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Statement of an ill-posed problem

Let Q c R", n = 2,3 which is a bounded domain with the boundary 4.
Our goal is to solve a Fredholm integral equation of the first kind

[ xenztodk = uw) yeo. (1)

where u(y) € Lo(Q), z(x) € H, p(x,y) € CK (2 x Q) ,k > 0 is the kernel
of the integral equation. We can rewrite (1) in an operator form as

A(z)=u )
with an operator A : H — L,(2) defined as
A = , ax. 3
@) = [ pley)ztxor @
The Problem (P).
Let z(x) € Hin
L PLoy)z(x)ax = uly) y e, )

be unknown in Q. Determine z(x) € H for x € Q assuming that functions
p(x,y) € CK(QxQ),k =0 and u(y) € Lo(Q) in (4) are known.
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The Tikhonov functional

Let W;,Wa, Q be three Hilbert spaces, Q € W, as a set. We denote
scalar products and norms in these spaces as

(', ') ) ““ for W1 s

('7 ')2 s ““2 for W2
and [,],[] for Q.

Let A : W; — W, be a bounded linear operator. Our goal is to find the
function z € Q which minimizes the Tikhonov functional

1
Jo (2) = 5 1Az = Ul + g [22.ue WazeQ, (5)

where a > 0 is a regularization parameter. We search for a stationary
point of the above functional with respect to z satisfying Vb € Q

J,(2)(b) =0, (6)
where J/,(z) is the Fréchet derivative of the functional (5).
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The Tikhonov functional

When the operator A : L, — L the following Lemma is valid:

Lemma 1a [BKS] Let A : L, — L, be a bounded linear operator. Then
the Fréchet derivative of the functional (5) is

J, (2) (b) = (A*Az — A*u,b) + a[z,b],Vb € Q. (7)

In particular, for the integral operator (4) we have

J. (2)(b) = fb fz(y [fp(x,y)p(x,s)dx]dy—fp(x,s)u(x)dx}ds
Q

Q
(8)

+alz,b],¥b € Q.

[BKS] A. B. Bakushinsky, M. Y. Kokurin, A. Smirnova, lterative methods for ill-posed problems, Walter de Gruyter
GmbH&Co., 2011.
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The Tikhonov functional

When the operator A : H' — L, the following Lemma is valid:
Lemma 1b [BGN] Let A : H'(Q) — L»(£,) be a bounded linear operator.
Then the Fréchet derivative of the functional

1
Mao(f) = 3 IAF = Ul ) + S 11111 (g, 9)

M. (f)(b) = (A*Af — A*u,b) + a(|V1|,|Vb]), Vb € H‘(Q), (10)
with a convex growth factor b, i.e., [Vb| < b

[BGN] L. Beilina, G. Guillot, K. Niinimaki, The Finite Element Method and Balancing Principle for Magnetic Resonance

Imaging, Springer Proceedings in Mathematics and Statistics, vol 328. Springer, Cham (2020).
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Lemma 2 is also well known since A : W; — W, is a bounded linear
operator.

Lemma 2 [TGSY] Let the operator A : Wy — W, be a bounded linear
operator which has the Fréchet derivative of the functional (5). Then the
functional J, (z) is strongly convex on the space Q and

(J,(x)=J,(2).x-2) = a[x - 2], ¥x,z € Q.

It is known from the theory of convex optimization that Lemma 2 implies
existence and uniqueness of the global minimizer z, € Q of the functional
Jo such that
Jo(2o) = inf Jo(2).
zeQ

[TGSY] A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov and A.G. Yagola, Numerical Methods for the Solution of lll-Posed

Problems, London: Kluwer, London, 1995.
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Balancing principle to find regularization parameter

1 1
Ma(f) = 5 IAf = ullfq,) + a5 1Al ) = ¢(F) +ay(f). (1)
For the functional (11) the value function F(a) : C — C is defined as

F(a) = inf My(f). (12)

If there exists derivative F’(a) at a > 0 then from (11) and (12) follows
that

F(a) = ir}f M, (f) = gﬁ;’(/f_)/—i—aw. (13)
#(a) ¥(a)
Since F,(a) = ¥/(f) = y(a) then from (13) we get
(@) = F'(a), @(a)=F(a)-aF(a). (14)

For the functional (11) balancing principle (or Lepskii) finds a > 0 such
that the following expression is fulfilled

#(a) = yay(a), (15)

K. Ito, B. Jin, Inverse Problems: Tikhonov theory and algorithms, Series on Applied Mathematics, V.22, World Scientific,

2015.
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Balancing principle

When y = 1 the method is called zero crossing method. The balancing
rule (15) finds optimal @ > 0 minimizing the balancing function

Fi+y
o) = @) (16)

From conditions (14) it follows that
0 =@(a) - yay(a) = F(a) - aF'(a) - yaF'(a) = F(a) - aF'(a)(1 + ),
which can be rewritten as

F(a) = aF'(a)(1 + 7). (17)
We can check that the minimum of ¢, () is achieved at

(1 +y)F (a)F () - F1+7(a)'

0 = (®)(a));, =
From the above equation we get
(1 +y)F()F (a)a = F"7(a) = (1 +y)F'(a)a = F(a).

This equation is the same as the equation (17) which gives the balancing
principle.

www.math.chalmers.se/~larisa Comp. Lab. 1



Fixed point algorithm: constant value of alpha

@ Step 0. Start with the initial approximations ay and compute
the sequence of a in the following steps.

@ Step 1. Compute the value function F(ak) = infs My, (f) for
(11) and get reconstruction f,, .
@ Step 2. Update the regularization parameter « := a1 as

llg(ak)ll2

Il (ak)ll2

@ Step 3. Choose tolerance 0 < 6 < 1. Stop computing
regularization parameters ay if computed ak are stabilized,
i.e., if lax — ak—1] < 0. Otherwise, set k := k + 1 and go to
Step 1.
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Fixed point algorithm: vector of parameters alpha

@ Step 0. Start with the initial approximations a¢ and compute
the sequence of « in the following steps.

@ Step 1. Compute the value function F(ak) = infs My, (f) for
(11) and get reconstruction f,, .

@ Step 2. Update the regularization vector of parameters
@ = ak41 AS

A1 = Sz(ak)

v (ak)

@ Step 3. Choose tolerance 0 < 6 < 1. Stop computing
regularization parameters « if computed ay are stabilized.
Otherwise, set k := k + 1 and go to Step 1.
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Joint work with the group of Biomedical Imaging at the Department of Electrical Engineering at CTH, Chalmers.

Microwave hyperthermia is used for cancer therapies: it increases the tumour temperature to 40 — 44° C keeping
healthy tissue at the normal temperature.

Thermal dose monitoring is critical for treatment. Thus, robust real-time methods for localization of the focal point
in the target are needed.

AFEM with combination of least squares method is applied in microwave thermometry for non-invasive monitoring
of hyperthermia [1].

[1]1 M. G. Aram, L. Beilina, H. Dobsicek Trefna, Microwave Thermometry with Potential Application in Non-invasive

Monitoring of Hyperthermia, Journal of Inverse and lll-posed problems, https://doi.org/10.1515/jiip-2020-0102,
2020.
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CIP for electromagnetic problems. Maxwell’'s equations

Consider a region of space that has no electric or magnetic current
sources, but may have materials that absorb electric or magnetic field
energy. Then, using MKS units, the time-dependent Maxwell’s equations
are given in differential and integral form by Faraday’s law :

0B

a—:—VxE—M (18a)

0

a_:lfg.dA_égE.dL_[fMdA (18b)

The MKS system of units is a physical system of units that expresses any given measurement using fundamental units of

the metre, kilogram, and/or second (MKS))

A. Taflove, S. C. Hagness, Computational Electromagnetics. The finite-difference time-domain method, 3rd edition, Artech

House Publishers, 2005.
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Maxwell's equations

Ampere’s law :

% =VxH-J (19a)
a%ffD-dA:9€H~dL—ffJ~dA (19b)
A L A
Gauss’ law for the electric field :
vV-D=0 (20a)
# D-dA=0 (20b)
A
Gauss’ law for the magnetic field :
V-B=0 (21a)
995 B-dA=0 (21b)
A
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Maxwell's equations

In (18) to (21), the following symbols (and their MKS units) are defined:
: electric field (volts/meter)

electric flux density (coulombs/meter?)

magnetic field (amperes/meter)

magnetic flux density (webers/meter?)

arbitrary three-dimensional surface

differential normal vector that characterizes surface A (meter?)
closed contour that bounds surface A (volts/meter)

differential length vector that characterizes contour L (meters)
electric current density (amperes/meter?)

equivalent magnetic current density (volts/meter?)

>

Tcarge>mIOom
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Maxwell's equations

In linear, isotropic, nondispersive materials (i.e. materials having
field-independent, direction-independent, and frequency-independent
electric and magnetic properties), we can relate D to E and B to H using
simple proportions:

D =¢E =¢5E;, B=uH=puuH (22)
e . electrical permittivity (farads/meter)
g : relative permittivity (dimensionless scalar)
gy : free-space permittivity (8.854 x 1072 farads/meter)
where . .
magnetic permeability (henrys/meter)
ur . relative permeability (dimensionless scalar)
o : free-space permeability (47 x 107 henrys/meter)

Note that J and M can act as independent sources of E- and H-field
energy, Jsource @aNd Mgource-
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Maxwell's equations

We also allow for materials with isotropic, nondispersive electric and
magnetic losses that attenuate E- and H-fields via conversion to heat
energy. This yields

J =Jsource + 0E; M = Mgoyce +0"H (23)
o . electric conductivity (siemens/meter)
where . ;

o equivalent magnetic loss (ohms/meter)

Finally, we substitute (22) and (23) into (18a) and (19a). This yields
Maxwell’s curl equations in linear, isotropic, nondispersive, lossy

materials: oH ’ ’
E — —;V X E — /—l (Msource + O'*H) (24)

OE 1 1
E = EV xH - g (Jsource + U'E) (25)
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CIPs for electric wave propagation

Write now Maxwell’s curl equations in linear, isotropic, nondispersive,
lossy materials with o = 0, Mgource = O:

oH 1

— =—--VXxE 26

T i (26)
O0E 1 1 1
- = —VXH-—-0E - —Jsource (27)
ot ¢ € P>

Taking now % from (27) and multiplying by &, and then taking Vx from
(26), we have:

oH 1
Vx — =-Vx-VxE (28)
ot H
PE 9 . 0
sw = EV X H- O-EE - EJsource (29)
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CIPs for electric wave propagation

0
Substitude the right hand side of (28) into (29) instead of EV x H to

obtain Maxwell’s equations for electric field E = (E;, E, E3). Let us
consider now Cauchy problem for the Maxwell’'s equations for electric
field E in the domain Qr = Q x [0, T]:
azE 1 0 0 ,
6t2 + VX V XE = _‘TEE thou,ce in Qr,
V -(eE) =0,
E(x,0) = fo(x), E(x,0) =fi(x)in Q,

@ Let Q c R® be a convex bounded domain with the boundary
05 € C® and specify time variable t € [0, T]. Next, we supply the
Cauchy problem by the appropriate b.c.

@ ¢(x) and o(x) are dielectric permittivity and electric conductivity
functions, respectively of the domain €. In (30),
&(x) = &r(x)eo, 1t = prpo and o(x) are dielectric permittivity,
permeability and electric conductivity functions, respectively, &g, uo
are dielectric permittivity and permeability of free space,

respectively.
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CIPs for electric wave propagation

Q Q
&r(x) =2
er(x) =7 o(x) =7
o=0,u =1 ur =~ 1
E(x,t) = g(x,t) on 9Q E(x,t) = g(x,t) on 9Q

Inverse Problem (EIP1) Determine the relative dielectric permittivity
function &.(x) in Q for x € Q in nonconductive (o-(x) = 0) and
nonmagnetic (1, = 1) media when the measured function g(x, t) s.t.

E(x,t) =g(x,t),¥Y(x,t) € Q2 x (0, T].
is known in Q.

Inverse Problem (EIP2) Determine the functions €(x), o(x) in Q for
x € Q for u, ~ 1 in water assuming that g(x, t) is known in 9Q x (0, T].
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Maxwell’s equations in frequency domain

Assuming E(x,t) = ’E\(X, a)) . et and Jeource :’j(x’ a)) .e~“t and
applying this to (30) with u, = 1 we obtain the following vector wave
equation:

VXVXE(X,w)—wz(

We introduce the spatially distributed complex dielectric function &’(x):

£00 = er() 5 + 0 T, (32)

where w is the angular frequency. Then the equation (31) transforms to
the equation

V X V X E(X,w) — & (X)E(X, 0) = iwpod(X, w). (33)

which should be supplied by appropriate boundary conditions.
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Applying Vx V x E = V(V- E) -V (VE) and in case of
E(x,t) = E(x, w) - €“! we obtain inhomogeneous Helmholtz equation
AE + k%E = iwpoj, (34)

where k? = w?¢’. This equation can be rewritten for the solution
E = E(r) in cylindrical coordinates and in transverse electric (TE) mode
as a Bessel equation

19, 0 5 ,
The general solution to this equation is in the form
E(r) = Ado(kr) + BNo(kr), (36)

where J, and Ny are zero-order Bessel'’s functions of the first and second
order, respectively. The time-harmonic solution of the equation (35) is
given by

w

i" f JHP (kR) dsS, (37)
S

for a generalized source initialized at ry and R = |r — ro| = +/r2 + rp2 — 2rrgcos(¢ — ¢p)-

[BE] L. Beilina and A. Eriksson, Reconstruction of dielectric constants in a cylindrical waveguide, Inverse Problems and

E(r,w) :=E(r)=-

Applications, Springer Proceedings in Mathematics & Statistics, Vol. 120, 2015.
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Microwave Imaging: Differential Image Reconstruction

Let we have a bi-static pair (i, j) of antennas located on the scan line T,
i.e.r, rer.

Using Lorentz reciprocity theorem and under Born approximation, the
scattered electric field between the pair of antennas at angular frequency
of w can be written as

ES = iwpok? l(w) fQG(rj, r w) €, w)G(nr, w)av (38)

where Q is the imaging domain, /(w) is the excitation current of the
transmitter, k; is the lossless background wavenumber, G is the dyadic
Green’s function and &’ is defined as in (32).

Next, scattered fields Ej'?; are replaced with their corresponding
S-parameters, as well as input power and characteristic impedance of
the ports. Then (38) is transformed to the equation

inc. ] inc,i

§;%(w)~C f ESST(V, w) - AO(F, w)ESST(F, w)dv’ (39)

where C = —kZ2/(4iwy) and ESST is the exported E-field from CST under

inc,i
irradiation of the i antenna. Here, AO = ¢'(r) — &, (r), &, () is baseline.
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Microwave Imaging: Differential Image Reconstruction

Equation (39) is the standard Fredholm integral equation of the first kind,
and thus, it is an ill-posed problem. It can be solved for an linear operator
A by minimizing the Tikhonov regularization functional

’ 1 ’ 2 /l ’ 2
F(e') = 3 |Ae - d||L2(Q) + 5 1l - (40)
where d = S°%, 1 is the regularization parameter. The optimal value will
be:
F'(&)=A"Ae — A"d + 1’ = 0. (41)

Discretizing operator A, we get the matrix A and the problem (41) will be
rewritten as the system of normal equations

g =(ATA+A)'ATd. (42)
Applying SVD of A = UZ VT in we get the equation to reconstruct &’ :

g=VX2+a) U d (43)
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Microwave Imaging: Differential Image Reconstruction

Applying SVD of A = UZVT in we get the equation to reconstruct & :

g =V(EZ2+a)"'zu"d (44)

Proof: Since A = ULV then AT = (UZVT)T = VZ U, then equation
(25) can be written as:

g = (ATA+AN'ATd = (VEUTUZVT+a)'vEUTd = V(2242 U  d.
(45)
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Microwave imaging for breast cancer detection. Top left: setup of the representation and actual photograph of the data
acquisition platform for breast cancer detection used at CTH and Medfield Diagnostics AB: Assembled antenna hardware.
Top right: schematic 3-D representation of 16 monopole antennas in a matching liquid tank, in
CST(http://www.cst.com); Bottom left: Return loss Sy1 of the designed antenna for the frequency band 915 MHz.
Bottom right: permittivity and conductivity of the target as it starts to cool down from 55° C to 29° C over a ten-minute
window of time.



http://www.cst.com

Reconstruction of heated target: least squares solution

Geometry with nno = 40 x 42 x 26 = 43680.
Solution is obtained via the formula

g = (ATA+AN'ATd = (VZUTUZVT+a)'vEUTd = V(Z2+a)'sU"d
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Reconstruction: Least Squares + AFEM, xy-plane

t=2min

t =4 min

www.math.chalmers.se/~larisa Comp. Lab. 1



Reconstruction: Least Squares + AFEM, xy plane
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Reconstruction: Least Squares + AFEM, zx plane

t=2min

t=8 min

a a8

t =10 min
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gence of fixed point algorithm and AFEM
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Figure: Left figures: convergence of fixed point algorithm. Here, I is the number of mesh refinement. Right figures
convergence of AFEM on adaptive locally refined meshes.
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