1, Tj ≤ x ≤ Tj+1,

0, otherwise.
(18)

Then all other basis functions, or bellsplines,
φk

j (x), j = 1, ..., n + 2; k = 1, 2, 3 are defined as follows:

φk
j (x) = (x − Tk )

φk−1
j (x)

Tj+k − Tj
+ (Tj+k+1 − x)

φk−1
j+1 (x)

Tj+k+1 − Tj+1
. (19)

Here, the column j in the matrix A is constructed by the given values of
φj(x) at conjunction points Tj , j = 1, .., n which are chosen by the user. If
in (19) we obtain ratio 0/0, then we assign φk

j (x) = 0. We define
additional three points T−2,T−1,T0 at the left side of the input interval as
T−2 = T−1 = T0 = T1, and correspondingly three points Tn+1,Tn+2,Tn+3

on the right side of the interval as Tn = Tn+1 = Tn+2 = Tn+3. All together
we have n + 6 conjunction points Tj , j = 1, ..., n + 6. Number of
bellsplines which can be constructed are n + 2.
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If conjunction points Tj are distributed uniformly, then we can introduce
the mesh size h = Tk+1 − Tk and bellsplines can be written explicitly as

φj(x) =






1
6 t3 if Tj−2 ≤ x ≤ Tj−1, t = 1

h (x − Tj−2),
1
6 + 1

2 (t + t2 − t3) if Tj−1 ≤ x ≤ Tj , t = 1
h (x − Tj−1),

1
6 + 1

2 (t + t2 − t3) if Tj ≤ x ≤ Tj+1, t = 1
h (Tj+1 − x),

1
6 t3 if Tj+1 ≤ x ≤ Tj+2, t = 1

h (Tj+2 − x).

(20)

In the case of uniformly distributed bellsplines we place additional points
at the left side of the input interval as
T0 = T1 − h,T−1 = T1 − 2h,T−2T1 − 3h, and correspondingly on the right
side of the interval as Tn+1 = Tn + h,Tn+2 = Tn + 2h,Tn+3 = Tn + 3h.
Then the function f(x, c) in (10) will be the following linear combination of
n + 2 functions φj(x) for indices j = 0, 1, ..., n + 1:

f(x, c) = c1φ0(x) + c2φ1(x) + ...+ cn+2φn+1(x). (21)

Figure on the next slide shows approximation of a function
b = sin(πx/5) + x/5 on the interval x ∈ [−10, 10] using bellsplines.
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Figure: Polynomial fitting to the function b = sin(πx/5) + x/5 on the interval x ∈ [−10, 10] with different number of

bellsplines. Blue stars represent computed function and red circles - exact one.
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Nonlinear least squares problems

Suppose that for our data points (xi , yi), i = 1, ...,m we want to find
the vector of parameters c = (c1, ..., cn) which will fit best to the
data yi , i = 1, ...,m of the model function f(xi , c), i = 1, ...,m. We
consider the case when the model function f : Rn+1 → R is
nonlinear now. Our goal is to find minimum of the residual
r = y − f(x, c) in the least squares sense:

min
c

m∑

i=1

(yi − f(xi , c))2. (22)
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To solve problem (22) we can still use the linear least squares method if
we can transform the nonlinear function f(x, c) to the linear one. This can
be done if the function f(x, c) can be represented in the form
f(x, c) = A expcx ,A = const . Then taking logarithm of f(x, c) we get:
ln f = lnA + cx, which is already linear function. Then linear least
squares problem after this transformation can be written as

min
c

m∑

i=1

(ln yi − ln f(xi , c))2. (23)
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Another possibility how to deal with nonlinearity is consider the least
squares problem as an optimization problem. Let us define the residual
r : Rn → Rm as

ri(c) = yi − f(xi , c), i = 1, ...,m. (24)

Our goal is now minimize the function

F(c) =
1
2

r(c)T r(c) =
1
2
‖r(c)‖22. (25)

To find minimum of (25) we should have

∇F(c) =
∂F(c)
∂ci

= 0, i = 1, ...,m. (26)

Direct computations show that the gradient vector ∇F(c) is

∇F(c) =
dF
dc

= JT (c)r(c), (27)

where JT is the transposed Jacobian matrix of the residual r(c).
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For a sufficiently smooth function F(c) we can write its Taylor expansion
as

F(c) = F(c0) + ∇F(c0)(c − c0) + O(h2), (28)

with |h| = ‖c − c0‖. Since our goal is to find minimum of F(c), then at a
minimum point c∗ we should have ∇F(c∗) = 0. Taking derivative with
respect to c from (28) we obtain

H(F(c0))(c − c0) + ∇F(c0)
︸  ︷︷  ︸

compare with (27)

= 0, (29)

where H denotes the Hessian matrix of the function F(c0). Using (27) we
also can write

∇F(c0) =
dF
dc

(c0) = JT (c0)r(c0). (30)
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Using (30) in (29) we obtain

H(F(c0))(c − c0) + JT (c0)r(c0) = 0, (31)

and from this expression we observe that we have obtained a system of
linear equations

H(F(c0))(c − c0) = −JT (c0)r(c0) (32)

which can be solved again using linear least squares method. The
Hessian matrix H(F(c0)) can be obtained from (30)

∇F(c0) =
dF
dc

(c0) = JT (c0)r(c0). (33)

as

H(F(c0)) = JT (c0)J(c0) +
m∑

i=1

ri(c0)H(ri), (34)

where H(ri) denotes the Hessian matrix of the residual function ri(c).
These m matrices H(ri) are inconvenient to compute, but since they are
multiplied to the small residuals ri(c0), the second term in (34) is often
very small at the solution c0 and this term can be dropped out.
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Then the system (31) is transformed to the following linear system

JT (c0)J(c0)(c − c0) = −JT (c0)r(c0), (35)

which actually is a system of normal equations for the m × n linear least
squares problem

J(c0)(c − c0) = −r(c0). (36)

The system (35) determines the Gauss-Newton method for the solution
of the least squares problem as an iterative process

ck+1 = ck − [JT (ck )J(ck )]
−1JT (ck )r(ck ), (37)

where k is the number of iteration.
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An alternative to the Gauss-Newton method is Levenberg-Marquardt
method. This method is based on the finding of minimum of the
regularized function

F(c) =
1
2

r(c)T r(c)+
1
2
γ(c−c0)

T (c−c0) =
1
2
‖r(c)‖22+

1
2
γ‖c−c0‖22, (38)

where c0 is a good initial guess for c and γ is a small regularization
parameter. Then we repeat all steps which we have performed for the
obtaining the Gauss-Newton method, see (27)-(34).
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Finally, In the Levenberg-Marquardt method the linear system which
should be solved at every iteration k is

(JT (ck )J(ck ) + γk I)(ck+1 − ck ) = −JT (ck )r(ck ), (39)

and the corresponding linear least squares problem is

[

J(ck )√
γk I

]

· (ck+1 − ck ) ≈
[

−r(ck )
0

]

. (40)
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Example 1

Let us consider the nonlinear model equation

AeE/T−T0 = y. (41)

Our goal is to determine parameters A ,E and T0 in this equation by
knowing y and T . We rewrite (41) as a nonlinear least squares problem
in the form

min
A ,E,T0

m∑

i=1

(yi − AeE/Ti−T0)2. (42)

We will show how to obtain from the nonlinear problem (42) the linear
one. We take logarithm of (41) to get

lnA +
E

T − T0
= ln y. (43)
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Now multiply both sides of (43) by T − T0 to obtain:

lnA(T − T0) + E = ln y(T − T0). (44)

and rewrite the above equation as

T lnA
︸︷︷︸

c2

−T0 lnA + E
︸          ︷︷          ︸

c3

+ T0
︸︷︷︸

c1

ln y = T ln y. (45)

Let now define the vector of parameters c = (c1, c2, c3) with
c1 = T0, c2 = lnA , c3 = E − T0 lnA . Now the problem (45) can be written
as

c1 ln y + c2T + c3 = T ln y, (46)

which is already a linear problem. Now we can rewrite (46) denoting by
f(c, y,T) = c1 ln y + c2T + c3 as a linear least squares problem in the
form

min
c

m∑

i=1

(Ti ln yi − f(c, yi ,Ti))
2. (47)
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The system of linear equations which is needed to be solved is





ln y1 T1 1
ln y2 T2 1
...

...
...

ln ym Tm 1





·





c1

c2

c3




=





T1 ln y1

T2 ln y2
...

Tm ln ym





(48)
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Example 2

Suppose that the nonlinear model function is given as

f(x, c) = Aec1x + Bec2x, A,B = const. > 0, (49)

and our goal is to fit this function using Gauss-Newton method. In other
words, we will use iterative formula (36) for iterative update of
c = (c1, c2). The residual function will be

r(c) = y − f(x, c) = y − Aec1x − Bec2x, (50)

where y = yi , i = 1, ...,m are data points.
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First, we compute Jacobian matrix J(c), where two columns in this matrix
will be given by

J(c)i,1 =
∂ri

∂c1
= −xiAec1xi , i = 1, ...,m,

J(c)i,2 =
∂ri

∂c2
= −xiBec2xi , i = 1, ...,m.

(51)

If we will take initial guess for the parameters c0 = (c0
1 , c

0
2) = (1, 0), then

we have to solve the following problem at iteration k = 1:

J(c0)(c1 − c0) = −r(c0), (52)

and the next update for parameters c1 = (c1
1 , c

1
2) in the Gauss-Newton

method can be computed as

c1 = c0 − [JT (c0)J(c0)]
−1JT (c0)r(c0). (53)
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Here, r(c0) and J(c0) can be computed explicitly as follows:

r(c0) = yi−f(xi , c0) = yi−(Ae1·xi+Be0·xi) = yi−Aexi−B, i = 1, ...,m, (54)

and noting that c0 = (c0
1 , c

0
2) = (1, 0) two columns in the Jacobian matrix

J(c0) will be

J(c0)i,1 = −xiAe1·xi = −xiAexi , i = 1, ...,m,

J(c0)i,2 = −xiBe0·xi = −xiB, i = 1, ...,m.
(55)
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Substituting (54), (55) into (52) yields following linear system of equations





−x1Aex1 −x1B
−x2Aex2 −x2B
...

...

−xmAexm −xmB





·
[

c1
1 − c0

1
c1

2 − c0
2

]

= −





y1 − Aex1 − B

y2 − Aex2 − B
...

ym − Aexm − B





(56)
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which is solved for c1 − c0 using method of normal equations as





−x1Aex1 −x1B
−x2Aex2 −x2B
...

...

−xmAexm −xmB





T

·





−x1Aex1 −x1B
−x2Aex2 −x2B
...

...

−xmAexm −xmB





·
[

c1
1 − c0

1
c1

2 − c0
2

]

= −





−x1Aex1 −x1B
−x2Aex2 −x2B
...

...

−xmAexm −xmB





T

·





y1 − Aex1 − B

y2 − Aex2 − B
...

ym − Aexm − B





(57)

This system can be solved for c1 − c0, and next values c1 are obtained by
using (53).
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