JSS30, Summer School, COM5: Machine

learning in inverse and ill-posed problems

Larisa Beilina*

Department of Mathematical Sciences, Chalmers University of Technology and
Gothenburg University, SE-42196 Gothenburg, Sweden

https://www.jyu.fi/en/research/

www.math.chalmers.se/~larisa Lecture 5

https://www.jyu.fi/en/research/

Regularized and non-regularized neural networks
Lecture 5

www.math.chalmer: i Lecture 5

Artificial neural networks

¥ Mo output signals

oUtpUt newnon s

hidden newrons

ingut signals

Y] X3 X3 x4

Flg Ure: Example of neural network which contains two interconnected layers (M. Kurbat, An Introduction to machine

learning, Springer, 2017.)

@ In an artificial neural network simple units - neurons- are
interconnected by weighted links into structures of high
performance.

@ Multilayer perceptrons and radial basis function networks will
be discussed.

www.math.chalmers. i Lecture 5

Neurons

Figure: structure of a typical neuron (Wikipedia).

@ A neuron, also known as a nerve cell, is an electrically excitable cell
that receives, processes, and transmits information through
electrical and chemical signals. These signals between neurons
occur via specialized connections called synapses.

@ An artificial neuron is a mathematical function which presents a
model of biological neurons, resulting in a neural network.

www.math.chalmers. i Lecture 5

Artificial neurons

@ Artificial neurons are elementary units in an artificial neural network.
The artificial neuron receives one or more inputs and sums them to
produce an output (or activation, representing a neuron’s action
potential which is transmitted along its axon).

@ Each input is separately weighted by weights wy;, and the sum
2.k WkiXk is passed as an argument > = ', wgxx through a
non-linear function f(X) which is called the activation function or
transfer function.

@ Assume that attributes x, are normalized and belong to the interval
[_1 > 1]

www.math.chalmers.se/ Lecture 5

Artificial neurons

Biological Neuron versus Artificial Neural Network

imputses camied o
toward cell body N
Ve branches i

dendrites of axon

=< o 3
. o | axon Inputs — s
nucleus ——=_@ 20N b r:,>terr!||r|:|!s W, -

Output

O\ mputses cames Y S .
il S puises carried Ay : - Sum Activation
t away from cell body =

/ W Function
cell body _ -

Figure: Perceptron neural network consisting of one neuron (source: DataCamp(datacamp.com)).

Each input is separately weighted by weights wyj, and the sum 3, wgjxk
is passed as an argument > = 3, wXx through a non-linear function
f(X) which is called the activation function or transfer function.

www.math.chalmers.se/~larisa Lecture 5

Artificial neurons: transfer functions

Figure: Sigmoid and Gaussian (for b = 1,0 = 3 in (2)) transfer functions.

@ Different transfer (or activation) functions f(X) with X = Y wikixk
are used. We will study sigmoid and gaussian functions.

@ Sigmoid function:

1
flX)=—— 1
()= —ox (1)
@ Gaussian function centered at b for a given variance o
)= @
202

www.math.chalmers.se/~larisa Lecture 5

Forward propagation

Example of neural network called multilayer perceptron (one hidden layer of neurons and one output layer). (M. Kurbat, An

Introduction to machine learning, Springer, 2017.)

input signale

@ Neurons in adjacent layer are fully interconnected.

@ Forward propagation is implemented as

yi = f(Z,w]s.”xj) = f(ij},” f(ka,(;)xk)), (3)
N—— —
Xj
where w](,.” and wf;) are weights of the output and the hidden

neurons, respectively, f is the transfer function.

www.math.chalmers. i Lecture 5

Using inputs x4, X2 compute inputs of hidden-layer neurons:
) = 08+ (-1.0) + 01505 = -0.75, x{) =08+0.140.1+07 =0.15

Compute in our case):
hy = L hy =
Compute input of output-layer neurons
1) = 032+0.9+054+05 = 056, x") = 0.32 ¢ (-03) + 054 + (~0.1) = ~0.15.
Compute outputs of output-layer neurons using in our case):

= s Y2 =

Lecture 5

Backpropagation of error through the network

Our goal is to find optimal weights w(and a)) in forward propagation

yi = (5ol x) = (Zwl) (Tl x)). (4)
‘.\,_../
Xj

To do this we introduce functional
2 1 m
Pl o) = ”t' k=3 -Z‘(ti - i) (5)
i=

Here, t = t(x) is the target vector which depends on the concrete
example x. In the domain with m classes the target vector
t = (t(x), ..., tm(x)) consists of m binary numbers such that

‘) 1, example x belongs to i-th class,
ti(x) = { 0, otherwise. (6)

www.math.chalmers.se/~larisa Lecture 5

Examples of target vector and mean square error

Let there exist three different classes ¢y, ¢, ¢z and x belongs to the class
C2. Then the target vector is t = (¢, t2, t3) = (0,1, 0).
The mean square error is defined as

m

1 o 1 >
E=—llti—yil? = — > (t - (7

i=1

Let us assume that we have two different networks to choose from, every
network with 3 output neurons corresponding to classes ¢y, c, c3. Let

t = (t,t,t3) = (0,1,0) and for the example x the first network output is

y1 = (0.5,0.2,0.9) and the second network output is y» = (0.6,0.6,0.7).

3

Ey = % Dti-yi)? = %((0 -05)2 4+ (1-02)% + (0-0.9)%)) = 057,
i=1
3

E, = % Dti-yi)? = %((0 -06)% + (1-0.6)2 + (0-0.7)%)) = 0.34.

Since E; < E; then the second network is less wrong on the example x
than the first network.

www.math.chalmers.se/~larisa Lecture 5

Backpropagation of error through the network

To find minimum of the functional (29) F(w) with w = (w](,)"”/(q)) recall it
below:

Flw) = Fw)).) = ||t, yilP =

i (8)

I\) |

we need to solve the minimization problem
mhin F(w) 9)
and find a stationary point of (8) with respect to w such that
F(w)(@) =0, (10)

where F’(w) is the Fréchet derivative such that

F(0)(@) = F(@)(@]) + o (@)(@) (11)

www.math.chalmers.se/~larisa Lecture 5

Backpropagation of error through the network

Recall now that y; in the functional (8) is defined as

=" %) =1 0V 1| w0 xc)). (12)
J J k

—_———
X

Thus, if the transfer function f in (12) is sigmoid, then
, _(1 1
Fro (@)@ = (6= y) ¥} o) (@;")
=(t-y) x- f(zw“)x,) Z (13)

= (t—y) - x-yi(1 - y) @),

www.math.chalmers.se/~larisa Lecture 5

Backpropagation of error through the network

Here we have used that for the sigmoid function f'(¥X) = f(X)(1 - f(X))

since
, B 1 " 14+e -1
Fix) = (1 +e—z) (14 e %)
(1+e*)-1 (1+e*) 1 (14)

= K(X)(1 - (T)).

www.math.chalmers.se/~larisa Lecture 5

Backpropagation of error through the network

Again, since

yi =13 w%) = 13 0 H(w0 xe)). (1)
J J k

D
Xj

for the sigmoid transfer function f we also get

, —(2 ’ ~(2
Flo(@)(@) = (6= ¥ o) (@)
i
(1) ~(2) (16)
=|h(1-h)- ZM‘U = yi)(ti = yi)w; | - X | (@)
N—— 7 —

() (i)

since for the sigmoid function f we have:
f'(hy) = f(h)(1 = (). £ (vi) = f(yi))(1 = f(yi)) (prove this). Hint:
hy = f(Xk w;(q?)xk),}’i = (% w,(,-ﬂxj)-

www.math.chalmers.se/~larisa Lecture 5

Backpropagation of error through the network

Usually, F'm(w)/x,, (w)/xk in (13), (16) are called responsibilities of

output Iayer neurons and hidden-layer neurons 651),652), respectively, and
they are defined as

5,(1) = (= yi)yi(1 =),
s® = h(1-hy) Z(s(‘ (17)

By knowing responsibilities (17), weights can be updates using usual
gradient update formulas:

1 1
wj(,)—w()+n6()
@ _ (@ @)y, (18)
Wy’ = Wy +n6
Here, 7 is the step size in the gradient update of weights and we use
value of learning rate for it such that € (0, 1).

www.math.chalmers.se/~larisa Lecture 5

Algorithm A1: backpropagation of erro

network with one hidden layer

o
o
(*]
o

Step 0. Initialize weights.
Step 1. Take example x in the input layer and perform forward propagation.
Step 2. Let y = (y1,.... ym) be the output layer and let t = (t1, ..., tm) be the target vector.
Step 3. For every output neuron y;,i = 1,..., m calculate its responsibility é: as
(5(1)_0, Dyi(1 - yi 19
i ==Yy ¥i)- (19)
(*] Step 4. For every hidden neuron compute responsibility 5](2) for the network’s error as

o =1 -hy)- 36 (), (20)
i

where 651) are computed using (30).

o Step 5. Update weights with learning rate € (0,1) as

(21)

Lecture 5

Algorithm A2: backpropagation of error through the

network with | hidden layers

Step 0. Initialize weights and take | = 1.

© 6660

Step 1. Take example x!'in the input layer and perform forward propagation.

Step 2. Lety/ = (y4 ... ¥h) be the output layer and let t/ = (t1’ ... th) be the target vector.

Step 3. For every output neuron yl.’.i: 1, ..., m calculate its responsibility (5f1>)’ as
MY — (¢l — vyl =y 20
(6;7) = (= y))yi (1 =) (22)

Step 4. For every hidden neuron compute responsibility (61(.2))’ for the network’s error as
@\ _ pleq _ply. ONPEON]
6;7) = hj(1 -) Z(&,) (w1, @3

where (6}1))’ are computed using (30).

Step 5. Update weights with learning rate r]‘ €(0,1)as

(m/(l_1))/+1 — (“’/(i”)l*”,(dp))/xj/* e
@hy+1 (“';(<,?))I+'II(5,('2))/XL-

(mkl

Step 6. If the mean square error less than tolerance, or II(w](,.1))’+1 - (wf.lﬂ)’ll < ¢ and H(wﬁj))"“ - (wf(]?))’ll <e

stop, otherwise go to the next layer /| =/ + 1, assign x' = x*1 and return to the step 1. Here, €1, €p are
tolerances chosen by the user.

Lecture 5

@ Assume that after forward propagation with sigmoid transfer function we have

hy = ({P) = 0.12, hp = 1(x{?) = 05,
(

yi = (M) = 0.65, yo = 1V = 0.50.
@ Let the target vector be t(x) = (1,0) for the output vector y = (0.65,0.59).
[+ Compute responsibility for the output neurons:

o$" = g1 (1= y1)(t - y1) = 0.65(1 - 0.65)(1 - 0.65) = 0.0796,

o = o x (1= y2)(ta - y2) = 0.59(1 - 0.59)(0 - 0.59) = ~0.1427

Lecture 5

(Dwll) — 0.0796 + 1+ (0.1427) « (1) = 0.2223,
ol wll) = 0.0796 « 1 + (<0.1427) + 1 = ~0.0631.

op

[*] Compute responsibility for the hidden neurons for above computed 61, d2:

o = hy (1= hy)oy = 00235, ¢ = hy(1 - hp)sp = 0.0158.

Lecture 5

(1

o Compute new weights Wji for output layer with learning rate n = 0.1 as:

W) = o) +n0hy =1+ 0.1 400796 0.12 = 1.00098,
W) = o) 4o Vhy = 1401 40,0796+ 0.5 = 1.00398,
WD) = o) 4 5ohy = -1 4041 4 (-0.1427) x 0.12 = ~1.0017,

W) = o) + 50 hy = 1401+ (-0.1427) « 0.5 = 0.9920.

o Compute new weights w,((/?) for hidden layer with learning rate n = 0.1 as:

o = o 450y = 1401+ (~0.0235) « 1 = ~1.0024,
0@ = 0@ 4ol)x2 —140.1%(-0.0235) = 1 = 1.0024,
o = o £ oe®x =1+01+0.0158+1 = 1.0016,

0@ = 0@ 4 50P)x = 1401 +0.0158 + (~1) = 0.9984.

[*) Using computed weights for hidden and output layers, one can test a neural network for a new example.

www.math.chalmers.se, Lecture 5

Perceptron non-regularized neural network

@ Step 0. Initialize weights w; to small random numbers.

@ Step 1. If X7, wix; > 0 we will say that the example is positive and
h(x) = 1.

@ Step 2. If 7 , wix; < 0 we will say the the example is negative and
h(x) = 0.

@ Step 3. Update every weight w; using algorithm of backpropagation
of error through the network (perform steps 3-5 of A1 or A2)

@ Step 4. If ¢(x) = h(x) for all learning examples - stop. Otherwise
return to step 1.

Here, n € (0, 1] is called the learning rate.

www.math.chalmers.se/~larisa Lecture 5

Non-regularized and regularized neural network

Our goal is to find optimal weights w(and a)) in forward propagation

yi = (5ol x) = (Zwl) (Tl x)). (25)
‘.\,_../

Xj

To do this we introduce functional
2 1
Flof, @) = Jlit - yiP = Z(ti -y (26)
=

Here, t = t(x) is the target vector which depends on the concrete
example x. In the domain with m classes the target vector
t = (t(x), ..., tm(x)) consists of m binary numbers such that

(27)

H(x) = 1, example x belongs to i-th class,
2770 0, otherwise.

www.math.chalmers.se/~larisa Lecture 5

@ Non-regularized neural network

1
F(w) = Sllti—y w)IfF =

Zm: . (28)

I\) |

@ Regularized neural network

m

M
_ 1 2, 1 21 2 1 2
F(w) = It =yl + ZAWI® = 5 (6 = yi(w)® + 57; wi
(29)

Here, y is reg.parameter, ||w|* = w”

number of weights.

—_ w2 2 H
W= w; +...+WM,M|s

www.math.chalmers.se/~larisa Lecture 5

Algorithm: backpropagation of error t

regularized network with one hidden layer

(*]
o
(*]
o

Step 0. Initialize weights.
Step 1. Take example x in the input layer and perform forward propagation.
Step 2. Let y = (y1,.... ym) be the output layer and let t = (t1, ..., tm) be the target vector.

Step 3. For every output neuron y;, i = 1, ..., m calculate its responsibility 5? as
s — (ti = yi)yi(1 - y; 30
i = Wi=Yi)i ¥i)- (30)

%) Step 4. For every hidden neuron compute responsibility 5](2) for the network’s error as
2 1 1
o = my1-m)- 36wy, @1)
I

where 651) are computed using (30).

o Step 5. Update weights with learning rate 7 € (0, 1) and regularization parameters y1,y» € (0,1) as

) (1)

i

1
)X + 71 w;,),

w[(,,” = w}’j + (s
(32)

o) = o) + 06)+ 720

Lecture 5

