
JSS30, Summer School, COMP5:
Machine learning in inverse and ill-posed problems

Course Project

Larisa Beilina, larisa@chalmers.se

Instructions

• You can work in groups by 2 persons.

• Sent final report for every computer assignment with description of your work together
with Matlab or C++/PETSc programs to my e-mail before deadline. Report should
have description of used techniques, tables and figures confirming your investigations.
Analysis of obtained results is necessary to present in section “Numerical examples”
and summarized results - in section “Conclusions”. You can download latex or pdf-
template for report from the course homepage.

• Matlab and C++ programs for examples in the book [1] are available for download
from the course homepage: go to the link of the book [1] and click to “GitHub Page
with MATLAB R© Source Codes” on the bottom of this page, or copy the link below:

https://github.com/springer-math/Numerical_Linear_Algebra_Theory_and_Applications

Figure 0.1: Classification of the computed solution for Poisson’s equation on the unit square
(see example 8.1.3 of [1]) for number of mesh points 212 using perceptron learning algorithm.

https://github.com/springer-math/Numerical_Linear_Algebra_Theory_and_Applications

Course Project larisa@chalmers.se

Course Project

Regularized Least squares and machine learning algorithms for
classification problem

In this project we will study regularized versions of least squares and perceptron learning
algorithms for solution of classification problem presented in the paper Numerical analysis
of least squares and perceptron learning for classification problems which can be downloaded
from the link

https://arxiv.org/pdf/2004.01138.pdf

Details about AI algorithms for classification together with machine learning techniques
for choosing the reg.parameter can be found in [2, 3, 4].

2 2.5 3 3.5 4 4.5
4

4.5

5

5.5

6

6.5

7

7.5

LS
quadratic perceptron
linear perceptron
 class 1
 class 2

Figure 0.2: Decision lines computed by least squares and the perceptron learning algorithm
for separation of two classes using Iris dataset. The dataset iris.csv is available for download
from the course page.

Project assignments

Implement in MATLAB studied in the course regularized classification algorithms and
present decision lines for following training sets:

• 0) Study non-regularized least squares and perceptron learning algorithms imple-
mented in the Matlab code of section 1 for classification of IRIS flower data set used
in the work []. The dataset can be downloaded from the link:

https://arxiv.org/pdf/2004.01138.pdf

Course Project larisa@chalmers.se

https://en.wikipedia.org/wiki/Iris_flower_data_set

• I) Classify IRIS flower data set into several classes using regularized versions of least
squares and perceptron learning algorithms.

• II) Classify datapoints which are inside the circle x2 + y2 = r2 for some r > 0 , with
code 1, and which are outside circle, with code −1 (choose by yourself number of
datapoints which will belong to both classes). Determine decision line computed by
the quadratic perceptron algorithm.

• III) Use support vector machines (SVM) to classify points generated in item II). Com-
pare obtained decision line with the decision line computed by the quadratic percep-
tron.

• IV) Take some experimental data for classification from the link

https://archive.ics.uci.edu/ml/datasets.html

or the link for skin images:

https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main

and classify them using regularized versions of least squares and perceptron learning
algorithms.

• V) Compute missclassification rate E using the formula (see [4], p. 211-214):

E =

∑K
i=1NF,i∑K

i=1(NT,i +NF,i)
, (0.1)

where K is the number of classes, NT,i is the number of points of the class i which
are classified correctly, NF,i is the number of points of the class i which are classified
wrong. Precision for class i can be computed as

P(i) =
NT,i

NT,i +NF,j
. (0.2)

Try answer to the following questions:

• Analyze effect of using different regularization strategies for classification.

• Analyze what happens with performance of perceptron learning algorithm if we take
different learning rates η ∈ (0, 1] ? For what values of η perceptron learning algorithm
is more sensitive and when the iterative process is too slow?

• Analyze which one of the studied classification algorithms perform best and why?

• Try to explain why least squares approach can fail in the case when usual linear
classifier is used.

https://en.wikipedia.org/wiki/Iris_flower_data_set
https://archive.ics.uci.edu/ml/datasets.html
https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main

Course Project larisa@chalmers.se

Programs

1.1 Main Matlab program for classification

% Classification of Iris dataset into 2 classes using linear least squares,

% linear and quadratic perceptron learning algorithms

clear

close all

%% Load the Iris data set

dataset_name = "Iris";

data = csvread("iris.csv");

Xiris = data(:, 1)’;

Yiris = data(:, 2)’;

Ciris = data(:, 3)’;

x = Xiris(1, :);

y = Yiris(1, :);

class = Ciris(1, :);

d=1; % degree of the polynomial

%number of discretization points or rows in the matrix A

m=size(x,2);

A=[];

classx1 = x(class==1);

classx2 = x(class==0);

classy1 = y(class==1);

classy2 = y(class==0);

hyp = zeros(1,m);

% LS for problem min ||A omega - t|| where A =[1; x; y], t = class

A = [ones(numel(x), 1) x’ y’];

w = A\(class’);

decision_linels = zeros(1,2);

coor(1)= min(x);

coor(2)=max(x);

for i=1:1:2

decision_linels(i) = (0.5-w(1))/w(3) - (w(2)/w(3))*coor(i);

end

%***

%******************* perceptron learning algorithm **********************

Course Project larisa@chalmers.se

%***

% init weights

weight= rand(3,1);

hyp = zeros(1,m);

x = Xiris(1, :);

y = Yiris(1, :);

class = Ciris(1, :);

% init learning rate

eta = 0.5;

while sum(class ~= hyp)

count = 0;

for i=1:1:m

if weight(1) + weight(2)*x(i) + weight(3)*y(i) > 0

hyp(i)=1;

else

hyp(i)=0;

end

%update weights

weight(1) = weight(1) + eta*(class(i) - hyp(i));

weight(2) = weight(2) + eta*(class(i) - hyp(i))*x(i);

weight(3) = weight(3) + eta*(class(i) - hyp(i))*y(i);

end

count = count+1;

% break out loop to avoid infnite loop

if count > 1000

count

break

end

end

decision_line = zeros(1,2);

coor(1)= min(x);

coor(2)=max(x);

for i=1:1:2

decision_line(i) = -weight(1)/weight(3) - (weight(2)/weight(3))*coor(i);

end

%***

% ***** division into 2 classes for quadratic perceptron ***************

%***

Course Project larisa@chalmers.se

hyp = zeros(1,m);

x = Xiris(1, :);

y = Yiris(1, :);

class = Ciris(1, :);

%***************** quadratic classification ******************************

% init weights

weight= rand(6,1);

% init learning rate

eta = 0.5;

count = 0;

while sum(class ~= hyp)

for i=1:1:m

if weight(1) + weight(2)*x(i) + weight(3)*y(i) + ...

weight(4)*x(i)*x(i) + weight(5)*x(i)*y(i) + ...

weight(6)*y(i)*y(i) > 0

hyp(i)=1;

else

hyp(i)=0;

end

%update weights

weight(1) = weight(1) + eta*(class(i) - hyp(i));

weight(2) = weight(2) + eta*(class(i) - hyp(i))*x(i);

weight(3) = weight(3) + eta*(class(i) - hyp(i))*y(i);

weight(4) = weight(4) + eta*(class(i) - hyp(i))*x(i)*x(i);

weight(5) = weight(5) + eta*(class(i) - hyp(i))*x(i)*y(i);

weight(6) = weight(6) + eta*(class(i) - hyp(i))*y(i)*y(i);

end

count = count+1;

if count > 10000

% count

break

end

end

a=weight(6);

ynew1=zeros(1,m);

Course Project larisa@chalmers.se

ynew2=zeros(1,m);

x=sort(x);

for i=1:1:m

bb= weight(5)*x(i) + weight(3);

cc = weight(1) + weight(2)*x(i) + weight(4)*x(i)*x(i);

D = bb*bb - 4*a*cc;

ynew1(i) = (-bb + sqrt(D))/(2*a);

ynew2(i) = (-bb - sqrt(D))/(2*a);

end

%***

% presenting results

figure

%plot(x,y,’o r’, ’linewidth’,1)

%hold on

% compute approximation to this exact polynomial with comp. coefficients c

%approx = A*c;

hold on

% plot decision line computed via Least squares

%plot(x,approx,’-- b’, ’linewidth’,3)

plot(coor,decision_linels,’-- b’, ’linewidth’,3);

% plot results of quadratic perceptron

plot(x,ynew1,’- g’, ’linewidth’,3);

%plot(x,ynew2,’* r’, ’linewidth’,2);

% plot results of linear perceptron

plot(coor,decision_line,’ -. r’, ’linewidth’,3)

str_xlabel = [’poly.degree d=’, num2str(d)];

xlabel(’ x’)

plot(classx1, classy1,"ko", "MarkerSize", 7, "MarkerFaceColor", "c")

plot(classx2, classy2,"ks", "MarkerSize", 7, "MarkerFaceColor", "m")

%legend(’exact ’,str_xlabel);

legend(’LS’, ’quadratic perceptron’, ’linear perceptron’, ’ class 1’, ’ class 2’);

%title([’LS vs. Perceptron, m= ’,num2str(m),’, ’,str_xlabel])

hold off

title("Least Squares (LS) vs. Perceptron in IRIS data", "Interpreter", "Latex")

xlabel("x", "Interpreter", "Latex")

ylabel(" y ", "Interpreter", "Latex")

Course Project larisa@chalmers.se

font_size = 12;

set(gca, "FontSize", font_size)

% Export the plot

%set(gcf, "Units", "Inches", "Position", [0, 0, 7, 7], ...

% "PaperUnits", "Inches", "PaperSize", [5, 5])

% saveas(gcf, sprintf("Iris.pdf"))

References

[1] L. Beilina, E. Karchevskii, M. Karchevskii, Numerical Linear Algebra: Theory and
Applications, Springer, 2017.

[2] Christopher M. Bishop, Pattern recognition and machine learning, Springer, 2009.

[3] Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016,
http://www.deeplearningbook.org

[4] Miroslav Kurbat, An Introduction to Machine Learning, Springer, 2017.

http://www.deeplearningbook.org

	Programs
	Main Matlab program for classification

