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NLA notions

Norms
Sherman-Morrison formula
Perturbation theory
Condition number, relative condition number
Gaussian elimination
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Singular values

The singular values of a compact operator T : X → Y acting between
Hilbert spaces X and Y , are the square roots of the eigenvalues of the
nonnegative self-adjoint operator T ∗T : X → X (where T ∗ denotes the
adjoint of T ). For the case of a matrix A, singular values are computed
as: σ =

√
λ(A∗A).

The singular values are nonnegative real numbers, usually listed in
decreasing order (σ1(T ), σ2(T ), ...). If T is self-adjoint, then the largest
singular value σ1(T ) is equal to the operator norm of T .
In the case of a normal matrix A (or A∗A = AA∗, when A is real then
ATA = AAT ), the spectral theorem can be applied to obtain unitary
diagonalization of A as A = UΛU∗. Therefore,

√
A∗A = U|Λ|U∗ and so

the singular values are simply the absolute values of the eigenvalues.
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Norm of a vector

We are going to use following such called Lp-norms which are usually
denoted by ‖ · ‖p:

‖x‖p = (
n∑

k=1

|xk |p)1/p, p ≥ 1.

p = 1, ‖x‖1 =
∑n

k=1 |xk |, one-norm

p = 2, ‖x‖2 = (
∑n

k=1 |xk |2)1/2, two-norm

p =∞, ‖x‖∞ = max1≤k≤n |xk |, max-norm or infinity-norm.
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Norm of a vector

All these norms, as all other vector norms, has following properties:

x 6= 0→ ‖x‖ > 0 (positivity), ‖0‖ = 0.

‖αx‖ = |α|‖x‖ for all α ∈ R (homogeneity)

‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 3

http://www.math.chalmers.se/~larisa/


Norm of a vector

Norms are defined differently, but they can be compared. Two norms
‖ · ‖α and ‖ · ‖β on a vector space V are called equivalent if there exist
positive real numbers C and D such that for all x in V

C ‖x‖α ≤ ‖x‖β ≤ D ‖x‖α .

For example, let x = (x1, ...., xn)T

α‖x‖1 ≤ ‖x‖2 ≤ β‖x‖1

In this case we have: α = 1/
√
n, β = 1.
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Norm of a vector

Other examples:

‖x‖2 ≤ ‖x‖1 ≤
√
n ‖x‖2

‖x‖∞ ≤ ‖x‖2 ≤
√
n ‖x‖∞

‖x‖∞ ≤ ‖x‖1 ≤ n ‖x‖∞ ,

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
n ‖x‖2 ≤ n ‖x‖∞

If the vector space is a finite-dimensional real or complex one, all
norms are equivalent. On the other hand, in the case of
infinite-dimensional vector spaces, not all norms are equivalent.
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Inner product

The dot product of two vectors x = (x1, ..., xn) and y = (y1, ..., yn) is
defined as:

x·y = (x , y) =
∑n

k=1 xkyk = xT y , ‖x‖2 =
√
xT x .

We note that xT y is a scalar, but xyT is a matrix.

Example

xT y = [−1, 2, 3] ·

 3
2
1

 = (−1) · (3) + 2 · 2 + 3 · 1 = 4.

xyT =

 −12
3

 · [3, 2, 1] =

 −3 −2 −1
6 4 2
9 6 3
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Norm of a vector

Example

x =


−1
2
3
−5

 ;
||x ||1 = | − 1|+ |2|+ |3|+ | − 5| = 11

||x ||2 =
√

(−1)2 + 22 + 32 + (−5)2 =
√
39

||x ||∞ = max(| − 1|, |2|, |3|, | − 5|) = 5.
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Norm of a vector

A vector x is normalized if ||x || = 1. If x 6= 0 then
x

||x ||
is normalized

vector.

Example

xT x = [−1, 2, 3, −5] ·


−1
2
3
−5

 = (−1) · (−1) + 2 · 2+ 3 · 3+ (−5)2 = 39

||x ||2 =
√
39

V =
x

||x ||
=

[
−1√
39
,

2√
39
,

3√
39
,
−5√
39

]T
=⇒ ||V ||2 = 1
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Matrix norm. Definition

Let K will denote the field of real or complex numbers. Let Km×n denote
the vector space containing all matrices with m rows and n columns with
entries in K . Let A∗ denotes the conjugate transpose of matrix A.
A matrix norm is a vector norm on Km×n. That is, if ‖A‖ denotes the
norm of the matrix A, then,

‖A‖ > 0 if A 6= 0 and ‖A‖ = 0 if A = 0.

‖αA‖ = |α|‖A‖ for all α in K and all matrices A in Km×n.

‖A + B‖ ≤ ‖A‖+ ‖B‖ for all matrices A and B in Km×n.
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Matrix norm. Definition

In the case of square matrices (thus, m = n), some (but not all) matrix
norms satisfy the following condition, which is related to the fact that
matrices are more than just vectors:
‖AB‖ ≤ ‖A‖‖B‖ for all matrices A and B in K n×n.
A matrix norm that satisfies this additional property is called a
sub-multiplicative norm. The set of all n-by-n matrices, together with
such a sub-multiplicative norm, is an example of a Banach algebra.
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Matrix norm. Induced norm

If vector norms on Km and Kn are given (K is field of real or
complex numbers), then one defines the corresponding induced
norm or operator norm on the space of m-by-n matrices as the
following maxima:

‖A‖ = max{‖Ax‖ : x ∈ Kn with ‖x‖ = 1}

= max

{
‖Ax‖
‖x‖

: x ∈ Kn with x 6= 0
}
.

If m = n and one uses the same norm on the domain and the range,
then the induced operator norm is a sub-multiplicative matrix norm.
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Matrix norm. p-norm

The operator norm corresponding to the p-norm for vectors is:

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

.

In the case of p = 1 and p =∞, the norms can be computed as:

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij |,

which is simply the maximum absolute column sum of the matrix.

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |,

which is simply the maximum absolute row sum of the matrix
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Matrix norm. Example

For example, if the matrix A is defined by

A =

3 5 7
2 6 4
0 2 8

 ,
then we have ||A||1 = max(5, 13, 19) = 19 and
||A||∞ = max(15, 12, 10) = 15. Consider another example

A =


2 4 2 1
3 1 5 2
1 2 3 3
0 6 1 2

 ,
where we add all the entries in each column and determine the greatest
value, which results in ||A||1 = max(6, 13, 11, 8) = 13.
We can do the same for the rows and get ||A||∞ = max(9, 11, 9, 9) = 11.
Thus 11 is our max.
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Matrix norm. Example

In the special case of p = 2 (the Euclidean norm) and m = n (square
matrices), the induced matrix norm is the spectral norm. The spectral
norm of a matrix A is the largest singular value of A i.e. the square root
of the largest eigenvalue of the positive-semidefinite matrix A∗A:

‖A‖2 =
√
λmax(A∗A) = σmax(A)

where A∗ denotes the conjugate transpose of A.
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Matrix norm. Example

Example

A =

 1 −2 −3
6 4 2
9 −6 3


||A||2 = max

√
λ(ATA)

AT =

 1 6 9
−2 4 −6
−3 2 3

 , ATA =

 118 −32 36
−32 56 −4
36 −4 22



λ(ATA) =

 8.9683
45.3229
141.7089

 ;
max

√
λ(ATA) = max(2.9947, 6.7322,

11.9042) = 11.9042
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Matrix norm. Example

Example

A =

[
1 0
0 1

]
; AT =

[
1 0
0 1

]
; ATA− λI =

[
1− λ 0
0 1− λ

]
= 0;

λ1 = 1, λ2 = 1; ||A||2 = max
√
λ(ATA) = max(1, 1) = 1
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Matrix norm

Any induced norm satisfies the inequality

‖A‖ ≥ ρ(A),

where ρ(A) := max{|λ1|, ..., |λm|} is the spectral radius of A. For a
symmetric or hermitian matrix A, we have equality for the 2-norm, since
in this case the 2-norm is the spectral radius of A. For an arbitrary
matrix, we may not have equality for any norm.

Example

Take

A =

[
0 1
0 0

]
,

the spectral radius ρ(A) of A is 0, but A is not the zero matrix, and so
none of the induced norms are equal to the spectral radius of A:

‖A‖1 = 1, ‖A‖∞ = 1, ‖A‖2 = 1.

‖A‖2 =
√
λmax(A∗A) = σmax(A);A∗A =

[
0 0
1 0

] [
0 1
0 0

]
=

[
0 0
0 1

]
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Matrix norm. "Entrywise" norms

For square matrices we have the spectral radius formula:

lim
r→∞

‖Ar‖1/r = ρ(A).

These vector norms treat an m× n matrix as a vector of size m · n ,
and use one of the familiar vector norms.
For example, using the p-norm for vectors, we get:

‖A‖p =

 m∑
i=1

n∑
j=1

|aij |p
1/p

.

The special case p = 2 is the Frobenius norm, and p =∞ yields
the maximum norm.
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Matrix norm. Frobenius norm.

For p = 2, this is called the Frobenius norm or the Hilbert - Schmidt
norm, though the latter term is often reserved for operators on Hilbert
space. This norm can be defined in various ways:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√

trace(A∗A) =

√√√√min{m, n}∑
i=1

σ2
i

where A∗ denotes the conjugate transpose of A, σi are the singular values
of A, and the trace function is used. The Frobenius norm is very similar
to the Euclidean norm on Kn and comes from an inner product on the
space of all matrices. The Frobenius norm is sub-multiplicative and is
very useful for numerical linear algebra. This norm is often easier to
compute than induced norms and has the useful property of being
invariant under rotations.
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Matrix norm. Max norm.

The max norm is the elementwise norm with p =∞:

‖A‖max = max{|aij |}.

This norm is not sub-multiplicative.
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Matrix norm. Equivalence of norms.

For any two vector norms || · ||α and || · ||β , we have

r ‖A‖α ≤ ‖A‖β ≤ s ‖A‖α

for some positive numbers r and s, for all matrices A in Km×n. In
other words, they are equivalent norms; they induce the same
topology on Km×n. This is a special case of the equivalence of
norms in finite-dimensional Normed vector spaces.
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Examples of norm equivalence

For matrix A ∈ Rm×n the following inequalities hold:
‖A‖2 ≤ ‖A‖F ≤

√
r‖A‖2, where r is the rank of A

‖A‖max ≤ ‖A‖2 ≤
√
mn‖A‖max

1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞

1√
m
‖A‖1 ≤ ‖A‖2 ≤

√
n‖A‖1.

Here, || · ||p refers to the matrix norm induced by the vector p-norm.
Another useful inequality between matrix norms is

‖A‖2 ≤
√
‖A‖1‖A‖∞.
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Sherman - Morrison formula

Suppose A is an invertible square matrix and u, v are vectors.
Suppose furthermore that 1 + vTA−1u 6= 0. Then the
Sherman-Morrison formula states that

(A + uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (1)

Here, uvT is the outer product of two vectors u and v .
If the inverse of A is already known, the formula provides a
numerically cheap way to compute the inverse of A corrected by the
matrix uvT .
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We verify the properties of the inverse. A matrix Y (in this case the
right-hand side of the Sherman - Morrison formula) is the inverse of
a matrix X (in this case A + uvT ) if and only if XY = YX = I.
We first verify that the right hand side (Y) satisfies XY = I.

XY = (A + uvT )

(
A−1 − A−1uvTA−1

1 + vTA−1u

)
= AA−1 + uvTA−1 − AA−1uvTA−1 + uvTA−1uvTA−1

1 + vTA−1u

= I + uvTA−1 − uvTA−1 + uvTA−1uvTA−1

1 + vTA−1u

= I + uvTA−1 − u(1 + vTA−1u)vTA−1

1 + vTA−1u
.

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 3

http://www.math.chalmers.se/~larisa/


Note that vTA−1u is a scalar, so (1 + vTA−1u) can be factored
out, leading to:

XY = I + uvTA−1 − uvTA−1 = I .

In the same way, it is verified that

YX =

(
A−1 − A−1uvTA−1

1 + vTA−1u

)
(A + uvT ) = I .
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Perturbation Theory

Consider linear system Ax = b ,

x̂ such that x̂ = δx + x is its computed solution.
Suppose (A + δA)x̂ = b + δb.
Goal: to bound the norm of δx ≡ x̂ − x .
Subtract the equalities and solve them for δx
Rearranging terms we get:

δx = A−1(−δAx̂ + δb)
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Perturbation Theory
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Perturbation Theory

More precisely, let us consider following problems:

Ax = b (2)

(A + δA)(x + δx) = b + δb (3)

Subtract (2)-(3) to get:

Ax + Aδx + δAx + δAδx − Ax = b + δb − b. (4)

Aδx + δAx + δAδx = δb,

(A + δA)δx + δAx = δb.
(5)

(A + δA)δx = δb − δAx ,
(A + δA)δx = δb − δA(x̂ − δx),

Aδx + δAδx = δb − δAx̂ + δAδx ,

δx = A−1(δb − δAx̂).

(6)
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Perturbation Theory

Taking norms and triangle inequality leads us to

‖δx‖ ≤ ‖A−1‖(‖δA‖ · ‖x̂‖+ ‖δb‖)

Rearranging inequality gives us

‖δx‖
‖x̂‖

≤ ‖A−1‖ · ‖A‖ · (‖δA‖
‖A‖

+
‖δb‖
‖A‖ · ‖x̂‖

)

where k(A) = ‖A−1‖ · ‖A‖ is the condition number of the
matrix A
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Perturbation Theory

Lemma

Let ‖ · ‖ satisfy ‖AB‖ ≤ ‖A‖ · ‖B‖. Then ‖X‖ < 1 implies that I − X is
invertible. (I − X )−1 =

∑∞
i=0 X

i , and

‖(I − X )−1‖ ≤ 1
1− ‖X‖

. (7)
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Perturbation Theory

Recall
δx = A−1(−δAx̂ + δb)

We can rewrite the above equation by multiplying by A as

Aδx = −δAx̂ + δb,

Aδx + δAx̂ = δb,

Aδx + δA(x + δx) = δb,

δAx + (A + δA)δx = δb.

Solving this equation in the form δAx + (A + δA)δx = δb for δx
gives:

δx =
(
(A + δA)−1(−δAx + δb)

= [A(I + A−1δA)]−1(−δAx + δb)

= (I + A−1δA)−1A−1(−δAx + δb)
) (8)
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Perturbation Theory

Takes norms from both sides and then divide them by ‖x‖:

‖δx‖
‖x‖

≤ ‖(I + A−1δA)−1‖ · ‖A−1‖
(
‖δA‖+

‖δb‖
‖x‖

)
≤ ‖A−1‖

1− ‖A−1‖ · ‖δA‖

(
‖δA‖+

‖δb‖
‖x‖

)
(Lemma )

=
‖A−1‖ · ‖A‖

1− ‖A−1‖ · ‖A‖‖δA‖‖A‖

(
‖δA‖
‖A‖

+
‖δb‖
‖A‖ · ‖x‖

)

≤ k(A)

1− k(A)‖δA‖‖A‖

(
‖δA‖
‖A‖

+
‖δb‖
‖b‖

)
(9)

expresses the relative error ‖δx‖‖x‖ in the solution as multiple of

the relative errors ‖δA‖‖A‖ and ‖δb‖‖b‖ in the input.

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 3

http://www.math.chalmers.se/~larisa/


Perturbation Theory

Takes norms from both sides and then divide them by ‖x‖:

‖δx‖
‖x‖

≤ ‖(I + A−1δA)−1‖ · ‖A−1‖
(
‖δA‖+

‖δb‖
‖x‖

)
≤ ‖A−1‖

1− ‖A−1‖ · ‖δA‖

(
‖δA‖+

‖δb‖
‖x‖

)
(Lemma )

=
‖A−1‖ · ‖A‖

1− ‖A−1‖ · ‖A‖‖δA‖‖A‖

(
‖δA‖
‖A‖

+
‖δb‖
‖A‖ · ‖x‖

)

≤ k(A)

1− k(A)‖δA‖‖A‖

(
‖δA‖
‖A‖

+
‖δb‖
‖b‖

)
(9)

expresses the relative error ‖δx‖‖x‖ in the solution as multiple of

the relative errors ‖δA‖‖A‖ and ‖δb‖‖b‖ in the input.

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 3

http://www.math.chalmers.se/~larisa/


Perturbation Theory

Theorem
Let A be non-singular. Then
min

{
‖δA‖2
‖A‖2 : A + δA singular

}
= 1
‖A−1‖2·‖A‖2 = 1

k(A) . Therefore
the distance to the nearest singular matrix (ill-posed
problem)= 1

condition number
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Pertubation theory. Second approach.

Let us consider Ax = b. Let the computed solution x̂ = δx + x . Thus,
δx = x̂ − x = x̂ − A−1b.
Let us define residual as r = Ax̂ − b. Then x̂ = A−1(r + b) and
δx = x̂ − x = x̂ − A−1b = A−1(r + b)− A−1b.
Thus, δx = A−1r and we can write

||δx || ≤ ||A−1r || ≤ ||A−1|| · ||r ||.

This is the simplest way to estimate δx .
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Perturbation Theory

Theorem

Let r = Ax̂ − b Then there exists a δA such that ‖δA‖ = ‖r‖
‖x̂‖ and

(A + δA)x̂ = b. No δA of smaller norm and satisfying
(A + δA)x̂ = b exists. Thus, δA is the smallest possible backward
error (measured in norm). This is true for any vector norm and its
induced norm ( or ‖ · ‖2 for vectors and ‖ · ‖F for matrices).

Proof.
(A + δA)x̂ = b if δA · x̂ = −r , so ‖r‖ = ‖δA · x̂‖ ≤ ‖δA‖ · ‖x̂‖,
implying ‖δA‖ ≥ ‖r‖‖x̂‖ . We complete the proof only for the

two-norm and its induced matrix norm. Choose δA = −r ·x̂T
‖x̂‖22

. We

can easily verify that δA · x̂ = −r and ‖δA‖2 = ‖r‖2
‖x̂‖2
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Relative condition number

Let δA be a small componentwise relative perturbation in A and

|δA| ≤ ε|A|, |δb| ≤ ε|b|. (10)

Here, |A|, |δA| are matrices of absolute values of A, δA, correspondingly.
We use our perturbation equation

δx = A−1(−δAx̂ + δb). (11)

Now we use triangle inequality to get

|δx | ≤ |A−1|(|δA| · |x̂ |+ |δb|)
≤ |A−1|(ε|A| · |x̂ |+ ε|b|)
≤ ε(|A−1|(|A| · |x̂ |+ |b|)).

(12)

Using any vector norm (infinity, one-, Frobenious with || |z | || = ||z ||) we
have

||δx || ≤ ε‖ |A−1| · ( |A| · |x̂ |+ |b|)‖. (13)
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If we assume that δb = 0 then the estimate above can be weakened
to the bound

||δx || ≤ ε‖ |A−1| · |A| ‖ · ‖x̂‖. (14)

or

||δx ||
||x̂ ||

≤ ε‖ |A−1| · |A| ‖. (15)

Then we define as kCR(A) ≡ || |A−1| · |A| || the componentwise
relative condition number of A also called as Bauer condition
number or Skeel condition number.
Theorem about the distance from A to the nearest singular matrix
is also valid for kCR(A).
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Suppose that D is any nonsingular diagonal matrix and B is any
nonsingular matrix such that A = DB . Then

kCR(A) = kCR(DB) = || |(DB)−1| · |DB| ||
= || |B−1D−1| · |DB| ||
= || |B−1| · |B| || = kCR(B).

(16)

The equation abobe means that if DB is badly scaled, i.e. B is
well-conditioned and DB is badly conditioned then we still hope to
get accurate solution for Ax = (DB)x = b.
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Theorem
The smallest ε > 0 such that there exist |δA| ≤ ε|A| and
|δb| ≤ ε|b| satisfying (A + δA)x̂ = b + δb is called the
componentwise relative backward error which can be expressed as

ε = max
i

|ri |
(|A| · |x̂ |+ |b|)i

(17)

where ri = (Ax̂ − b)i .

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 3

http://www.math.chalmers.se/~larisa/


Pivot element

The pivot or pivot element is the element of a matrix, an array, or
some other kind of finite set, which is selected first by an algorithm
(e.g. Gaussian elimination, Quicksort, Simplex algorithm, etc.), to
do certain calculations. In the case of matrix algorithms, a pivot
entry is usually required to be at least distinct from zero, and often
distant from it; in this case finding this element is called pivoting.

Pivoting may be followed by an interchange of rows or columns to
bring the pivot to a fixed position and allow the algorithm to
proceed successfully, and possibly to reduce round-off error.
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Examples of systems that require pivoting

In the case of Gaussian elimination, the algorithm requires that pivot
elements not be zero. Interchanging rows or columns in the case of a
zero pivot element is necessary. The system below requires the
interchange of rows 2 and 3 to perform elimination. 1 −1 2 8

0 0 −1 −11
0 2 −1 −3


The system that results from pivoting is as follows and will allow the
elimination algorithm and backwards substitution to output the solution
to the system.  1 −1 2 8

0 2 −1 −3
0 0 −1 −11
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Examples of systems that require pivoting

Furthermore, in Gaussian elimination it is generally desirable to
choose a pivot element with large absolute value. This improves
the numerical stability. The following system is dramatically
affected by round-off error when Gaussian elimination and
backwards substitution are performed.[

0.00300 59.14 59.17
5.291 −6.130 46.78

]
This system has the exact solution of x1 = 10.00 and x2 = 1.000,
but when the elimination algorithm and backwards substitution are
performed using four-digit arithmetic, the small value of a11 causes
small round-off errors to be propagated. The algorithm without
pivoting yields the approximation of x1 ≈ 9873.3 and x2 ≈ 4.
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Examples of systems that require pivoting

In this case it is desirable that we interchange the two rows so that
a21 is in the pivot position[

5.291 −6.130 46.78
0.00300 59.14 59.17

]
.

Considering this system, the elimination algorithm and backwards
substitution using four-digit arithmetic yield the correct values
x1 = 10.00 and x2 = 1.000.
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