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Regularization

To solve ill-posed problems, regularization methods should be used. In
this section we present main ideas of the regularization.
Definition Let B1 and B2 be two Banach spaces and G ⊂ B1 be a set.
Let the operator F : G → B2 be one-to-one. Consider the equation

F (x) = y. (1)

Let y∗ be the ideal noiseless right hand side of equation (2) and x∗ be the
ideal noiseless solution corresponding to y∗,F (x∗) = y∗. For every
δ ∈ (0, δ0) , δ0 ∈ (0, 1) denote

Kδ (y∗) =
{
z ∈ B2 : ‖z − y∗‖B2

≤ δ
}
.
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Regularization
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Let α > 0 be a parameter and Rα : Kδ0 (y∗)→ G be a continuous
operator depending on the parameter α. The operator Rα is called the
regularization operator for

F (x) = y (2)

if there exists a function α (δ) defined for δ ∈ (0, δ0) such that

lim
δ→0

∥∥∥Rα(δ) (yδ) − x∗
∥∥∥

B1
= 0.
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Regularization

The parameter α is called the regularization parameter. The procedure of
constructing the approximate solution xα(δ) = Rα(δ) (yδ) is called the
regularization procedure, or simply regularization.
There might be several regularization procedures for the same problem.
In the case of CIPs, usually α (δ) is a vector of regularization parameters,
such as, e.g. the number of iterations, the truncation value of the
parameter of the Laplace transform, the number of finite elements, etc..
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The Tikhonov Regularization Functional

Let B1 and B2 be two Banach spaces. Let Q be another space, Q ⊂ B1

as a set and Q = B1. In addition, we assume that Q is compactly
embedded in B1. Let G ⊂ B1 be the closure of an open set. Consider a
continuous one-to-one operator F : G → B2. Our goal is to solve

F (x) = y, x ∈ G. (3)

Let y∗ be the ideal noiseless right hand side corresponding to the ideal
exact solution x∗,

F (x∗) = y∗, ‖y − y∗‖B2
< δ. (4)

To find an approximate solution of equation (3), we minimize the
Tikhonov regularization functional Jα (x) ,

Jα (x) =
1
2

∥∥∥F(x) − y
∥∥∥2

B2
+
α

2
ψ(x) = ϕ(x) +

α

2
ψ(x), (5)

Jα : G → R,

where α = α (δ) > 0 is a small regularization parameter.
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Different regularization terms

The regularization term α
2ψ(x) encodes a priori available

information about the unknown solution such that sparcity,
smoothness, monotonicity

Regularization term can be chosen as follows:
α
2 ‖x‖

p
Lp , 1 ≤ p ≤ 2

α
2 ‖x‖TV , TV means total variation, ‖x‖TV =

∫
G ‖∇x‖2dx

α
2 ‖x‖BV , BV means bounded variation, a real-valued function
whose TV is bounded (finite).
α
2 ‖x‖H1

α
2 (‖x‖L1 + ‖x‖2L2 )
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The Tikhonov Regularization Functional

We will consider the Tikhonov regularization functional Jα (x) in the form

Jα (x) =
1
2

∥∥∥F(x) − y
∥∥∥2

B2
+
α

2
‖x − x0‖

2
Q , x0 ∈ G (6)

Usually x0 is a good first approximation for the exact solution x∗, it is
sometimes called the first guess or the first approximation.

The term α ‖x − x0‖
2
Q is called the Tikhonov regularization term or

simply the regularization term.

Consider a sequence {δk }
∞
k=1 such that δk > 0, limk→∞ δk = 0. Our

goal is to construct sequences
{
α (δk )

}
,
{
xα(δk )

}
in a stable way such

that
lim

k→∞

∥∥∥xα(δk ) − x∗
∥∥∥

B1
= 0.
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The Tikhonov Regularization Functional

Using (4) and (6), we obtain

Jα (x∗) =
1
2

∥∥∥F(x∗) − y
∥∥∥2

B2
+
α

2
‖x∗ − x0‖

2
Q (7)

≤
δ2

2
+
α

2
‖x∗ − x0‖

2
Q . (8)

Let
mα(δk ) = inf

G
Jα(δk ) (x) .

By (8)

mα(δk ) ≤
δ2

k

2
+
α (δk )

2
‖x∗ − x0‖

2
Q .

Hence, there exists a point xα(δk ) ∈ G such that

mα(δk ) ≤ Jα(δk )

(
xα(δk )

)
≤
δ2

k

2
+
α (δk )

2
‖x∗ − x0‖

2
Q . (9)
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The Tikhonov Regularization Functional

Hence, by (6) and (9)

1
2

∥∥∥F(xα(δk )) − y
∥∥∥2

B2
+
α (δk )

2

∥∥∥xα(δk ) − x0

∥∥∥2
Q = Jα

(
xα(δk )

)
(10)

and thus,

1
α (δk )

∥∥∥F(xα(δk )) − y
∥∥∥2

B2
+

∥∥∥xα(δk ) − x0

∥∥∥2
Q =

2
α (δk )

Jα
(
xα(δk )

)
,

or

1
α (δk )

∥∥∥F(xα(δk )) − y
∥∥∥2

B2
≤

2
α (δk )

Jα
(
xα(δk )

)
and∥∥∥xα(δk ) − x0

∥∥∥2
Q ≤

2
α (δk )

Jα
(
xα(δk )

)
≤

2
α (δk )

·

δ2
k

2
+
α (δk )

2
‖x∗ − x0‖

2
Q

 .
(11)
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The Tikhonov Regularization Functional

From (11) follows that

∥∥∥xα(δk ) − x0

∥∥∥2
Q ≤

δ2
k

α (δk )
+ ‖x∗ − x0‖

2
Q . (12)

Suppose that

lim
k→∞

α (δk ) = 0 and lim
k→∞

δ2
k

α (δk )
= 0. (13)

Then (12) implies that the sequence
{
xα(δk )

}
⊂ G ⊆ Q is bounded in the

norm of the space Q . Since Q is compactly embedded in B1, then there
exists a subsequence of the sequence

{
xα(δk )

}
which converges in the

norm of the space B1.

www.math.chalmers.se/∼larisa Comp. Lab. 2



The Tikhonov Regularization Functional

We assume that the sequence
{
xα(δk )

}
itself converges to a point x ∈ B1,

lim
k→∞

∥∥∥xα(δk ) − x
∥∥∥

B1
= 0.

Then (9) and (13) imply that

lim
k→∞

Jα(δk )

(
xα(δk )

)
= 0. (14)

On the other hand, by the definition of Tikhonov’s functional,

lim
k→∞

Jα(δk )

(
xα(δk )

)
=

1
2

lim
k→∞

[∥∥∥∥F
(
xα(δk )

)
− y

∥∥∥∥2

B2
+ α (δk )

∥∥∥xα(δk ) − x0

∥∥∥2
Q

]
=

1
2

lim
k→∞

[‖F
(
xα(δk )

)
− y∗ + y∗ − y‖2B2

+ α (δk )
∥∥∥xα(δk ) − x0

∥∥∥2
Q ]

=
1
2

∥∥∥F (x) − y∗
∥∥∥2

B2
.

Hence, by (14) and the above equation
∥∥∥F (x) − y∗

∥∥∥
B2

= 0, which means
that F (x) = y∗. Since the operator F is one-to-one, then x = x∗. Thus,
we have constructed the sequence of regularization parameters{
α (δk )

}∞
k=1 and the sequence

{
xα(δk )

}∞
k=1

: limk→∞

∥∥∥xα(δk ) − x∗
∥∥∥

B1
= 0.
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The Tikhonov Regularization Functional

To ensure (13)

lim
k→∞

α (δk ) = 0 and lim
k→∞

δ2
k

α (δk )
= 0. (15)

one can choose, for example α (δk ) = Cδµk , µ ∈ (0, 2) .

It is reasonable to call
{
xα(δk )

}∞
k=1

regularizing sequence.

The sequence
{
xα(δk )

}∞
k=1

is called minimizing sequence.

There are two inconveniences in the above construction:

First, it is unclear how to find the minimizing sequence
computationally.
Second, the problem of multiple local minima and ravines of
the functional (6) presents a significant complicating factor in
the goal of the construction of such a sequence.
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Regularized Solution

The considered process of the construction of the regularized
sequence does not guarantee that the functional Jα (x) indeed
achieves it minimal value.

Suppose now that the functional Jα (x) does achieve its minimal
value, Jα (xα) = minG Jα (x) , α = α (δ) . Then xα(δ) is called a
regularized solution of equation (3) for this specific value α = α (δ)
of the regularization parameter.

Let δ0 > 0 be a sufficiently small number. Suppose that for each
δ ∈ (0, δ0) there exists an xα(δ) such that
Jα(δ)

(
xα(δ)

)
= minG Jα(δ) (x) .

Even though one might have several points xα(δ), we select a single
one of them for each α = α (δ) .
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Regularized Solution

It follows from the construction of the minimizing sequence that all
points xα(δ) are close to the exact solution x∗, as long as δ is
sufficiently small.

It makes sense now to relax a little bit the definition of the
regularization operator

lim
δ→0

∥∥∥Rα(δ) (yδ) − x∗
∥∥∥

B1
= 0.

Thus, instead of the existence of a function α (δ) , we now require
the existence of a sequence {δk }

∞
k=1 ⊂ (0, 1) such that

lim
k→∞

δk = 0 and lim
k→∞

∥∥∥Rα(δk ) (yδk ) − x∗
∥∥∥

B1
= 0.
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Regularized Solution

For every δ ∈ (0, δ0) and yδ such that ‖yδ − y∗‖B2
≤ δ we define the

operator Rα(δ) (y) = xα(δ), where xα(δ) is a regularized solution.
Then it follows from the construction of the regularized sequence
that Rα(δ) (y) is a regularization operator.

Consider now the case when the space B1 is a finite dimensional
space. Since all norms in finite dimensional spaces are equivalent,
we can set Q = B1 = Rn. We denote the standard euclidean norm
in Rn as ‖·‖ . Hence, we assume now that G ⊂ Rn is the closure of
an open bounded domain and G is a compact set.

Let x∗ ∈ G and α = α (δ) . We have

Jα(δ) (x) =
1
2

∥∥∥F(x) − y
∥∥∥2

B2
+
α (δ)

2
‖x − x0‖

2 ,

Jα(δ) : G → R, x0 ∈ G.

By the Weierstrass’ theorem the functional Jα(δ) (x) achieves its
minimal value on the set G. Let xα(δ) be a minimizer of the
functional Jα(δ) (x) on G (there might be several minimizers).
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Jα(δ)

(
xα(δ)

)
≤ Jα(δ) (x∗) =

1
2

∥∥∥F(x∗) − y
∥∥∥2

B2
+
α

2
‖x∗ − x0‖

2

≤
δ2

2
+
α (δ)

2
‖x∗ − x0‖

2 .

Hence, using

∥∥∥xα(δk ) − x0

∥∥∥2
Q ≤

2
α (δk )

Jα
(
xα(δk )

)
≤

2
α (δk )

δ2
k

2
+
α (δk )

2
‖x∗ − x0‖

2
 .
(16)

for
∥∥∥xα(δ) − x0

∥∥∥2
Q we get

∥∥∥xα(δ) − x0

∥∥∥ ≤ √
δ2

α
+ ‖x∗ − x0‖

2 ≤
δ
√
α

+ ‖x∗ − x0‖ . (17)
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We obtain from (17)∥∥∥xα(δ) − x∗
∥∥∥ =

∥∥∥xα(δ) − x0 + x0 − x∗
∥∥∥ ≤ ‖xα(δ) − x0‖+ ‖x0 − x∗‖

≤
δ
√
α

+ 2‖x∗ − x0‖.
(18)

An important conclusion from (18) is that for a given pair (δ, α (δ)) the
accuracy of the regularized solution is determined by the accuracy of the
first guess x0.
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The Accuracy of the Regularized Solution

Consider again the equation

F (x) = y, x ∈ G. (19)

Let y∗ be the ideal noiseless data corresponding to the ideal solution x∗,

F (x∗) = y∗, ‖y − y∗‖B2
≤ δ. (20)

To find an approximate solution of equation (19), we minimize

Jα (x) =
1
2

∥∥∥F(x) − y
∥∥∥2

B2
+
α

2
‖x − x0‖

2
Q , (21)

One can not a better accuracy of the solution than δ, Thus, it is
usually acceptable that all other parameters are much larger than δ.

For example, let the number µ ∈ (0, 1) . Since limδ→0

(
δ2µ/δ2

)
= ∞,

then there exists a sufficiently small number δ0 (µ) ∈ (0, 1) such that
δ2µ > δ2,∀δ ∈ (0, δ0 (µ)) .

Hence, we we can choose

α (δ) = δ2µ, µ ∈ (0, 1). (22)
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The Accuracy of the Regularized Solution

We introduce the dependence

α (δ) = δ2µ, µ ∈ (0, 1) . (23)

for the sake of definiteness only. In fact other dependencies α (δ)
are also possible.

Let mα(δ) = infG Jα(δ) (x) . Then

mα(δ) ≤ Jα(δ) (x∗) . (24)

We cannot prove the existence of a minimizer of the functional Jα
when dim B1 = ∞.

Thus, we work now with the minimizing sequence. It follows from
(21) and (24) that there exists a sequence {xn}

∞
n=1 ⊂ G such that

mα(δ) ≤ Jα(δ) (xn) ≤
δ2

2
+
α

2
‖x∗ − x0‖

2
Q and lim

n→∞
Jα(δ) (xn) = m (δ) .

(25)
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The Accuracy of the Regularized Solution

By ∥∥∥xα(δk ) − x0

∥∥∥2
Q ≤

δ2
k

α (δk )
+ ‖x∗ − x0‖

2
Q . (26)

and (25)

‖xn‖Q ≤

(
δ2

α
+ ‖x∗ − x0‖

2
Q

)1/2

+ ‖x0‖Q . (27)

Thus, it follows from (23) and (27) that {xn}
∞
n=1 ⊂ K (δ, x0) , where

K (δ, x0) ⊂ Q is a precompact set in B1 defined as

K (δ, x0) =

{
x ∈ Q : ‖x‖Q ≤

√
δ2(1−µ) + ‖x∗ − x0‖

2
Q + ‖x0‖Q

}
. (28)

Note that the sequence {xn}
∞
n=1 depends on δ.

Let K (δ, x0) be the closure of the set K (δ, x0) in the norm of the
space B1. Hence, K (δ, x0) is a closed compact set in B1.
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Rules for choice of the regularization parameter

Rules for choosing α in the Tikhonov functional

Jα (x) =
1
2

∥∥∥F(x) − y
∥∥∥2

B2
+
α

2
ψ(x) = ϕ(x) +

α

2
ψ(x). (29)

A-priori rules. Let η = (δ, h), ‖F − Fh‖ ≤ h, ‖y − y∗‖ ≤ δ.

α(η)→ 0 as η→ 0 [BaK, BeK, IJ, TGSY]

δ2

α(δ) → 0. Example: α(δ) = Cδµ, µ ∈ (0, 2),C = const . > 0. [BaK,
BeK]

(δ+h)2

η
→ 0 as η→ 0. [BaK, TGSY]

A-posteriori rules:

Morozov’s discrepancy principle [IJ, TGSY]

Balancing principle [IJ]

Quasi-optimality [IJ]

L-curve, S-curve [IJ]
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How to estimate noise in data?

Test first algorithm for solution of the inverse problem on simulated
data which have the same set-up as the set-up for generation of
your experimental data. Simulated data can be obtained by
reconstructing of already known object with known properties
(dielectric permittivity, conductivity and so on).

Solve the inverse problem to obtain xα(δ) and compute discrepancy,
then the noise will be approximately

‖F(xα(δ)) − y‖ ≈ δ, (30)

We can say that the simulated data (for the known object to be
reconstructed) is approximately exact data y∗, then noisy data yδ
can be obtained as

yδ = y(1 + δα), (31)

where y is simulated “exact” data, α ∈ (−1, 1) is randomly
distributed number and δ ∈ [0, 1] is the noise level. For example, if
noise in data is 5%, then δ = 0.05.
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Different models for generation of noise in data

You can use several Matlab’s functions to test adding of the noise.
Below is an example of the Matlab code which shows how to add
noise for solution of Poisson’s equation (example of section 8.4.4 of
the book [BKK]) (the Figure 26 illustrates different type of noise):
r = randi([-1 1],size(u),1)
for j=1:n
for i=1:n
udelta(n*(i-1)+j) = u(n*(i-1)+j)*(1 + 0.1*r(n*(i-1)+j));

end
end

Another models for generation of noisy data are also possible. For
example, normally distributed Gaussian noisy data is obtained using
normally distributed Gaussian noise

N(y |µ, σ2) =
1

σ
√

2π
e
−(y−µ)2

2σ2 .

Here, µ is mean, σ2 is variance, σ is standard deviation.
Here is an example how to add Gaussian noise N(y |µ, σ2) with
mean µ = 0 and variance σ2 = 0.01 to matrix A in MATLAB:

Anoise = A + 0.01*randn(size(A)) + 0;
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Different models for generation of noise in data

Figure 1: Top figures: Solution of Poisson’s equation (example of section
8.4.4 of the book [BKK]). Middle figures: Noisy solution obtained via (31)
with σ = 0.1. Bottom figures: noisy solution obtained via adding normally
distributed Gaussian noise N(y |0, 0.01), σ = 0.1.
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Morozov’s discrepancy principle

If the estimate of the noise level σ is available then the discrepancy
principle is most popular.

The principle determines the reg.parameter α = α(δ) such that

‖F(xα(δ)) − y‖ = cmδ, (32)

where cm ≥ 1 is a constant.

Relaxed version of a discrepancy principle is:

cm,1δ ≤ ‖F(xα(δ)) − y‖ ≤ cm,2δ, (33)

for some constants 1 ≤ cm,1 ≤ cm,2

The main feature of the principle is that the computed solution xα(δ)

can’t be more accurate than the residual ‖F(xα(δ)) − y‖.

Main methods for solution of (32) are the model function approach
and a quasi-Newton method.

Morozov V.A., On the solution of functional equations by the method of regularization, Soviet Math.Dokl., 7, pp.414-417,
1966
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Morozov’s discrepancy principle

For the Tikhonov functional Jα(x) defined as

Jα (x) =
1
2

∥∥∥F(x) − y
∥∥∥2

B2
+ αψ(x) = ϕ(x) + αψ(x), (34)

the value function F(α) : R+ → R is defined accordingly to [TA] as

F(α) = inf
x

Jα(x) (35)

If there exists F ′(α) at α > 0 then from (34) and (35) follows that

F(α) = inf
x

Jα (x) = ϕ′(x)︸︷︷︸
ϕ̄(α)

+α ψ′(x)︸︷︷︸
ψ̄(α)

. (36)

Since F ′α(α) = ψ′(x) = ψ̄(α) then from (36) folows

ψ̄(α) = F ′(α), ϕ̄(α) = F(α) − αF ′(α) (37)

[TA] A.N.Tikhonov, V. Y. Arsenin, Solutions of ill-posed problems, John Wiley Sons, New-York, 1977.
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Morozov’s discrepancy principle: the model function
approach

The main idea is to compute discrepancy ϕ̄(α) using the value function
F(α) and then approximate F(α) using rational functions like Padé
approximations which are called model functions.
We note that

ϕ(x) =
1
2

∥∥∥F(x) − y
∥∥∥2

; ϕ̄(α) = ϕ′(xα(δ)) =
∥∥∥F(xα(δ)) − y

∥∥∥F ′(xα(δ)). (38)

If ψ̄(α) ∈ C(α) then the discrepancy equation

‖F(xα(δ)) − y‖ = cmδ (39)

can be used in (38) to obtain ϕ̄(α) = δ2

2 . Combining this with (37) we get

ϕ̄(α) = F(α) − αF ′(α) =
δ2

2
. (40)

Our goal is to solve (40) for α. The value function is very nonlinear, the
model function is used to approximate the value function.
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Morozov’s discrepancy principle: the model function
approach

For example, one can use the following model function:

F(α) ≈ m(α) = b +
c

t + α
, (41)

where b , c, t are constants to be determined.
Usually, b is determined using asymptotics of m(0+) or m(+∞), for
example, as

b = lim
α→∞

F(α). (42)

Then the formula (41) can be written in the iterative form as

Fk (α) ≈ mk (α) = b +
ck

tk + αk
, (43)

The next step is to enforce the Hermite interpolation conditions at αk

such that
mk (αk ) = F(αk ), m′k (αk ) = F ′(αk ) (44)
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Morozov’s discrepancy principle: the model function
approach

The next step is to enforce the Hermite interpolation conditions at αk

such that
mk (αk ) = F(αk ), m′k (αk ) = F ′(αk ), (45)

what gives

mk (αk ) = b +
ck

tk + αk
= F(αk )→ ck = (F(αk ) − b)(tk + αk ),

m′k (αk ) =
−ck

(tk + αk )2
= F ′(αk )→ F ′(αk ) =

−(F(αk ) − b)(tk + αk )

(tk + αk )2

(46)
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Morozov’s discrepancy principle: the model function
approach

From the first equation of (46) we get

ck = (F(αk ) − b)(tk + αk ), (47)

and from the second equation of (46) we have

tk + αk =
−(F(αk ) − b)

F ′(αk )
(48)

Recall that

ψ̄(αk ) = F ′(αk ), ϕ̄(αk ) = F(αk ) − αk F ′(αk ) (49)

Substituting (48) into (47) we obtain

ck =
−(F(αk ) − b)2

F ′(αk )
=
−(F(αk ) − b)2

ψ̄(αk )
(50)
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Morozov’s discrepancy principle: the model function
approach

From the second equation of (46) we get

F ′(αk ) =
b − F(αk )

tk + αk
→ tk =

b − F(αk )

F ′(αk )
− αk . (51)

Then

tk =
(b − F(αk ))

ψ̄(αk )
− αk . (52)

The sign of tk is positive only if

b − F(αk ) − ψ̄(αk )αk > 0 (53)

which holds only for the same reg.parameter αk . If tk > 0 then the model
function mk (α) preserves the monotonicity, concavity and the asymptotic
behaviour of F(α).
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Morozov’s discrepancy principle: the model function
approach

The the discrepancy equation

F(α) − αF ′(α) =
δ2

2
(54)

can be approximated as

mk (α) − αm′k (α) =
δ2

2
(55)

The equation (55) is nonlinear and can be solved vis Newton’s method
noting that

g(α) = mk (α) − αm′k (α) −
δ2

2
= 0. (56)
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Morozov’s discrepancy principle: the model function
approach

Then the Newton’s method to solve g(α) = 0 is:

αk+1 = αk −
g(αk )

g′(αk )
, (57)

where

g(αk ) = mk (αk ) − αk m′k (αk ) −
δ2

2
and

g′(αk ) = (mk (α) − αm′k (α) −
δ2

2
)′α(αk )

= (m′k (α) − [m′k (α) + αm′′k (α)])(αk )

= (−αm′′k (α))(αk ) = −αk m′′k (αk ).

(58)
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The model function approach

mk (α) = b +
ck

tk + α
,

m′k (α) =
−ck

(tk + α)2
,

m′′k (α) =
2ck (tk + α)

(tk + α)4
=

2ck

(tk + α)3
.

(59)

Then we can use following formulas

g(αk ) = mk (αk ) − αk m′k (αk ) −
δ2

2
= b +

ck

tk + αk
+ αk

ck

(tk + αk )2
−
δ2

2
,

g′(αk ) =

(
mk (αk ) − αk m′k (αk ) −

δ2

2

)′
α

(αk ) = −αk m′′k (αk ) = −
2ckαk

(tk + αk )3

(60)

in the Newton’s method (57) to get update of the coefficients αk until
convergence in αk is achieved.
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Algorithm: Morozov’s discrepancy principle, the model
function approach

1 Start with the initial approximations α0 (take large value
because of (42)) and compute the sequence of αk in the
following steps.

2 Compute the value function F(αk ) = infx Jαk (x), b as in (42),
ck and tk as in (50), (52), correspondingly.

3 Update the reg. parameter α := αk+1 via Newton’s method

αk+1 = αk −
g(αk )

g′(αk )
,

where g(αk ), g′(αk ) are computed as in (60), respectively.
4 For the tolerance 0 < θ < 1 chosen by the user, stop

computing reg.parameters αk if computed αk are stabilized, or
|αk − αk−1| ≤ θ. Otherwise, set k := k + 1 and go to Step 2.
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The model function approach: study of convergence

We will show the the above algorithm is locally convergent. Let us define

Gk (α) = mk (α) − αm′k (α). (61)

and assume Gk (αk ) > δ2/2,Gk (α) ≤ Gk (αk ) ∀α ∈ [0, αk ]. Using Taylor’s
expansion of Gk (α) we get approximation of it, Ḡk (α) ≈ Gk (α), as

Ḡk (α) = Gk (α) + G′k (α)(α − αk ) = Gk (α) + ᾱk (Gk (α) − Gk (αk )). (62)

Since F(α) − αF ′(α) = δ2

2 then

Ḡk (α) ≈ Gk (α) = mk (α) − αm′k (α) =
δ2

2
. (63)

Assuming Ḡk (0) < δ2

2 , equation (63) has a unique solution. For example,
one can choose Ḡk (0) = γδ2 ∀γ ∈ [0, 0.5], then from (62)

ᾱk =
γδ2 − Gk (0)

Gk (0) − Gk (αk )
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The model function approach: study of convergence

Theorem [K. Ito, B. Jin]
Let ϕ̄(α) and ψ̄(α) be continuous functions in α, then the solution α∗ of
the discrepancy equation

‖F(xα(δ)) − y‖ = cmδ, (64)

is unique with α0 satisfying G(α0) > δ2

2 . The sequence {αk } generated by
the Algorithm is well-defined, it is finite and terminates at αk satisfying
G(αk ) ≤ δ2

2 , or it is infinite and converges to the solution α∗ strictly
monotonically decreasingly.
Proof. It is suffices to show that if Ḡk (αk ) ≤ δ2

2 is never reached then αk

converges to α∗. Let us assume Ḡk (αk ) > δ2

2 , then by monotonicity of
Ḡk (αk ) we get αk+1 < αk . Since

Ḡk (αk ) = Gk (αk ) = G(αk ), Ḡk (αk ) >
δ2

2
(65)

means that αk > α
∗. Thus, the sequence {αk } converges to some ᾱ > α∗

by the monotonne convergence theorem. Let is show that ᾱ = α∗.
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Now take limit in αk , sequences {ck }, {tk } are also converging. Then

G(ᾱ) = lim
k→∞

G(αk+1) = lim
k→∞

Gk+1(αk+1) = lim
k→∞

Gk (αk+1). (66)

Here we have used the Lemma 3.10 in [K. Ito, B. Jin] that if the sequence
αk is converging to ᾱ, then

lim
k→∞

Gk+1(αk+1) = lim
k→∞

Gk (αk+1). (67)

Then from the equation

Ḡk (αk+1) = Gk (αk+1) + ᾱk (Gk (αk+1) − Gk (αk )) =
δ2

2
. (68)

and (66), by the definition of Gk (α) and ᾱk and the convergence of αk we
see that

lim
k→∞

(Gk+1(αk+1) − Gk (αk )) = 0. (69)

Thus, ᾱk are convergent, taking limk→∞ in (68) G(ᾱ) = δ2

2 . By the
uniqueness assumption of the solution of the discrepancy equation
ᾱ = α∗. �
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Balancing principle

For the Tikhonov functional Jα(x) defined as

Jα (x) =
1
2

∥∥∥F(x) − y
∥∥∥2

B2
+ αψ(x) = ϕ(x) + αψ(x), (70)

ψ̄(α) = F ′(α), ϕ̄(α) = F(α) − αF ′(α)

balancing principle (or Lepskii, see [LLP, M]) finds α > 0 such that
following expression is fullfilled

ϕ̄(α) = γαψ̄(α) (71)

where γ = a0/a1 is determined by the statistical a priori knowledge from
shape parameters in Gamma distributions. When γ = 1 the method is
called zero crossing method, see [JG].

[JG] P. R. Johnston, R.M. Gulrajani, A new method for regularization parameter determination in the inverse problem of
electrocardiography, IEEE Transactions Biomed.Eng. 44, 1, pp. 19-39, 1997.
[LLP] R. D. Lazarov, S. Lu and S. V. Pereverzev, On the balancing principle for some problems of numerical analysis,
Numer. Math.,106, 4, pp. 659-689.

[M] P. Mathé, The Lepskii principle revised, Inverse Problems, 22, 3, pp. L11-L15, 2006.
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Balancing principle

Let us show that the balancing rule

ϕ̄(α) = γαψ̄(α) (72)

finds optimal α > 0 minimizing the function

Φγ(α) =
F1+γ(α)

α

From
ψ̄(α) = F ′(α), ϕ̄(α) = F(α) − αF ′(α) (73)

follows that

0 = ϕ̄(α) − γαψ̄(α) = F(α) − αF ′(α) − γαF ′(α) = F(α) − αF ′(α)(1 + γ)

or
F(α) = αF ′(α)(1 + γ). (74)
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Balancing principle

The equation
F(α) = αF ′(α)(1 + γ).

can be written as

1
α

=
F ′(α)

F(α)
(1 + γ) =

dF/dα
F(α)

(1 + γ)

or
dα
α

=
dF

F(α)
(1 + γ).

Integrating both sides of the above equation we get

lnα + C1 = (1 + γ) ln F(α) + C2

or taking C1 = C2 we get

α = exp(1+γ) ln F(α) = F(α)1+γ

which can be rewritten as the function to be minimized in the balancing
principle

Φγ(α) =
F1+γ(α)

α
= 1.
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Balancing principle

We can check that the minimum of Φγ(α) is achieved at

0 = (Φγ(α))′α =
(1 + γ)F ′(α)Fγ(α)α − F1+γ(α)

α2

From the above equation we get

(1 + γ)F ′(α)Fγ(α)α = F1+γ(α)→ (1 + γ)F ′(α)α = F(α)

This equation is the same as the equation (74) which gives the balancing
principle

ϕ̄(α) = γαψ̄(α) (75)

Thus, the balancing principle computes optimal value of α where
(Φγ(α))′α = 0.
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Balancing principle: fixed point algorithm

For the Tikhonov functional Jα(x) defined as

Jα (x) =
1
2

∥∥∥F(x) − y
∥∥∥2

B2
+ αψ(x) = ϕ(x) + αψ(x), (76)

the following fixed point algorithm for computing α is proposed.

1 Start with the initial approximations α0 = δµ, µ ∈ (0, 2) and compute
the sequence of αk in the following steps.

2 Compute the value function F(αk ) = infx Jαk (x) and get xαk .

3 Update the reg. parameter α := αk+1 as

αk+1 =
1
γ

ϕ̄(xαk )

ψ̄(xαk )

4 For the tolerance 0 < θ < 1 chosen by the user, stop computing
reg.parameters αk if computed αk are stabilized, or |αk − αk−1| ≤ θ.
Otherwise, set k := k + 1 and go to Step 2.
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