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Dual representations and kernel methods

A lot of parameter identification problems can be considered using
dual representation.

Prediction in this dual represenation is based on linear combination
of a kernel function evaluated at the training data points.

Usually, the kernel function is given by the equation

k(x, x′) = ϕ(x)Tϕ(x′)

where ϕ(x) is a test function for the model.

The kernel function is symmetric s.t.

k(x, x′) = k(x′, x)

The easest test function is ϕ(x) = x, then the linear kernel is

k(x, x′) = ϕ(x)Tϕ(x′) = xT x′

The concept of kernel functions was introduced by Aizerman et al.
in 1964, then forgotten and was re-introduced again by Boser et.al
in 1992 to use in support vector machines (SVM)
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Dual representations and kernel methods

Linear models for regression and classification can be reformulated in
terms of dual representation. Recall the linear regression model where
we have minimized the following regularization functional:

J(ω) =
1
2

N∑
n=1

(ωTϕ(xn) − tn)2 +
λ

2
ωTω

=
1
2
‖ωTϕ(x) − t‖22 +

λ

2
‖ω‖22 =

1
2

(ωTϕ(x) − t)T (ωTϕ(x) − t) +
λ

2
ωTω.

(1)
where λ ≥ 0 is the regularization parameter.

www.math.chalmers.se/∼larisa Lecture 3



Dual representations and kernel methods

Taking J′ω(ω) = 0 we get optimal ω (here, n-th row of the design matrix Φ
is ϕ(xn)T ):

0 = J′ω(ω) = (ωTϕ(x) − t)ϕ(x) + λω,

ω = −
1
λ

(ωTϕ(x) − t)ϕ(x) = −
1
λ

N∑
n=1

(ωTϕ(xn) − tn)︸                       ︷︷                       ︸
an

ϕ(xn)

=
N∑

n=1

anϕ(xn) := ΦT a.

(2)

Here, n-th row of the design matrix Φ is ϕ(xn)T .
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Dual representations and kernel methods

From (2) follows that ω = ΦT a. Then ωT = aT Φ. Substitute these
expressions into (3):

J(ω) =
1
2
‖ωTϕ(x) − t‖22 +

λ

2
‖ω‖22 =

1
2

(ωTϕ(x) − t)T (ωTϕ(x) − t) +
λ

2
ωTω

=
1
2

[(ωTϕ(x))TωTϕ(x) − 2ωTϕ(x)t + tT t ] +
λ

2
ωTω

=
1
2

[ϕ(x)TωωTϕ(x) − 2ωTϕ(x)t + tT t ] +
λ

2
ωTω

=
1
2

[Φ(ΦT a)(aT Φ)ΦT − 2(aT Φ)ΦT t + tT t ] +
λ

2
(aT Φ)(ΦT a).

(3)
Now we define the N × N symmetric kernel matrix
K = ΦΦT ,Knm = ϕ(xn)Tϕ(xm) = k(xn, xm) and rewrite the above
equation in the terms of kernel:

J(a) =
1
2

aT KKa − aT Kt +
1
2

tT t +
λ

2
aT Ka

=
1
2
‖aT K − t‖22 +

λ

2
K‖a‖22

(4)
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Dual representations and kernel methods

Now we find optimal a by taking J′a(a) = 0:

J(a) =
1
2
‖aT K − t‖22 +

λ

2
K‖a‖22,

0 = J′a(a) = (aT K − t)K + λKa,

K , 0, 0 = (K + λIN)a − t ,

a= (K + λIN)−1t .

(5)

As soon as we have found optimal a = (K + λIN)−1t , it can be
substituted in the linear regression model y(x) = ωTϕ(x), where first we
will substitude ωT = aT Φ and then use definition of a. We have following
equation to predict the new point x:

y(x) = ωTϕ(x) = (aT Φ)ϕ(x) = (aT Φ)ΦT = k(x)T (K + λIN)−1t , (6)

where kn(x) = k(xn, x). We observe that the solution is obtained in terms
of kernel function.
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Constructing kernels

Let us discuss how to construct the valid kernel functions.

1. The first approach is to construct kernel from it’s definition

k(x, x′) = ϕ(x)Tϕ(x′) =
M∑

i=1

ϕi(x)ϕi(x′)

2. Another approach is to construct the kernel functions directly. In
this case we should be sure that the function which we decided to
take is a valid kernel.

Example

take a s kernel function
k(x, z) = (xT z)2.

Then taking x = (x1, x2), z = (z1, z2) we can write:

k(x, z) = (xT z)2 = (x1z1 + x2z2)2 = x2
1 z2

1 + 2x1z1x2z2 + x2
2 z2

2

= (x2
1 ,
√

2x1x2, x2
2 )(z2

1 ,
√

2z1z2, z2
2)T = ϕ(x)Tϕ(z).
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Constructing kernels

A necessary and sufficient condition for a function k(x, x′) to be a
valid kernel is that the Gram matrix
K = ΦΦT ,Knm = ϕ(xn)Tϕ(xm) = k(xn, xm) should be positive
semidefinite for all choices of the set {xn}. Semidefinite K:
xT Kx ≥ 0∀x ∈ Rn.

One of the possible techniques of constructing kernels is to use
simpler valid kernels k1(x, x′), k2(x, x′) as building blocks to
construct a new one kernels:

k(x, x′) = Const · k1(x, x′),Const > 0,

k(x, x′) = P(k1(x, x′)),P − polynomial
k(x, x′) = f(x)k1(x, x′)f(x′),

k(x, x′) = ek1(x,x′),

k(x, x′) = k1(x, x′) + k2(x, x′),

k(x, x′) = k1(x, x′) · k2(x, x′),

k(x, x′) = xT Ax′,A − s.p.semid.

(7)
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Constructing kernels

Popular valid kernels are ( we can use rules (7) to prove that they are
valid):

k(x, x′) = (xT x′ + const .)M , const . > 0

k(x, x′) = e−‖x−x′‖2/2σ2
− (Gaussian kernel),

k(x, x′) = p(x)p(x′), p(x) −mapping,

k(x, x′) =
∑

i

p(x |i)p(x′|i)p(i),

p(i) = const . > 0, p(x |i), p(x′|i) − probability distrib.,

k(x, x′) =

∫
p(x |z)p(x′|z)p(z)dz, z − contin. latent variable,
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SVM: maximum margin classifiers

Let us consider again classification of 2 classes using the linear model

y(x) = ωTϕ(x) + b ,

where ϕ(x) is the test functions and b is the bias. The training datasets
consist of x1, ..., xN with corresponding target values t ∈ {−1, 1}. New
datapoints are classified by the sign of y(x).
We already know that it can be a lot of solutions to this problem
dependening of the initial guess for weights ω and bias b, see Figure.
The best one solution is such that which gives the smallest generalization
error.

www.math.chalmers.se/∼larisa Lecture 3



SVM: maximum margin classifiers

Figure: The margin is the smallest (perpendicular) distance between red and blue lines. Support vectors are points in

classes (one blue and one magenta point) crossing the red and blue lines.

SVM approach finds the margin or the smallest distance between the
decision boundary and any of the samples. We want to find maximal
margin or maximal distance between the decision boundary and the
closest of the data sets.
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SVM: maximum margin classifiers

Let for point closest to the surface we set

tn(ωTϕ(xn) + b) = 1 (8)

Then all data points willl satisfy

tn(ωTϕ(xn) + b) ≥ 1 (9)

By definition, there will be at least two active constraints satisfying (9).
The optimization problem is to find optimal weights such that

min
ω,b

1
2
‖ω‖22 (10)

subject to constrains given by (9).
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SVM: maximum margin classifiers

For solution of constrained optimization problem we will construct the
following Lagrangian:

L(ω, b , λ) =
1
2
‖ω‖22 −

N∑
n=1

λn(tn(ωTϕ(xn) + b) − 1) (11)

where λn ≥ 0 is the Lagrangian multiplyer.
We have the minus sign in the Lagrangian since we minimize with
respect to ω and b and maximize with respect to λ = (λ1, ...., λN)T . We
compute optimality conditions:

0 = L ′λ(ω, b , λ) = −(
N∑

n=1

tn(ωTϕ(xn) + b) − 1),

0 = L ′ω(ω, b , λ) = ω −

N∑
n=1

λntnϕ(xn) =⇒ ω =
N∑

n=1

λntnϕ(xn),

0 = L ′b(ω, b , λ) = −
N∑

n=1

λntn.

(12)
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SVM: maximum margin classifiers

Now we construct a new Lagrangian by substituting (12) into (11) and
using the fact that

∑N
n=1 λntn = 0 to get:

L̃(λ) = −
N∑

n=1

λn(tn((
N∑

m=1

λmtmϕ(xm))Tϕ(xn) + b) − 1)

= −
N∑

n=1

N∑
m=1

λnλmtntmϕ(xm)Tϕ(xn) −
N∑

n=1

λntn︸︷︷︸
=0

b +
N∑

n=1

λn

(13)

We get finally:

L̃(λ) =
N∑

n=1

λn −

N∑
n=1

N∑
m=1

λnλmtntmϕ(xm)Tϕ(xn)

=
N∑

n=1

λn −

N∑
n=1

N∑
m=1

λnλmtntmk(xn, xm).

(14)
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SVM: maximum margin classifiers

To classify new data points in kernel perceptron algorithm, we now
determine the sign of

tny(xn) = tn(ωTϕ(xn) + b) = tn(
N∑

n=1

λntnk(x, xn) + b). (15)

The equation above is obtained using the optimality condition
L ′ω(ω, b , λ) = 0 from what follows that ω =

∑N
n=1 λntnϕ(xn).

The following 3 conditions should hold:

λn ≥ 0,

tny(xn) − 1 ≥ 0,

λn(tny(xn) − 1) = 0.

From the last condition we observe that eather λn = 0 or tny(xn) − 1 = 0.
Any data point for which λn = 0 will not be presented in the sum (15).
Thus, this point will not play roll for prediction. The remaining data points
are called support vectors since they satisfy the condition tny(xn) = 1.
These points will lie on the maximum margin hyperplanes.
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SVM: separation of overlapping classes

We will modify SVM such that we will allow some of class points to
be missclassified

We will add penalty which will increase the distance from the
decision boundary

In order to do this we introduce variables ξn, n = 1, ...N, N is number
of training data points.

Variables ξn, n = 1, ...N are defined as: ξn = 0 for all points which
are on the margin (decision) boundary or inside it. ξn = |tn − y(xn)|
for all other points. Then the point which is on the decision
boundary y(xn) = 0 will have ξn = 1 and points where ξn > 1 will be
missclassified.
Then instead of (9):

tny(xn) ≥ 1, n = 1, ...,N

we will have

tny(xn) ≥ 1 − ξn, n = 1, ....,N, ξn ≥ 0. (16)
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SVM: separation of overlapping classes

The goal now is to minimize the following functional subject to constrains
given by (16):

min
ω,b

1
2
‖ω‖22 + C

N∑
n=1

ξn (17)

with the C = const . > 0 which controls the slack variable and the margin
and can be considered as a regularization parameter.
For solution of constrained optimization problem we will construct the
following Lagrangian:

L(ω, b , ξ, λ, µ) =
1
2
‖ω‖22 + C

N∑
n=1

ξn

−

N∑
n=1

λn(tn(ωTϕ(xn) + b) − 1 + ξn) −
N∑

n=1

µnξn

(18)

where λn, µn ≥ 0 are Lagrangian multiplyers.
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SVM: separation of overlapping classes

KKT conditions will be for n = 1, ...,N:

λn ≥ 0,

tny(xn) − 1 + ξn ≥ 0,

λn(tny(xn) − 1 + ξn) = 0,

µn ≥ 0,

ξn ≥ 0,

µnξn = 0.
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SVM: separation of overlapping classes

Optimality conditions will be:

0 = L ′λ(ω, b , λ, ξ, µ) = −(
N∑

n=1

tny(xn) − 1 + ξn),

0 = L ′ω(ω, b , λ, ξ, µ) = ω −

N∑
n=1

λntnϕ(xn) =⇒ ω =
N∑

n=1

λntnϕ(xn),

0 = L ′b(ω, b , λ, ξ, µ) = −
N∑

n=1

λntn,

0 = L ′ξn
(ω, b , λ, ξ, µ) = C − λn − µn =⇒ λn = C − µn.

(19)

We should have λn ≥ 0 since they are Lagrange multipliers, and since
µn ≥ 0 then 0 ≤ λn ≤ C,

∑N
n=1 λntn = 0.
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SVM: separation of overlapping classes

The parameter b can be determined from tny(xn) = 1 for thus support
vectors for which 0 < λn < C have ξn = 0:

1 = tny(xn) = tn(
∑
m∈S

λmtmk(xn, xm) + b). (20)

The parameter b is then determined via averaging formula:

b =
1

NM

∑
n∈M

tn −∑
m∈S

λmtmk(xn, xm)

 (21)

M is set of all indices for which 0 < λn < C.
Again, to classify new data points, we now determine the sign of

tny(xn) = tn(ωTϕ(xn) + b) = tn(
N∑

n=1

λntnk(x, xn) + b). (22)
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