
JSS30, Summer School, COM5: Machine

learning in inverse and ill-posed problems

Larisa Beilina∗

Department of Mathematical Sciences, Chalmers University of Technology and

Gothenburg University, SE-42196 Gothenburg, Sweden

https://www.jyu.fi/en/research/

www.math.chalmers.se/∼larisa Lecture 5

https://www.jyu.fi/en/research/

Regularized and non-regularized neural networks

Lecture 5

www.math.chalmers.se/∼larisa Lecture 5

Artificial neural networks

Figure: Example of neural network which contains two interconnected layers (M. Kurbat, An Introduction to machine

learning, Springer, 2017.)

In an artificial neural network simple units - neurons- are

interconnected by weighted links into structures of high

performance.

Multilayer perceptrons and radial basis function networks will

be discussed.

www.math.chalmers.se/∼larisa Lecture 5

Neurons

Figure: Structure of a typical neuron (Wikipedia).

A neuron, also known as a nerve cell, is an electrically excitable cell

that receives, processes, and transmits information through

electrical and chemical signals. These signals between neurons

occur via specialized connections called synapses.

An artificial neuron is a mathematical function which presents a

model of biological neurons, resulting in a neural network.

www.math.chalmers.se/∼larisa Lecture 5

Artificial neurons

Artificial neurons are elementary units in an artificial neural network.

The artificial neuron receives one or more inputs and sums them to

produce an output (or activation, representing a neuron’s action

potential which is transmitted along its axon).

Each input is separately weighted by weights ωkj , and the sum
∑

k ωkjxk is passed as an argument Σ =
∑

k ωkjxk through a

non-linear function f(Σ) which is called the activation function or

transfer function.

Assume that attributes xk are normalized and belong to the interval

[−1, 1].

www.math.chalmers.se/∼larisa Lecture 5

Artificial neurons

Figure: Perceptron neural network consisting of one neuron (source: DataCamp(datacamp.com)).

Each input is separately weighted by weights ωkj , and the sum
∑

k ωkjxk

is passed as an argument Σ =
∑

k ωkjxk through a non-linear function

f(Σ) which is called the activation function or transfer function.

www.math.chalmers.se/∼larisa Lecture 5

Artificial neurons: transfer functions

-15 -10 -5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(
)

Sigmoid and gaussian transfer functions f()

sigmoid function

Gaussian function

Figure: Sigmoid and Gaussian (for b = 1, σ = 3 in (2)) transfer functions.

Different transfer (or activation) functions f(Σ) with Σ =
∑

k ωkjxk

are used. We will study sigmoid and gaussian functions.

Sigmoid function:

f(Σ) =
1

1 + e−Σ
(1)

Gaussian function centered at b for a given variance σ2

f(Σ) =
e−(Σ−b)2

2σ2
(2)

www.math.chalmers.se/∼larisa Lecture 5

Forward propagation

Example of neural network called multilayer perceptron (one hidden layer of neurons and one output layer). (M. Kurbat, An

Introduction to machine learning, Springer, 2017.)

Neurons in adjacent layer are fully interconnected.

Forward propagation is implemented as

yi = f(Σjω
(1)
ji

xj) = f(Σjω
(1)
ji

f(Σkω
(2)
kj

xk)
︸ ︷︷ ︸

xj

), (3)

where ω
(1)
ji

and ω
(2)
kj

are weights of the output and the hidden

neurons, respectively, f is the transfer function.

www.math.chalmers.se/∼larisa Lecture 5

Example of forward propagation through the network

Source: M. Kurbat, An Introduction to machine learning, Springer, 2017.

Using inputs x1 , x2 compute inputs of hidden-layer neurons:

x
(2)
1

= 0.8 ∗ (−1.0) + 0.1 ∗ 0.5 = −0.75, x
(2)
2

= 0.8 ∗ 0.1 + 0.1 ∗ 0.7 = 0.15

Compute transfer function (sigmoid f(Σ) = 1

1+e−Σ
in our case):

h1 = f(x
(2)
1

) = 0.32, h2 = f(x
(2)
2

) = 0.54.

Compute input of output-layer neurons

x
(1)
1

= 0.32 ∗ 0.9 + 0.54 ∗ 0.5 = 0.56, x
(1)
2

= 0.32 ∗ (−0.3) + 0.54 ∗ (−0.1) = −0.15.

Compute outputs of output-layer neurons using transfer function (sigmoid in our case):

y1 = f(x
(1)
1

) = 0.66, y2 = f(x
(1)
2

) = 0.45.

www.math.chalmers.se/∼larisa Lecture 5

Backpropagation of error through the network

Our goal is to find optimal weights ω
(1)
ji

and ω
(2)
kj

in forward propagation

yi = f(Σjω
(1)
ji

xj) = f(Σjω
(1)
ji

f(Σkω
(2)
kj

xk)
︸ ︷︷ ︸

xj

). (4)

To do this we introduce functional

F(ω
(1)
ji
, ω

(2)
kj
) =

1

2
‖ti − yi‖

2 =
1

2

m∑

i=1

(ti − yi)
2. (5)

Here, t = t(x) is the target vector which depends on the concrete

example x. In the domain with m classes the target vector

t = (t1(x), ..., tm(x)) consists of m binary numbers such that

ti(x) =

1, example x belongs to i-th class,

0, otherwise.
(6)

www.math.chalmers.se/∼larisa Lecture 5

Examples of target vector and mean square error

Let there exist three different classes c1, c2, c3 and x belongs to the class

c2. Then the target vector is t = (t1, t2, t3) = (0, 1, 0).
The mean square error is defined as

E =
1

m
‖ti − yi‖

2 =
1

m

m∑

i=1

(ti − yi)
2. (7)

Let us assume that we have two different networks to choose from, every
network with 3 output neurons corresponding to classes c1, c2, c3. Let
t = (t1, t2, t3) = (0, 1, 0) and for the example x the first network output is
y1 = (0.5, 0.2, 0.9) and the second network output is y2 = (0.6, 0.6, 0.7).

E1 =
1

3

3∑

i=1

(ti − yi)
2 =

1

3
((0 − 0.5)2 + (1 − 0.2)2 + (0 − 0.9)2)) = 0.57,

E2 =
1

3

3∑

i=1

(ti − yi)
2 =

1

3
((0 − 0.6)2 + (1 − 0.6)2 + (0 − 0.7)2)) = 0.34.

Since E2 < E1 then the second network is less wrong on the example x

than the first network.

www.math.chalmers.se/∼larisa Lecture 5

Backpropagation of error through the network

To find minimum of the functional (29) F(ω) with ω = (ω
(1)
ji
, ω

(2)
kj
), recall it

below:

F(ω) = F(ω
(1)
ji
, ω

(2)
kj
) =

1

2
‖ti − yi‖

2 =
1

2

m∑

i=1

(ti − yi)
2, (8)

we need to solve the minimization problem

min
ω

F(ω) (9)

and find a stationary point of (8) with respect to ω such that

F ′(ω)(ω̄) = 0, (10)

where F ′(ω) is the Fréchet derivative such that

F ′(ω)(ω̄) = F ′
ω
(1)
ji

(ω)(ω̄
(1)
ji
) + F ′

ω
(2)
kj

(ω)(ω̄
(2)
kj

). (11)

www.math.chalmers.se/∼larisa Lecture 5

Backpropagation of error through the network

Recall now that yi in the functional (8) is defined as

yi = f(
∑

j

ω
(1)
ji

xj) = f(
∑

j

ω
(1)
ji

f(
∑

k

ω
(2)
kj

xk)

︸ ︷︷ ︸

xj

). (12)

Thus, if the transfer function f in (12) is sigmoid, then

F ′
ω
(1)
ji

(ω)(ω̄
(1)
ji

) = (ti − yi) · y
′
i (ω

(1)
ji

)
(ω̄

(1)
ji
)

= (ti − yi) · xj · f(
∑

j

ω
(1)
ji

xj)(1 − f(
∑

j

ω
(1)
ji

xj))(ω̄
(1)
ji
)

= (ti − yi) · xj · yi(1 − yi))(ω̄
(1)
ji
),

(13)

www.math.chalmers.se/∼larisa Lecture 5

Backpropagation of error through the network

Here we have used that for the sigmoid function f ′(Σ) = f(Σ)(1 − f(Σ))
since

f ′(Σ) =

(

1

1 + e−Σ

)′

=
1 + e−Σ − 1

(1 + e−Σ)2

= f(Σ)

[

(1 + e−Σ) − 1

1 + e−Σ

]

= f(Σ)

[

(1 + e−Σ)

1 + e−Σ
−

1

1 + e−Σ

]

= f(Σ)(1 − f(Σ)).

(14)

www.math.chalmers.se/∼larisa Lecture 5

Backpropagation of error through the network

Again, since

yi = f(
∑

j

ω
(1)
ji

xj) = f(
∑

j

ω
(1)
ji

f(
∑

k

ω
(2)
kj

xk)

︸ ︷︷ ︸

xj

). (15)

for the sigmoid transfer function f we also get

F ′
ω
(2)
kj

(ω)(ω̄
(2)
kj
) = (ti − yi) · y

′
i (ω

(2)
kj

)
(ω̄

(2)
kj
)

=

hj(1 − hj)
︸ ︷︷ ︸

f ′(hj)

·

∑

i

yi(1 − yi)
︸ ︷︷ ︸

f ′(yi)

(ti − yi)ω
(1)
ji

· xk

(ω̄
(2)
kj
),

(16)

since for the sigmoid function f we have:

f ′(hj) = f(hj)(1 − f(hj)), f
′(yi) = f(yi)(1 − f(yi)) (prove this). Hint:

hj = f(
∑

k ω
(2)
kj

xk), yi = f(
∑

j ω
(1)
ji

xj).

www.math.chalmers.se/∼larisa Lecture 5

Backpropagation of error through the network

Usually, F ′
ω
(1)
ji

(ω)/xj ,F
′

ω
(2)
kj

(ω)/xk in (13), (16) are called responsibilities of

output layer neurons and hidden-layer neurons δ
(1)
i
, δ

(2)
i

, respectively, and

they are defined as

δ
(1)
i

= (ti − yi)yi(1 − yi),

δ
(2)
j

= hj(1 − hj) ·
∑

i

δ
(1)
i
ω
(1)
ji
.

(17)

By knowing responsibilities (17), weights can be updates using usual

gradient update formulas:

ω
(1)
ji

= ω
(1)
ji

+ ηδ
(1)
i

xj ,

ω
(2)
kj

= ω
(2)
kj

+ ηδ
(2)
j

xk .
(18)

Here, η is the step size in the gradient update of weights and we use

value of learning rate for it such that η ∈ (0, 1).

www.math.chalmers.se/∼larisa Lecture 5

Algorithm A1: backpropagation of error through the

network with one hidden layer

Step 0. Initialize weights.

Step 1. Take example x in the input layer and perform forward propagation.

Step 2. Let y = (y1 , ..., ym) be the output layer and let t = (t1 , ..., tm) be the target vector.

Step 3. For every output neuron yi , i = 1, ...,m calculate its responsibility δ1
i

as

δ
(1)
i

= (ti − yi)yi (1 − yi). (19)

Step 4. For every hidden neuron compute responsibility δ
(2)
j

for the network’s error as

δ
(2)
j

= hj (1 − hj) ·
∑

i

δ
(1)
i

(ωji)
1 , (20)

where δ
(1)
i

are computed using (30).

Step 5. Update weights with learning rate η ∈ (0, 1) as

ω
(1)
ji

= ω
(1)
ji

+ η(δ
(1)
i

)xj ,

ω
(2)
kj

= ω
(2)
kj

+ η(δ
(2)
j

)xk .

(21)

www.math.chalmers.se/∼larisa Lecture 5

Algorithm A2: backpropagation of error through the

network with l hidden layers

Step 0. Initialize weights and take l = 1.

Step 1. Take example x l in the input layer and perform forward propagation.

Step 2. Let y l = (y l
1
, ..., y l

m) be the output layer and let t l = (t l
1
, ..., t l

m) be the target vector.

Step 3. For every output neuron y l
i
, i = 1, ...,m calculate its responsibility (δ

(1)
i

)l as

(δ
(1)
i

)l = (t l
i − y l

i)y
l
i (1 − y l

i). (22)

Step 4. For every hidden neuron compute responsibility (δ
(2)
j

)l for the network’s error as

(δ
(2)
j

)l = hl
j (1 − hl

j) ·
∑

i

(δ
(1)
i

)l (ω
(1)
ji

)l , (23)

where (δ
(1)
i

)l are computed using (30).

Step 5. Update weights with learning rate ηl ∈ (0, 1) as

(ω
(1)
ji

)l+1 = (ω
(1)
ji

)l + ηl(δ
(1)
i

)l x l
j ,

(ω
(2)
kj

)l+1 = (ω
(2)
kj

)l + ηl(δ
(2)
j

)l x l
k .

(24)

Step 6. If the mean square error less than tolerance, or ‖(ω
(1)
ji

)l+1 − (ω
(1)
ji

)l ‖ < ǫ1 and ‖(ω
(2)
kj

)l+1 − (ω
(2)
kj

)l ‖ < ǫ2

stop, otherwise go to the next layer l = l + 1 , assign x l = x l+1 and return to the step 1. Here, ǫ1 , ǫ2 are

tolerances chosen by the user.

www.math.chalmers.se/∼larisa Lecture 5

Example of backpropagation of error through the network

Source: M. Kurbat, An Introduction to machine learning, Springer, 2017.

Assume that after forward propagation with sigmoid transfer function we have

h1 = f(x
(2)
1

) = 0.12, h2 = f(x
(2)
2

) = 0.5,

y1 = f(x
(1)
1

) = 0.65, y2 = f(x
(1)
2

) = 0.59.

Let the target vector be t(x) = (1, 0) for the output vector y = (0.65, 0.59).

Compute responsibility for the output neurons:

σ
(1)
1

= y1 ∗ (1 − y1)(t1 − y1) = 0.65(1 − 0.65)(1 − 0.65) = 0.0796,

σ
(1)
2

= y2 ∗ (1 − y2)(t2 − y2) = 0.59(1 − 0.59)(0 − 0.59) = −0.1427

www.math.chalmers.se/∼larisa Lecture 5

Example of backpropagation of error through the network

Source: M. Kurbat, An Introduction to machine learning, Springer, 2017.

Compute the weighted sum for every hidden neuron

δ1 = σ
(1)
1

w
(1)
11

+ σ
(1)
2

w
(1)
12

= 0.0796 ∗ 1 + (−0.1427) ∗ (−1) = 0.2223,

δ2 = σ
(1)
1

w
(1)
21

+ σ
(1)
2

w
(1)
22

= 0.0796 ∗ 1 + (−0.1427) ∗ 1 = −0.0631.

Compute responsibility for the hidden neurons for above computed δ1 , δ2 :

σ
(2)
1

= h1(1 − h1)δ1 = −0.0235, σ
(2)
2

= h2(1 − h2)δ2 = 0.0158.

www.math.chalmers.se/∼larisa Lecture 5

Example of backpropagation of error through the network

Compute new weights ω
(1)
ji

for output layer with learning rate η = 0.1 as:

ω
(1)
11

= ω
(1)
11

+ ησ
(1)
1

h1 = 1 + 0.1 ∗ 0.0796 ∗ 0.12 = 1.00096,

ω
(1)
21

= ω
(1)
21

+ ησ
(1)
1

h2 = 1 + 0.1 ∗ 0.0796 ∗ 0.5 = 1.00398,

ω
(1)
12

= ω
(1)
12

+ ησ
(1)
2

h1 = −1 + 0.1 ∗ (−0.1427) ∗ 0.12 = −1.0017,

ω
(1)
22

= ω
(1)
22

+ ησ
(1)
2

h2 = 1 + 0.1 ∗ (−0.1427) ∗ 0.5 = 0.9929.

Compute new weights ω
(2)
kj

for hidden layer with learning rate η = 0.1 as:

ω
(2)
11

= ω
(2)
11

+ ησ
(2)
1

x1 = −1 + 0.1 ∗ (−0.0235) ∗ 1 = −1.0024,

ω
(2)
21

= ω
(2)
21

+ ησ
(2)
1

x2 = 1 + 0.1 ∗ (−0.0235) ∗ 1 = 1.0024,

ω
(2)
12

= ω
(2)
12

+ ησ
(2)
2

x1 = 1 + 0.1 ∗ 0.0158 ∗ 1 = 1.0016,

ω
(2)
22

= ω
(2)
22

+ ησ
(2)
2

x2 = 1 + 0.1 ∗ 0.0158 ∗ (−1) = 0.9984.

Using computed weights for hidden and output layers, one can test a neural network for a new example.

www.math.chalmers.se/∼larisa Lecture 5

Perceptron non-regularized neural network

Step 0. Initialize weights ωi to small random numbers.

Step 1. If
∑n

i=0 ωixi > 0 we will say that the example is positive and

h(x) = 1.

Step 2. If
∑n

i=0 ωixi < 0 we will say the the example is negative and

h(x) = 0.

Step 3. Update every weight ωi using algorithm of backpropagation

of error through the network (perform steps 3-5 of A1 or A2)

Step 4. If c(x) = h(x) for all learning examples - stop. Otherwise

return to step 1.

Here, η ∈ (0, 1] is called the learning rate.

www.math.chalmers.se/∼larisa Lecture 5

Non-regularized and regularized neural network

Our goal is to find optimal weights ω
(1)
ji

and ω
(2)
kj

in forward propagation

yi = f(Σjω
(1)
ji

xj) = f(Σjω
(1)
ji

f(Σkω
(2)
kj

xk)
︸ ︷︷ ︸

xj

). (25)

To do this we introduce functional

F(ω
(1)
ji
, ω

(2)
kj
) =

1

2
‖ti − yi‖

2 =
1

2

m∑

i=1

(ti − yi)
2. (26)

Here, t = t(x) is the target vector which depends on the concrete

example x. In the domain with m classes the target vector

t = (t1(x), ..., tm(x)) consists of m binary numbers such that

ti(x) =

1, example x belongs to i-th class,

0, otherwise.
(27)

www.math.chalmers.se/∼larisa Lecture 5

Non-regularized neural network

F(w) =
1

2
‖ti − yi(w)‖2 =

1

2

m∑

i=1

(ti − yi(w))2. (28)

Regularized neural network

F(w) =
1

2
‖ti − yi(w)‖2 +

1

2
γ‖w‖2 =

1

2

m∑

i=1

(ti − yi(w))2 +
1

2
γ

M∑

j=1

|wj |
2

(29)

Here, γ is reg.parameter, ‖w‖2 = wT w = w2
1
+ ...+ w2

M
, M is

number of weights.

www.math.chalmers.se/∼larisa Lecture 5

Algorithm: backpropagation of error through the

regularized network with one hidden layer

Step 0. Initialize weights.

Step 1. Take example x in the input layer and perform forward propagation.

Step 2. Let y = (y1 , ..., ym) be the output layer and let t = (t1 , ..., tm) be the target vector.

Step 3. For every output neuron yi , i = 1, ...,m calculate its responsibility δ1
i

as

δ
(1)
i

= (ti − yi)yi (1 − yi). (30)

Step 4. For every hidden neuron compute responsibility δ
(2)
j

for the network’s error as

δ
(2)
j

= hj (1 − hj) ·
∑

i

δ
(1)
i

(ωji)
1 , (31)

where δ
(1)
i

are computed using (30).

Step 5. Update weights with learning rate η ∈ (0, 1) and regularization parameters γ1 , γ2 ∈ (0, 1) as

ω
(1)
ji

= ω
(1)
ji

+ η(δ
(1)
i

)xj + γ1ω
(1)
ji
,

ω
(2)
kj

= ω
(2)
kj

+ η(δ
(2)
j

)xk + γ2ω
(1)
kj
.

(32)

www.math.chalmers.se/∼larisa Lecture 5

