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Statement of an ill-posed problem

Let Ω ⊂ Rn, n = 2, 3 which is a bounded domain with the boundary ∂Ω.
Our goal is to solve a Fredholm integral equation of the first kind∫

Ω
ρ(x, y)z(x)dx = u(y) y ∈ Ω, (1)

where u(y) ∈ L2(Ω), z(x) ∈ H, ρ (x, y) ∈ Ck (Ω × Ω) , k ≥ 0 is the kernel
of the integral equation. We can rewrite (1) in an operator form as

A(z) = u (2)

with an operator A : H → L2(Ω) defined as

A(z) :=

∫
Ω
ρ(x, y)z(x)dx. (3)

The Problem (P).
Let z(x) ∈ H in ∫

Ω
ρ(x, y)z(x)dx = u(y) y ∈ Ω, (4)

be unknown in Ω. Determine z(x) ∈ H for x ∈ Ω assuming that functions
ρ(x, y) ∈ Ck (Ω × Ω) , k ≥ 0 and u(y) ∈ L2(Ω) in (4) are known.
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The Tikhonov functional

Let W1,W2,Q be three Hilbert spaces, Q ⊆ W1 as a set. We denote
scalar products and norms in these spaces as

(·, ·) , ‖·‖ for W1,

(·, ·)2 , ‖·‖2 for W2

and [·, ·] , [·] for Q .

Let A : W1 → W2 be a bounded linear operator. Our goal is to find the
function z ∈ Q which minimizes the Tikhonov functional

Jα (z) =
1
2
‖Az − u‖22 +

α

2
[z]2 , u ∈ W2; z ∈ Q , (5)

where α > 0 is a regularization parameter. We search for a stationary
point of the above functional with respect to z satisfying ∀b ∈ Q

J′α(z)(b) = 0, (6)

where J′α(z) is the Fréchet derivative of the functional (5).
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The Tikhonov functional

When the operator A : L2 → L2 the following Lemma is valid:
Lemma 1a [BKS] Let A : L2 → L2 be a bounded linear operator. Then
the Fréchet derivative of the functional (5) is

J′α (z) (b) = (A ∗Az − A ∗u, b) + α [z, b] ,∀b ∈ Q . (7)

In particular, for the integral operator (4) we have

J′α (z) (b) =

∫
Ω

b (s)


∫
Ω

z (y)


∫
Ω

ρ (x, y) ρ (x, s) dx

 dy −
∫
Ω

ρ (x, s) u (x) dx

 ds

(8)
+α [z, b] ,∀b ∈ Q .

[BKS] A. B. Bakushinsky, M. Y. Kokurin, A. Smirnova, Iterative methods for ill-posed problems, Walter de Gruyter

GmbH&Co., 2011.
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The Tikhonov functional

When the operator A : H1 → L2 the following Lemma is valid:
Lemma 1b [BGN] Let A : H1(Ω)→ L2(Ωκ) be a bounded linear operator.
Then the Fréchet derivative of the functional

Mα(f) =
1
2
‖Af − u‖2L2(Ωκ)

+
α

2
‖ |∇f | ‖2L2(Ω), (9)

is
M′α(f)(b) = (A ∗Af − A ∗u, b) + α(|∇f |, |∇b |), ∀b ∈ H1(Ω), (10)

with a convex growth factor b, i.e., |∇b | < b

[BGN] L. Beilina, G. Guillot, K. Niinimäki„ The Finite Element Method and Balancing Principle for Magnetic Resonance

Imaging, Springer Proceedings in Mathematics and Statistics, vol 328. Springer, Cham (2020).
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Lemma 2 is also well known since A : W1 → W2 is a bounded linear
operator.
Lemma 2 [TGSY] Let the operator A : W1 → W2 be a bounded linear
operator which has the Fréchet derivative of the functional (5). Then the
functional Jα (z) is strongly convex on the space Q and

(J′α (x) − J′α (z) , x − z) ≥ α[x − z]2,∀x, z ∈ Q .

It is known from the theory of convex optimization that Lemma 2 implies
existence and uniqueness of the global minimizer zα ∈ Q of the functional
Jα such that

Jα(zα) = inf
z∈Q

Jα(z).

[TGSY] A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov and A.G. Yagola, Numerical Methods for the Solution of Ill-Posed

Problems, London: Kluwer, London, 1995.
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Balancing principle to find regularization parameter

Mα(f) =
1
2
‖Af − u‖2L2(Ωk ) + α

1
2
‖f‖2H1(Ω) = ϕ(f) + αψ(f). (11)

For the functional (11) the value function F(α) : C→ C is defined as

F(α) = inf
f

Mα(f). (12)

If there exists derivative F ′(α) at α > 0 then from (11) and (12) follows
that

F(α) = inf
f

Mα(f) = ϕ′(f)︸︷︷︸
ϕ̄(α)

+α ψ′(f)︸︷︷︸
ψ̄(α)

. (13)

Since F ′α(α) = ψ′(f) = ψ̄(α) then from (13) we get

ψ̄(α) = F ′(α), ϕ̄(α) = F(α) − αF ′(α). (14)

For the functional (11) balancing principle (or Lepskii) finds α > 0 such
that the following expression is fulfilled

ϕ̄(α) = γαψ̄(α), (15)

K. Ito, B. Jin, Inverse Problems: Tikhonov theory and algorithms, Series on Applied Mathematics, V.22, World Scientific,

2015.
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Balancing principle

When γ = 1 the method is called zero crossing method. The balancing
rule (15) finds optimal α > 0 minimizing the balancing function

Φγ(α) =
F1+γ(α)

α
. (16)

From conditions (14) it follows that

0 = ϕ̄(α) − γαψ̄(α) = F(α) − αF ′(α) − γαF ′(α) = F(α) − αF ′(α)(1 + γ),

which can be rewritten as

F(α) = αF ′(α)(1 + γ). (17)

We can check that the minimum of Φγ(α) is achieved at

0 = (Φγ(α))′α =
(1 + γ)F ′(α)Fγ(α)α − F1+γ(α)

α2
.

From the above equation we get

(1 + γ)F ′(α)Fγ(α)α = F1+γ(α)→ (1 + γ)F ′(α)α = F(α).

This equation is the same as the equation (17) which gives the balancing
principle.
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Fixed point algorithm: constant value of alpha

Step 0. Start with the initial approximations α0 and compute
the sequence of αk in the following steps.

Step 1. Compute the value function F(αk ) = inf f Mαk (f) for
(11) and get reconstruction fαk .

Step 2. Update the regularization parameter α := αk+1 as

αk+1 =
‖ϕ̄(αk )‖2

‖ψ̄(αk )‖2

Step 3. Choose tolerance 0 < θ < 1. Stop computing
regularization parameters αk if computed αk are stabilized,
i.e., if |αk − αk−1| ≤ θ. Otherwise, set k := k + 1 and go to
Step 1.
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Fixed point algorithm: vector of parameters alpha

Step 0. Start with the initial approximations α0 and compute
the sequence of αk in the following steps.

Step 1. Compute the value function F(αk ) = inf f Mαk (f) for
(11) and get reconstruction fαk .

Step 2. Update the regularization vector of parameters
α := αk+1 as

αk+1 =
ϕ̄(αk )

ψ̄(αk )

Step 3. Choose tolerance 0 < θ < 1. Stop computing
regularization parameters αk if computed αk are stabilized.
Otherwise, set k := k + 1 and go to Step 1.
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Microwave medical imaging in monitoring of hyperthermia

Joint work with the group of Biomedical Imaging at the Department of Electrical Engineering at CTH, Chalmers.

Microwave hyperthermia is used for cancer therapies: it increases the tumour temperature to 40 − 44◦C keeping
healthy tissue at the normal temperature.

Thermal dose monitoring is critical for treatment. Thus, robust real-time methods for localization of the focal point
in the target are needed.

AFEM with combination of least squares method is applied in microwave thermometry for non-invasive monitoring
of hyperthermia [1].

[1] M. G. Aram, L. Beilina, H. Dobsicek Trefna, Microwave Thermometry with Potential Application in Non-invasive
Monitoring of Hyperthermia, Journal of Inverse and Ill-posed problems, https://doi.org/10.1515/jiip-2020-0102,
2020.
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CIP for electromagnetic problems. Maxwell’s equations

Consider a region of space that has no electric or magnetic current
sources, but may have materials that absorb electric or magnetic field
energy. Then, using MKS units, the time-dependent Maxwell’s equations
are given in differential and integral form by Faraday′s law :

∂B
∂t

= −∇ × E −M (18a)

∂

∂t

"
A

B · dA = −

∮
L

E · dL −
"
A

M · dA (18b)

The MKS system of units is a physical system of units that expresses any given measurement using fundamental units of

the metre, kilogram, and/or second (MKS))

A. Taflove, S. C. Hagness, Computational Electromagnetics. The finite-difference time-domain method, 3rd edition, Artech

House Publishers, 2005.
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Maxwell’s equations

Ampere′s law :

∂D
∂t

= ∇ × H − J (19a)

∂

∂t

"
A

D · dA =

∮
L

H · dL −
"
A

J · dA (19b)

Gauss′ law for the electric field :

∇ · D = 0 (20a)	
A

D · dA = 0 (20b)

Gauss′ law for the magnetic field :

∇ · B = 0 (21a)	
A

B · dA = 0 (21b)
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Maxwell’s equations

In (18) to (21), the following symbols (and their MKS units) are defined:
E : electric field (volts/meter)
D : electric flux density (coulombs/meter2)
H : magnetic field (amperes/meter)
B : magnetic flux density (webers/meter2)
A : arbitrary three-dimensional surface
dA : differential normal vector that characterizes surface A (meter2)
L : closed contour that bounds surface A (volts/meter)
dL : differential length vector that characterizes contour L (meters)
J : electric current density (amperes/meter2)
M : equivalent magnetic current density (volts/meter2)

www.math.chalmers.se/∼larisa Comp. Lab. 1



Maxwell’s equations

In linear, isotropic, nondispersive materials (i.e. materials having
field-independent, direction-independent, and frequency-independent
electric and magnetic properties), we can relate D to E and B to H using
simple proportions:

D = εE = εrε0E; B = µH = µrµ0H (22)

where

ε : electrical permittivity (farads/meter)
εr : relative permittivity (dimensionless scalar)
ε0 : free-space permittivity (8.854 × 10−12 farads/meter)
µ : magnetic permeability (henrys/meter)
µr : relative permeability (dimensionless scalar)
µ0 : free-space permeability (4π × 10−7 henrys/meter)

Note that J and M can act as independent sources of E- and H-field
energy, Jsource and Msource .
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Maxwell’s equations

We also allow for materials with isotropic, nondispersive electric and
magnetic losses that attenuate E- and H-fields via conversion to heat
energy. This yields

J = Jsource + σE; M = Msource + σ∗H (23)

where
σ : electric conductivity (siemens/meter)
σ∗ : equivalent magnetic loss (ohms/meter)

Finally, we substitute (22) and (23) into (18a) and (19a). This yields
Maxwell’s curl equations in linear, isotropic, nondispersive, lossy
materials:

∂H
∂t

= −
1
µ
∇ × E −

1
µ

(Msource + σ∗H) (24)

∂E
∂t

=
1
ε
∇ × H −

1
ε

(Jsource + σE) (25)
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CIPs for electric wave propagation

Write now Maxwell’s curl equations in linear, isotropic, nondispersive,
lossy materials with σ∗ = 0,Msource = 0:

∂H
∂t

= −
1
µ
∇ × E (26)

∂E
∂t

=
1
ε
∇ × H −

1
ε
σE −

1
ε

Jsource (27)

Taking now
∂

∂t
from (27) and multiplying by ε, and then taking ∇× from

(26), we have:

∇ ×
∂H
∂t

= −∇ ×
1
µ
∇ × E (28)

ε
∂2E
∂t2

=
∂

∂t
∇ × H − σ

∂

∂t
E −

∂

∂t
Jsource (29)
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CIPs for electric wave propagation

Substitude the right hand side of (28) into (29) instead of
∂

∂t
∇ × H to

obtain Maxwell’s equations for electric field E = (E1,E2,E3). Let us
consider now Cauchy problem for the Maxwell’s equations for electric
field E in the domain ΩT = Ω × [0,T ]:

ε
∂2E
∂t2

+ ∇ ×
1
µ
∇ × E = −σ

∂

∂t
E −

∂

∂t
Jsource in ΩT ,

∇ · (εE) = 0,

E(x, 0) = f0(x), Et(x, 0) = f1(x) in Ω,

(30)

Let Ω ⊂ R3 be a convex bounded domain with the boundary
∂Ω ∈ C3 and specify time variable t ∈ [0,T ]. Next, we supply the
Cauchy problem by the appropriate b.c.

ε(x) and σ(x) are dielectric permittivity and electric conductivity
functions, respectively of the domain Ω. In (30),
ε(x) = εr (x)ε0, µ = µrµ0 and σ(x) are dielectric permittivity,
permeability and electric conductivity functions, respectively, ε0, µ0

are dielectric permittivity and permeability of free space,
respectively.

Different CIPs for time-dependent electric wave equation (30) can be
formulated.
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CIPs for electric wave propagation

Ω

E(x, t) = g(x, t) on ∂Ω

εr (x) =?

σ = 0, µr = 1

Ω

E(x, t) = g(x, t) on ∂Ω

εr (x) =?
σ(x) =?

µr ≈ 1

Inverse Problem (EIP1) Determine the relative dielectric permittivity
function εr (x) in Ω for x ∈ Ω in nonconductive (σ(x) = 0) and
nonmagnetic (µr = 1) media when the measured function g(x, t) s.t.

E (x, t) = g(x, t),∀ (x, t) ∈ ∂Ω × (0,T ].

is known in Ω.
Inverse Problem (EIP2) Determine the functions ε(x), σ(x) in Ω for
x ∈ Ω for µr ≈ 1 in water assuming that g(x, t) is known in ∂Ω × (0,T ] .
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Maxwell’s equations in frequency domain

Assuming E(x, t) = Ê(x, ω) · e−iωt and Jsource = Ĵ(x, ω) · e−iωt and
applying this to (30) with µr = 1 we obtain the following vector wave
equation:

∇ × ∇ × Ê(x, ω) − ω2
(
εr (x)

c2
+ iµ0

σ(x)

ω

)
Ê(x, ω) = iωµ0Ĵ(x, ω). (31)

We introduce the spatially distributed complex dielectric function ε′(x):

ε′(x) = εr (x)
1
c2

+ iµ0
σ(x)

ω
, (32)

where ω is the angular frequency. Then the equation (31) transforms to
the equation

∇ × ∇ × Ê(x, ω) − ω2ε′(x)Ê(x, ω) = iωµ0Ĵ(x, ω). (33)

which should be supplied by appropriate boundary conditions.
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Applying ∇ × ∇ × Ê = ∇(∇ · Ê) − ∇ · (∇Ê) and in case of
E(x, t) = Ê(x, ω) · e iωt we obtain inhomogeneous Helmholtz equation

4Ê + k 2Ê = iωµ0Ĵ, (34)

where k 2 = ω2ε′. This equation can be rewritten for the solution
Ê = E(r) in cylindrical coordinates and in transverse electric (TE) mode
as a Bessel equation (

1
r
∂

∂r
(r
∂

∂r
) + k 2

)
E = iωµ0J. (35)

The general solution to this equation is in the form

E(r) = AJ0(kr) + BN0(kr), (36)

where Jo and N0 are zero-order Bessel’s functions of the first and second
order, respectively. The time-harmonic solution of the equation (35) is
given by

E(r , ω) := E(r) = −
ωµr

4

∫
S

JH(2)
0 (kR) dS, (37)

for a generalized source initialized at r0 and R = |r − r0 | =
√

r2 + r02 − 2rr0cos(ϕ − ϕ0).

[BE] L. Beilina and A. Eriksson, Reconstruction of dielectric constants in a cylindrical waveguide, Inverse Problems and

Applications, Springer Proceedings in Mathematics & Statistics, Vol. 120, 2015.
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Microwave Imaging: Differential Image Reconstruction

Let we have a bi-static pair (i, j) of antennas located on the scan line Γ,
i.e. ri, rj ∈ Γ.
Using Lorentz reciprocity theorem and under Born approximation, the
scattered electric field between the pair of antennas at angular frequency
of ω can be written as

Es
ji ' iωµ0k 2

b I(ω)

∫
Ω

G(rj, r′, ω) · ε′(r′, ω)G(ri, r′, ω)dv ′ (38)

where Ω is the imaging domain, I(ω) is the excitation current of the
transmitter, kb is the lossless background wavenumber, G is the dyadic
Green’s function and ε′ is defined as in (32).

Next, scattered fields Es
ji are replaced with their corresponding

S-parameters, as well as input power and characteristic impedance of
the ports. Then (38) is transformed to the equation

Ssca
ji (ω) ' C

∫
Ω

ECST
inc,j (r′, ω) ·∆O(r′, ω)ECST

inc,i (r′, ω)dv ′ (39)

where C = −k 2
b /(4iωµ) and ECST

inc,i is the exported E-field from CST under
irradiation of the ith antenna. Here, ∆O = ε′(r) − ε′b(r), ε′b(r) is baseline.
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Microwave Imaging: Differential Image Reconstruction

Equation (39) is the standard Fredholm integral equation of the first kind,
and thus, it is an ill-posed problem. It can be solved for an linear operator
A by minimizing the Tikhonov regularization functional

F(ε′) =
1
2

∥∥∥Aε′ − d
∥∥∥2

L2(Ω)
+
λ

2

∥∥∥ε′∥∥∥2
L2(Ω)

. (40)

where d = Ssca , λ is the regularization parameter. The optimal value will
be:

F ′(ε′) = A ∗Aε′ − A ∗d + λε′ = 0. (41)

Discretizing operator A , we get the matrix A and the problem (41) will be
rewritten as the system of normal equations

ε′ = (AT A + λI)−1AT d. (42)

Applying SVD of A = UΣVT in we get the equation to reconstruct ε′ :

ε′ = V(Σ2 + λI)−1ΣUT d. (43)
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Microwave Imaging: Differential Image Reconstruction

Applying SVD of A = UΣVT in we get the equation to reconstruct ε′ :

ε′ = V(Σ2 + λI)−1ΣUT d. (44)

Proof: Since A = UΣVT then AT = (UΣVT )T = VΣUT , then equation
(25) can be written as:

ε′ = (AT A+λI)−1AT d = (VΣUT UΣVT +λI)−1VΣUT d = V(Σ2+λI)−1ΣUT d.
(45)
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Reconstruction of heated target

Microwave imaging for breast cancer detection. Top left: setup of the representation and actual photograph of the data
acquisition platform for breast cancer detection used at CTH and Medfield Diagnostics AB: Assembled antenna hardware.
Top right: schematic 3-D representation of 16 monopole antennas in a matching liquid tank, in
CST(http://www.cst.com); Bottom left: Return loss S11 of the designed antenna for the frequency band 915 MHz.
Bottom right: permittivity and conductivity of the target as it starts to cool down from 55◦C to 29◦C over a ten-minute
window of time.
.
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Reconstruction of heated target: least squares solution

Geometry with nno = 40 × 42 × 26 = 43680.
Solution is obtained via the formula

ε′ = (AT A+λI)−1AT d = (VΣUT UΣVT +λI)−1VΣUT d = V(Σ2+λI)−1ΣUT d

with λ = 1.

-0.02 0 0.02 0.04

x

0

0.05

z

-0.02 0 0.02 0.04

x

0

0.05

z

-0.02 0 0.02 0.04

x

0

0.05

z

-0.02 0 0.02 0.04

x

0

0.05

z

-0.02 0 0.02 0.04

x

0

0.05

z

www.math.chalmers.se/∼larisa Comp. Lab. 1



Reconstruction: Least Squares + AFEM, xy-plane

t = 2 min

t = 4 min
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Reconstruction: Least Squares + AFEM, xy plane

t = 8 min

t = 10 min
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Reconstruction: Least Squares + AFEM, zx plane

t = 2 min

t = 8 min

t = 10 min

www.math.chalmers.se/∼larisa Comp. Lab. 1



Convergence of fixed point algorithm and AFEM
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Figure: Left figures: convergence of fixed point algorithm. Here, l is the number of mesh refinement. Right figures:

convergence of AFEM on adaptive locally refined meshes.
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