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Estimating Condition Numbers

To compute a practical error bound based on a bound (see Lecture 3)

‖δx‖ = ‖A−1r‖ ≤ ‖A−1‖‖r‖

we need to estimate ||A−1||. This is also enough to estimate the
condition number k(A) = ||A−1|| · ||A||, since ||A|| is easy to compute.
One approach is to compute A−1 explicitly and compute its norm.
However, this would cost 2n3, more than the original 2

3
n3 for Gaussian

elimination. It is a fact that most users will not bother to compute error
bounds if they are expensive.
So instead of computing A−1 we will devise a much cheaper algorithm to
estimate ||A−1||.
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Estimating Condition Numbers

Such an algorithm is called a condition estimator and should have
the following properties:

1. Given the L and U factors of A, it should cost O(n2), which for
large enough n is negligible compared to the 2

3
n3 cost of GEPP.

2. It should provide an estimate which is almost always within a
factor of 10 of ||A−1||. This is all one needs for an error bound
which tells you about how many decimal digits of accuracy that you
have.
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Estimating Condition Numbers

There are a variety of such estimators available. We choose one to
solve Ax = b.

This estimator is guaranteed to produce only a lower bound on
||A−1||, not an upper bound.

It is almost always within a factor of 10, and usually 2 to 3, of
||A−1||.
The algorithm estimates the one-norm ||B ||1 of a matrix B ,
provided that we can compute Bx and BT y for arbitrary x and y .
We will apply the algorithm to B = A−1, so we need to compute
A−1x and A−T y , i.e., solve linear systems. This costs just O(n2)
given the LU factorization of A.
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The algorithm was developed in:
W. W. Hager. Condition estimators. SIAM J. Sci. Statist. Comput.,
5:311-316, 1984.
N. J. Higham. A survey of condition number estimation for triangular
matrices. SIAM Rev., 29:575-596, 1987.
N. J. Higham. Experience with a matrix norm estimator. SIAM J. Sci.
Statist. Comput., 11:804-809, 1990.
with the latest version in [N. J. Higham. FORTRAN codes for estimating
the one-norm of a real or complex matrix, with applications to condition
estimation. ACM Trans. Math. Software].
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Recall that ||B ||1 is defined by

||B ||1 = max
x 6=0

||Bx ||1
||x ||1

= max
j

n∑

i=1

|bij |.

It is easy to show that the maximum over x 6= 0 is attained at
x = ej0 [0, . . . , 0, 1, 0, . . . , 0]

T . (The single nonzero entry is component j0,
where maxj

∑
i |bij | occurs at j = j0.)

Searching over all ej , j = 1, . . . , n, means computing all columns of
B = A−1; this is too expensive. Instead, since
||Bx ||1 = max||x||1≤1 ||Bx ||1, we can use hill climbing or gradient ascent
on f (x) ≡ ||Bx ||1 inside the set ||x ||1 ≤ 1. ||x ||1 ≤ 1 is clearly a convex
set of vectors, and f (x) is a convex function, since 0 ≤ α ≤ 1 implies
f (αx + (1 − α)y) = ||αBx + (1 − α)By ||1 ≤ α||Bx ||1 + (1 − α)||By ||1 =
αf (x) + (1 − α)f (y).
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Doing gradient ascent to maximize f (x) means moving x in the
direction of the gradient ∇f (x) (if it exists) as long as f (x)
increases. The convexity of f (x) means
f (y) ≥ f (x) +∇f (x) · (y − x) (if ∇f (x) exists). To compute
∇f (x) we assume all

∑
j bijxj 6= 0 in f (x) =

∑
i

∑
j |bijxj | (this is

almost always true). Let ζi = sign(
∑

j bijxj), so ζi = ±1 and

f (x) =
∑

i

∑
j ζibijxj . Then

∂f

∂xk
=

∑
i ζibik and

∇f = ζTB = (BT ζ)T .
In summary, to compute ∇f (x) takes three steps: ω = Bx ,
ζ = sign(ω) and ∇f (x) = ζTB .
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ALGORITHM Hager’s condition estimator returns a lower bound

||ω||1 on ||B ||1:
choose any x such that ||x ||1 = 1 /∗ e.g . xi =

1

n
∗/

repeat

ω = Bx , ζ = sign(ω), z = BT ζ, /∗ zT = ∇f ∗/
if ||z ||∞ ≤ zT x then

return ||ω||1
else

x = ej with 1 at the place j where |zj | = ||z ||∞
end if

end repeat
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Implementation in Matlab

x=(1/length(B))*ones(length(B),1);

iter=1;

while iter < 1000

w=B*x; xi=sign(w); z = B’*xi;

if max(abs(z)) <= z’*x

break

else

x= (max(abs(z))== abs(z));

end

iter = iter + 1;

end

LowerBound = norm(w,1);

end
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THEOREM 1. When ||ω||1 is returned, ||ω||1 = ||Bx ||1 is a local
maximum of ||Bx ||1.
2. Otherwise, ||Bej || (at end of loop) > ||Bx || (at start), so the algorithm
has made progress in maximizing f (x).
Proof.
1. In this case, ||z ||∞ ≤ zT x (*). Near x , f (x) = ||Bx ||1 =

∑
i

∑
j ζibijxj

is linear in x so f (y) = f (x) +∇f (x) · (y − x) = f (x) + zT (y − x),
where zT = ∇f (x). To show x is a local maximum we want
zT (y − x) ≤ 0 when ||y ||1 = 1. We compute

zT (y − x) = zT y − zT x =
∑

i zi · yi − zT x ≤ ∑
i |zi | · |yi | − zT x

≤ ||z ||∞ · ||y ||1 − zT x = ||z ||∞ − zT x︸ ︷︷ ︸
see(∗)

≤ 0.

2. In this case ||z ||∞ > zT x . Choose x̃ = ej · sign(zj), where j is chosen
so that |zj | = ||z ||∞. Then

f (x̃) = f (x) +∇f · (x̃ − x) = f (x) + zT (x̃ − x)
= f (x) + zT x̃ − zT x = f (x) + |zj | − zT x > f (x),

where the last inequality is true by construction. �
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Remarks

Higham [FORTRAN codes for estimating the one-norm of a real or
complex matrix, with applications to condition estimation; Experience
with a matrix norm estimator] tested a slightly improved version of this
algorithm by trying many random matrices of sizes 10,25,50 and
condition numbers k = 10, 103, 106, 109; in the worst case the computed
k underestimated the true k by a factor .44. A different condition
estimator is available in Matlab as rcond. The Matlab routine cond
computes the exact condition number ||A−1||2||A||2, it is much more
expensive than rcond.
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Estimating the Relative Condition Number

We can apply the Hager’s algorithm to estimate the relative condition
number kCR(A) = || |A−1| · |A| ||∞ or to evaluate the bound
|| |A−1| · |r | ||∞. We can reduce both to the same problem, that of
estimating || |A−1| · g ||∞, where g is a vector of nonnegative entries. To
see why, let e be the vector of all ones. From definition of norm, we see
that ||X ||∞ = ||Xe||∞ if the matrix X has nonnegative entries. Then

|| |A−1| · |A| ||∞ = || |A−1| · |A|e ||∞ = || |A−1| · g ||∞,

where g = |A|e.
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Here is how we estimate || |A−1| · g ||∞. Let G = diag(g1, . . . , gn); then
g = Ge. Thus

|| |A−1| · g ||∞ = || |A−1| · Ge ||∞ = || |A−1| · G ||∞ =

= || |A−1G | ||∞ = ||A−1G ||∞.
(2.12)

The last equality is true because ||Y ||∞ = || |Y | ||∞ for any matrix Y .
Thus, it suffices to estimate the infinity norm of the matrix A−1G . We
can do this by applying Hager’s algorithm to the matrix
(A−1G )T = GA−T , to estimate ||(A−1G )T ||1 = ||A−1G ||∞ (see
definition of norm).

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 5

http://www.math.chalmers.se/~larisa/


Estimating Condition Numbers
Special Linear Systems: s.p.d matrices

Practical Error Bounds

We present two practical error bounds for our approximate solution x̃ of
Ax = b. For the first bound we use inequality
||x̃ − x ||∞ ≤ ||A−1||∞ · ||r ||∞ to get

error =
||x̃ − x ||∞
||x̃ ||∞

≤ ||A−1||∞ · ||r ||∞||x̃ ||∞
, (2.13)

where r = Ax̃ − b is the residual. We estimate ||A−1||∞ by applying
Algorithm to B = A−T , estimating ||B ||1 = ||A−T ||1 = ||A−1||∞ (see
definition of norm).
Our second error bound comes from the inequality:

error =
||x̃ − x ||∞
||x̃ ||∞

≤ |||A−1| · |r |||∞
||x̃ ||∞

. (2.14)

We estimate |||A−1| · |r |||∞ using the algorithm based on equation (2.12).
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What Can Go Wrong

Error bounds (2.13) and (2.14) are not guaranteed to provide
bounds in all cases in practice.

First, the estimate of ||A−1|| from Algorithm (or similar algorithms)
provides only a lower bound, although the probability is very low
that it is more than 10 times too small.

Second, there is a small but non-negligible probability that roundoff
in the evaluation of r = Ax̂ − b might make ||r || artificially small, in
fact zero, and so also make our computed error bound too small.
To take this possibility into account, one can add a small quantity
to |r | to account for it: the roundoff in evaluating r is bounded by

|(Ax̂ − b)− fl(Ax̂ − b)| ≤ (n + 1)ε(|A| · |x̂ |+ |b|), (2.15)

so we can replace |r | with |r |+ (n + 1)ε(|A| · |x̂ |+ |b|) in bound
(2.14) or ||r || with ||r ||+(n+ 1)ε(||A|| · ||x̂ ||+ ||b||) in bound (2.13).

Third, roundoff in performing Gaussian elimination on very
ill-conditioned matrices can yield such inaccurate L and U that
bound (2.14) is much too low.
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Improving the Accuracy of a Solution

We have just seen that the error in solving Ax = b may be as large
as k(A)ε. If this error is too large, what can we do? One possibility
is to rerun the entire computation in higher precision, but this may
be quite expensive in time and space. Fortunately, as long as k(A)
is not too large, there are much cheaper methods available for
getting a more accurate solution.
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Improving the Accuracy of a Solution

To solve any equation f (x) = 0, we can try to use Newton’s method to

improve an approximate solution xi to get xi+1 = xi − f (xi )
f ′(xi )

. Applying

this to f (x) = Ax − b yields one step of iterative refinement:

r = Axi − b

solveAd = r for d

xi+1 = xi − d

If we could compute r = Axi − b exactly and solve Ad = r exactly, we
would be done in one step, which is what we expect from Newton applied
to a linear problem. Roundoff error prevents this immediate convergence.
The algorithm is interesting and of use precisely when A is so
ill-conditioned that solving Ad = r (and Ax0 = b) is rather inaccurate.

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 5

http://www.math.chalmers.se/~larisa/


Estimating Condition Numbers
Special Linear Systems: s.p.d matrices

Suppose that r is computed in double precision and
k(A) · ε < c ≡ 1

3n3g+1
< 1 where n is the dimension of A and g is the

pivot growth factor. Then repeated iterative refinement converges with

||xi − A−1b||∞
||A−1b||∞

= O(ε).

Note that the condition number does not appear in the final error bound.
This means that we compute the answer accurately independent of the
condition number, provided that k(A)ε is sufficiently less than 1.(In
practice, c is too conservative an upper bound, and the algorithm often
succeeds even when k(A)ε > c .)

For partial pivoting of n × n matrices g ≤ 2n−1. The classical definition
used by Wilkinson is (k is the number of permut.):

g(A) :=
maxi,j,k |aij |(k)
maxi,j |aij |

.

Another definition for LU decomposition of A is:

g(A) :=
‖|L| · |U|‖∞

‖A‖∞
.
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Single Precision Iterative Refinement

THEOREM.
Suppose that r is computed in single precision and

||A−1||∞ · ||A||∞ · maxi (|A| · |x |)i
mini (|A| · |x |)i

· ε < 1.

Then one step of iterative refinement yields x1 such that
(A+ δA)x1 = b + δb with |δaij | = O(ε)|aij | and |δbi | = O(ε)|bi |. In
other words, the componentwise relative backward error is as small as
possible. For example, this means that if A and b are sparse, then δA and
δb have the same sparsity structures as A and b, respectively.
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For a proof, see
N. J. Higham. Accuracy and Stability of Numerical Algorithms.

SIAM, Philadelphia, PA, 1996.

M. Arioli, J. Demmel, and I. S. Duff. Solving sparse linear systems

with sparse backward error. SIAM J. Matrix Anal. AppL,

10:165-190, 1989.

R. D. Skeel. Scaling for numerical stability in Gaussian elimination.

Journal of the ACM, 26:494-526, 1979.

R. D. Skeel. Iterative refinement implies numerical stability for

Gaussian elimination. Math. Comp., 35:817-832, 1980.

R. D. Skeel. Effect of equilibration on residual size for partial

pivoting. SIAM J. Numer. Anal, 18:449-454, 1981.

Single precision iterative refinement and the error bound (2.14) are
implemented in LAPACK routines like sgesvx.
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Equilibration

There is one more common technique for improving the error in
solving a linear system: equilibration. This refers to choosing an
appropriate diagonal matrix D and solving DAx = Db instead of
Ax = b. D is chosen to try to make the condition number of DA
smaller than that of A.

For instance, choosing dii to be the reciprocal of the two-norm of
row i of A would make DA nearly equal to the identity matrix,
reducing its condition number from 1014 to 1.

It is possible to show that choosing D this way reduces the condition
number of DA to within a factor of

√
n of its smallest possible value

for any diagonal D [A. Van Der Sluis. Condition numbers and
equilibration of matrices. Numer. Math., 14:14-23, 1969].

In practice we may also choose two diagonal matrices Drow and Dcol

and solve (DrowADcol )x̄ = Drowb, x = Dcol x̄ and thus
DrowAx = Drowb.
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Special Linear Systems

It is important to exploit any special structure of the matrix to increase
speed of solution and decrease storage. We will consider only real
matrices:

s.p.d. matrices,

symmetric indefinite matrices,

band matrices,

general sparse matrices,

dense matrices depending on fewer than n2 independent parameters.
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Real Symmetric Positive Definite Matrices

Recall that a real matrix A is s.p.d. if and only if A = AT and xTAx > 0
for all x 6= 0. In this section we will show how to solve Ax = b in half the
time and half the space of Gaussian elimination when A is s.p.d.
PROPOSITION.
1. If X is nonsingular, then A is s.p.d. if and only if XTAX is s.p.d.
2. If A is s.p.d. and H is any principal submatrix of A(H = A(j : k , j : k)
for some j ≤ k), then H is s.p.d.
3. A is s.p.d. if and only if A = AT and all its eigenvalues are positive.
4. If A is s.p.d., then all aii > 0, and maxij |aij | = maxi aii > 0.
5. A is s.p.d. if and only if there is a unique lower triangular nonsingular
matrix L, with positive diagonal entries, such that A = LLT . A = LLT is
called the Cholesky factorization of A, and L is called the Cholesky factor
of A.
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Proof.

1. If X is nonsingular, then A is s.p.d. if and only if XTAX is
s.p.d.
⇒ When X is nonsingular and A is s.p.d. implies that for any
Xx 6= 0 for all x 6= 0, so xTXTAXx > 0 for all x 6= 0. We can see
that xTXTAXx = xTXTAXx > 0 what implies XTAX is s.p.d.

⇐ When XTAX is s.p.d. then for all x 6= 0 we have that
xTXTAXx > 0 and XTAX = (XTAX )T = XATXT = XTATX .
Thus, A = AT . We observe that xTXTAXx = xTXTAXx > 0
what means that A is s.p.d.
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2. If A is s.p.d. and H is any principal submatrix of
A(H = A(j : k , j : k) for some j ≤ k), then H is s.p.d.
Suppose first that H = A(1 : m, 1 : m). Then given any m-vector
y , the n-vector x = [yT ,O]T satisfies yTHy = xTAx . So if
xTAx > 0 for all nonzero x , then yTHy > 0 for all nonzero y , and
so H is s.p.d. If H does not lie in the upper left corner of A, let P
be a permutation so that H does lie in the upper left corner of
PTAP and apply Part 1.
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3. A is s.p.d. if and only if A = AT and all its eigenvalues are

positive.

⇒ Let A is s.p.d., then A = AT and for all x 6= 0 xTAx > 0.
Let X be the real, orthogonal eigenvector matrix of A so that
XTAX =

∧
is the diagonal matrix of real eigenvalues λi . Since

xT
∧
x =

∑
i λix

2

i then by part 1 since A is s.p.d. then XTAX is s.p.d.
and thus 0 < xTXTAXx = xT

∧
x =

∑
i λix

2

i . Thus,
∑

i λix
2

i > 0 only
when each λi > 0.

⇐ Let A = AT and all eigenvalues λi of A are postive. Let X be the real,
orthogonal eigenvector matrix of A so that XTAX =

∧
is the diagonal

matrix of real eigenvalues λi . Consider xT
∧

x =
∑

i λix
2

i . Since all
eigenvalues λi of A are postive then xT

∧
x =

∑
i λix

2

i > 0. We observe
then that

∧
is positive definite. From xT

∧
x > 0 it follows that

xTXTAXx = xT
∧
x > 0 and thus, XTAX is s.p.d. By part 1, A is also

s.p.d.

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 5

http://www.math.chalmers.se/~larisa/


Estimating Condition Numbers
Special Linear Systems: s.p.d matrices

4. If A is s.p.d., then all aii > 0, and maxij |aij | = maxi aii > 0.
Let ei be the ith column of the identity matrix. Then
eTi Aei = aii > 0 for all i . If |akl | = maxij |aij | but k 6= l , choose
x = ek − sign(akl)el . Then xTAx = akk + all − 2|akl | ≤ 0,
contradicting positive-definiteness.

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 5

http://www.math.chalmers.se/~larisa/


Estimating Condition Numbers
Special Linear Systems: s.p.d matrices

5. A is s.p.d. if and only if there is a unique lower triangular
nonsingular matrix L, with positive diagonal entries, such
that A = LLT . A = LLT is called the Cholesky factorization of
A, and L is called the Cholesky factor of A.
Suppose A = LLT with L nonsingular. Note that
‖LT x‖2

2
= (LT x)TLT x = (xTL)(LT x). Then

xTAx = (xTL)(LT x) = ‖LT x‖2

2
> 0 for all x 6= 0, so A is s.p.d. If

A is s.p.d., we show that L exists by induction on the dimension n.
If we choose each lii > 0, our construction will determine L

uniquely. If n = 1, choose l11 =
√
a11, which exists since a11 > 0.

As with Gaussian elimination, it suffices to understand the block
2-by-2 case.
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Write

A =

[
a11 A12

AT
12

A22

]

=

[ √
a11 0

AT
12√
a11

I

] [
1 0

0 Ã22

] [ √
a11

A12√
a11

0 I

]

=

[
a11 A12

AT
12

Ã22 +
AT

12A12

a11

]
,

so the (n − 1)-by-(n − 1) matrix Ã22 +
AT

12A12

a11
is symmetric and

thus, A is also symmetric.
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We note to the previous slide (here we write how we can obtain
elements in the last matrix on the previous slide) that

A =

[
a11 A12

AT
12

A22

]
= LLT =

=

[ √
a11 0

y L̃22

] [ √
a11 yT

0 L̃T
22

]

=

[
a11

√
a11y

T

√
a11y yyT + L̃22L̃

T
22

]
,

and thus A12 =
√
a11y such that we can find y = A12√

a11
and

A22 = yyT + L̃22L̃
T
22

= Ã22 +
AT

12A12

a11
with Ã22 = L̃22L̃

T
22
.
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By Part 1 above,

[
1 0

0 Ã22

]
is s.p.d, so by Part 2 Ã22 is s.p.d.

Thus by induction there exists an L̃ such that Ã22 = L̃L̃T and

A =

[ √
a11 0

AT
12√
a11

I

] [
1 0

0 L̃L̃T

] [ √
a11

A12√
a11

0 I

]

=

[ √
a11 0

AT
12√
a11

L̃

][ √
a11

A12√
a11

0 L̃T

]
≡ LLT . �
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We may rewrite this induction as the following algorithm.

ALGORITHM Cholesky algorithm:

for j = 1 to n

ljj = (ajj −
∑j−1

k=1
l2jk)

1/2

for i = j + 1 to n

lij = (aij −
∑j−1

k=1
lik ljk)/ljj

end for

end for

If A is not positive definite, then (in exact arithmetic) this
algorithm will fail by attempting to compute the square root of a
negative number or by dividing by zero; this is the cheapest way to
test if a symmetric matrix is positive definite.
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Number of operations in Cholesky algorithm

In Cholesky algorithm L can overwrite the lower half of A. Only the lower
half of A is referred to by the algorithm, so in fact only n(n + l)/2
storage is needed instead of n2. The number of flops is

Number of operations in Cholesky algorithm

=

n∑

j=1


2j +

n∑

i=j+1

2j


 =

1

3
n3 + O(n2).

(1)

The number of operations for LU decomposition is 2

3
n3 + O(n2).
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Stability of Cholesky algorithm

Pivoting is not necessary for Cholesky to be numerically stable. We show
this as follows. The same analysis as for Gaussian elimination reveals that
we will have similar formula for error E in Cholesky decomposition as in
the LU decomposition:

A = LLT + E ,

where error in Cholesky decomposition will be bounded as

|E | ≤ nǫ|L| · |LT |.

Taking norms we get

‖E‖ ≤ nǫ‖ |L| ‖ · ‖ |LT | ‖.

We can rewrite expression above as

‖E‖ ≤ nǫ‖L‖ · ‖LT‖. (2)

Thus, in formula (2) we have obtained error estimate in decomposition
A = L · LT .
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Stability of Cholesky algorithm

To show how the error in Gaussian elimination fo solution Ax = b can be
obtained via usiang Cholesky decomposition A = L · LT in it, we again
solve L LT x︸︷︷︸

y

= b via Ly = b and LT x = y . Solving Ly = b gives as a

computed solution ŷ such that (L+ δL)ŷ = b where |δL| ≤ nε|L|. The
same is true for (LT + δLT )x̂ = ŷ with |δLT | ≤ nε|LT |. Combining both
estimates into one we get

b = (L+ δL)ŷ = (L+ δL)(LT + δLT )x̂

= (LLT + LδLT + δLLT + δLδLT )x̂

= (A−E + LδLT + δLLT + δLδLT︸ ︷︷ ︸
δA

)x̂

= (A+ δA)x̂ .
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Stability of Cholesky algorithm

Recall
δA = −E + LδLT + δLLT + δLδLT .

Now we combine all bounds for E , δLT , δL and use triangle inequality to
get

|δA| ≤ | − E + LδLT + δLLT + δLδLT |
≤ |E |+ |L| · |δLT |+ |δL| · |LT |+ |δL| · |δLT |

≤ nε|L| · |LT |+ nε|L| · |LT |+ nε|L| · |LT |+ n2ε2|L| · |LT |
≈ 3nε|L| · |LT |.
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Stability of Cholesky algorithm

Assuming that ‖ |X | ‖ = ‖X‖ is true (as before for Frobenius, infinity,
one-norms but not for two-norms) we obtain

||δA|| ≤ 3nε||L|| · ||LT ||. (3)

Thus, from (3) follows that the computed solution x̃ satisfies
(A+ δA)x̃ = b with |δA| ≤ 3nε|L| · |LT |. But by the Cauchy-Schwartz
inequality and proposition (part 4) we have that for every entry (i , j) of
|L| · |LT | we can write estimate

(|L| · |LT |)ij =
∑

k

|lik | · |ljk |

≤
√∑

k l
2

ik

√∑
k l

2

jk

≤ √
aii · √ajj ≤ maxij |aij | = maxi aii > 0.

Cholesky algorithm

for j = 1 to n

ljj = (ajj −
∑j−1

k=1
l2jk )

1/2

for i = j + 1 to n

lij = (aij −
∑j−1

k=1
lik ljk )/ljj

end for

end for
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Stability of Cholesky algorithm

Then applying this estimate to all n entries of |L| · |LT | we have

‖ |L| · |LT | ‖∞ ≤ n‖A‖∞. (4)

Substituting (4) into (3) we get the following estimate

‖δA‖∞ ≤ 3n2ε‖A‖∞. (5)

From it follows that Cholesky is stable when

‖δA‖∞
‖A‖∞

≤ 3n2ε, (6)

what means that Cholesky is “more stable” than LU. Recall that for LU
we have obtained that Gaussian elimination is stable if

‖δA‖ ≤ 3nε‖L‖‖U‖ ≤ 3nε‖A‖. (7)

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 5

http://www.math.chalmers.se/~larisa/


Estimating Condition Numbers
Special Linear Systems: s.p.d matrices

Symmetric Indefinite Matrices

The question of whether we can still save half the time and half the
space when solving a symmetric but indefinite (neither positive
definite nor negative definite) linear system naturally arises. It turns
out to be possible, but a more complicated pivoting scheme and
factorization is required.

If A is nonsingular, one can show that there exists a permutation P ,
a unit lower triangular matrix L, and a block diagonal matrix D with
1-by-1 and 2-by-2 blocks such that PAPT = LDLT .

To see why 2-by-2 blocks are needed in D, consider the matrix[
0 1
1 0

]
. This factorization can be computed stably, saving about

half the work and space compared to standard Gaussian elimination.
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Band Matrices

A matrix A is called a band matrix with lower bandwidth bL, and upper
bandwidth bU if aij = 0 whenever i > j + bL or i < j − bU :

A =




a11 · · · a1,bU+1 0
... a2,bU+2

abL+1,1

. . .

abL+2,2 an−bU ,n

. . .
...

0 an,n−bL · · · an,n




.

Band matrices arise often in practice and are useful to recognize because
their L and U factors are also "essentially banded", making them cheaper
to compute and store. We consider LU factorization without pivoting
and show that L and U are banded in the usual sense, with the same
band widths as A.

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 5

http://www.math.chalmers.se/~larisa/


Estimating Condition Numbers
Special Linear Systems: s.p.d matrices

Example of a bandmatrix

The matrix A which appears after discretization of Laplacian in the
Poisson’s equation −△u = f is a bandmatrix. After discretization of
laplacian we should solve system in the form Au = b. The vector b has
the components bi,j = h2fi,j . The explicit elements of the matrix A are
given by the following block matrix

A =




AN −IN

−IN
. . .

. . .
. . .

. . . −IN
−IN AN




with blocks AN of order N given by

AN =




4 −1 0 0 · · · 0
−1 4 −1 0 · · · 0

0 −1 4 0 · · · 0
· · · · · · · · · · · · · · · · · ·

0 · · · · · · 0 −1 4




,
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Example: ODE

Example

Consider the ordinary differential equation (ODE)
y ′′(x)− p(x)y ′(x)− q(x)y(x) = r(x) on the interval [a, b] with
boundary conditions y(a) = α, y(b) = β. We also assume
q(x) ≥ q > 0. This equation may be used to model the heat flow
in a long, thin rod, for example. To solve the differential equation
numerically, we discretize it by seeking its solution only at the
evenly spaced mesh points xi = a+ ih, i = 0, . . . ,N + 1, where
h = (b − a)/(N + 1) is the mesh spacing. Define pi = p(xi ),
ri = r(xi ), and qi = q(xi ).
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Example

We need to derive equations to solve for our desired approximations
yi ≈ y(xi ), where y0 = α and yN+1 = β. To derive these equations, we
approximate the derivative y ′(xi ) by the following finite difference
approximation:

y ′(xi ) ≈
yi+1 − yi−1

2h
.

(Note that as h gets smaller, the right-hand side approximates y ′(xi )
more and more accurately.) We can similarly approximate the second
derivative by

y ′′(xi ) ≈
yi+1 − 2yi + yi−1

h2
.

Inserting these approximations into the differential equation yields

yi+1 − 2yi + yi−1

h2
− pi

yi+1 − yi−1

2h
− qiyi = ri , 1 ≤ i ≤ N.
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Example

Multiplying by −h2/2 we get:

−
yi+1

2
+ yi −

yi−1

2
+ pi

yi+1h

4
− pi

yi−1h

4
+ qiyi

h2

2
= −

− rih
2

2

Rewriting this as a linear system we get Ay = b, where

y =




y1

...

yN



, b =

−h2

2




r1

...

rN



+




( 1

2
+ h

4
p1)α

0
...
0

( 1

2
− h

4
pN)β



,
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Example

and recalling

−yi+1

2
+ yi −

yi−1

2
+ pi

yi+1h

4
− pi

yi−1h

4
+ qiyi

h2

2
= − − rih

2

2

we have

A =




a1 −c1

−b2

. . .
. . .

. . .
. . . −cN−1

−bN aN



,

ai = 1 + h2

2
qi ,

bi = 1

2
[1 + h

2
pi ],

ci = 1

2
[1 − h

2
pi ].

Note that ai > 0 and also bi > 0 and ci > 0 if h is small enough.
This is a nonsymmetric tridiagonal system to solve for y . We will show
how to change it to a symmetric positive definite tridiagonal system, so
that we may use band Cholesky to solve it.
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Example

Choose D = diag(1,
√

c1
b2

,
√

c1c2
b2b3

, . . . ,
√

c1c2···cN−1

b2b3···bN
). Then we may

change Ay = b to (DAD−1

︸ ︷︷ ︸
Ã

) (Dy)︸ ︷︷ ︸
ỹ

= Db︸︷︷︸
b̃

or Ãỹ = b̃, where

Ã =




a1 −
√
c1b2

−
√
c1b2 a2 −

√
c2b3

−
√
c2b3

. . .
. . .

. . . −
√

cN−1bN
−
√
cN−1bN aN



.

It is easy to see that Ã is symmetric, and it has the same eigenvalues as
A because A and Ã = DAD−1 are similar. We will use the next theorem
to show it is also positive definite.
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Gershgorin’s Theorem

THEOREM ( Gershgorin’s) Let B be an arbitrary matrix. Then the
eigenvalues λ of B are located in the union of the n disks

|λ− bkk | ≤
∑

j 6=k

|bkj |.

Proof. Given λ and x 6= 0 such that Bx = λx , let 1 = ||x ||∞ = xk by

scaling x if necessary. Then
∑N

j=1
bkjxj = λxk = λ, so

λ− bkk =
∑N

j = 1
j 6= k

bkjxj , implying

|λ− bkk | ≤
∑

j 6=k

|bkjxj | ≤
∑

j 6=k

|bkj ||xj | ≤
∑

j 6=k

|bkj | = Rk . �
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Examples of using Gershgorin’s circle theorem

Example

Example 1.
Use the Gershgorin circle theorem to estimate the eigenvalues of

A =




10 −1 0 1
0.2 8 0.2 0.2
1 1 2 1
−1 −1 −1 −11


.

Starting with row one, we take the element on the diagonal, aii as the
center for the disc. We then take the remaining elements in the row and
apply the formula: ∑

j 6=i

|aij | = Ri

to obtain the following four discs:
D(10, 2),D(8, 0.6),D(2, 3), and D(−11, 3)
The eigenvalues are: 9.8218, 8.1478, 1.8995, -10.86
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Example

−15 −10 −5 0 5 10 15
−3

−2

−1

0

1

2

3

 

 

 D(10,2)

 D(8,0.6)

 D(2,3)

D(−11,3)

eigenvalues

centers

Example 1

In example 1 the eigenvalues are: 9.8218, 8.1478, 1.8995, -10.86
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Examples of using Gershgorin’s circle theorem

Example

Example 2.
Use the Gershgorin circle theorem to estimate the eigenvalues of

A =




7 5 2 1
2 8 3 2
1 1 5 1
1 1 1 6


.

Starting with row one, we take the element on the diagonal, aii as the
center for the disc. We then take the remaining elements in the row and
apply the formula: ∑

j 6=i

|aij | = Ri

to obtain the following four discs:
D(7, 8),D(8, 7),D(5, 3),D(6, 3)
The eigenvalues are: 12.2249 + 0.0000i; 4.4977 + 0.6132i; 4.4977 -
0.6132i; 4.7797 + 0.0000i;
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Example

−2 0 2 4 6 8 10 12 14 16
−8

−6

−4

−2

0

2

4

6

8

 

 

 D(7,8)

 D(8,7)

 D(5,3)

D(6,3)

eigenvalues

centers

Example 2

In example 2 the eigenvalues are: 12.2249 + 0.0000i; 4.4977 + 0.6132i; 4.4977 - 0.6132i; 4.7797 +Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 5
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Example: ODE (continuation)

Example

If h is so small that for all i , | h
2
pi | < 1, then

|bi |+|ci | =
1

2

(
1 +

h

2
pi

)
+

1

2

(
1 − h

2
pi

)
= 1 < 1+

h2

2
q ≤ 1+

h2

2
qi = ai .

Therefore all eigenvalues of A lie inside the disks centered at
ai = 1 + h2qi/2 ≥ 1 + h2q/2 > 1 with radius 1; We can conclude
that all eigenvalues must have positive real parts.

Since Ã is symmetric, its eigenvalues are real and hence positive, so
Ã is positive definite. Its smallest eigenvalue is bounded below by
qh2/2.

Thus, it can be solved by Cholesky.
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Example: solution of Poisson’s equation

The model problem is the following Dirichlet problem for Poisson’s
equation:

−△u(x) = f (x) in Ω,

u = 0 on ∂Ω.
(8)

Here f (x) is a given function, u(x) is the unknown function, and the
domain Ω is the unit square Ω = {(x1, x2) ∈ (0, 1)× (0, 1)}. To solve
numerically (8) we first discretize the domain Ω with x1i = ih1 and
x2j = jh2, where h1 = 1/(ni − 1) and h2 = 1/(nj − 1) are the mesh sizes
in the directions x1, x2, respectively, ni and nj are the numbers of
discretization points in the directions x1, x2, respectively. In this example
we choose ni = nj = n with n = N + 2, where N is the number of inner
nodes in the directions x1, x2, respectively.
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Example: solution of Poisson’s equation

Indices (i , j) are such that 0 < i , j < n + 1 and are associated with every
global node nglob of the finite difference mesh. Global nodes numbers
nglob in two-dimensional case can be computed as:

nglob = j + ni (i − 1). (9)

or using the following loop (here, ni is number of points in x direction, nj
- number of points in y direction):

for i=1:ni

for j=1:nj

n_g = j + ni*(i - 1).

end

end
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We use the standard finite difference discretization of the Laplace
operator ∆u in two dimensions and obtain discrete laplacian ∆ui,j :

∆ui,j =
ui+1,j − 2ui,j + ui−1,j

h2
+

ui,j+1 − 2ui,j + ui,j−1

h2
, (10)

where ui,j is the solution at the discrete point (i , j). Using (10), we
obtain the following scheme for solving problem (8):

−
(
ui+1,j − 2ui,j + ui−1,j

h2
+

ui,j+1 − 2ui,j + ui,j−1

h2

)
= fi,j , (11)

where fi,j are the value of the function f at the discrete point (i , j).
Then (11) can be rewritten as

− (ui+1,j − 2ui,j + ui−1,j + ui,j+1 − 2ui,j + ui,j−1) = h2fi,j , (12)

or in the more convenient form as

− ui+1,j + 4ui,j − ui−1,j − ui,j+1 − ui,j−1 = h2fi,j . (13)
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System (13) can be written in the form Au = b. The vector b has the
components bi,j = h2fi,j . The explicit elements of the matrix A are given
by the following block matrix

A =




AN −IN

−IN
. . .

. . .
. . .

. . . −IN
−IN AN




with blocks AN of order N given by

AN =




4 −1 0 0 · · · 0
−1 4 −1 0 · · · 0

0 −1 4 0 · · · 0
· · · · · · · · · · · · · · · · · ·

0 · · · · · · 0 −1 4




,

which are located on the diagonal of the matrix A, and blocks with the
identity matrices −IN of order N on its off-diagonals. The matrix A is
symmetric and positive definite and we can use the LU factorization
algorithm without pivoting.
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Suppose, that we have discretized the two-dimensional domain Ω as
described above with N = ni = nj = 3. We present the schematic
discretization via the global nodes numbering for all 1 ≤ i , j < n + 1

nglob = j + ni (i − 1).

in the following scheme:




a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3


 =⇒




n1 n2 n3

n4 n5 n6

n7 n8 n9


 =⇒




1 2 3
4 5 6
7 8 9


 .

(14)
Then the explicit form of the block matrix A will be:

A =



























4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4



























.
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Example 8.2: Gaussian elimination for solution of Poisson’s

equation

We illustrate the numerical solution of problem (8). We define the right hand side f (x) of (8) as

f (x1, x2) = Af exp

(

−
(x1 − c1)

2

2s2
1

−
(x2 − c2)

2

2s2
2

)

1

a(x1, x2)
, (15)

The coefficient a(x1, x2) in (15) is given by the following Gaussian function:

a(x1, x2) = 1 + A exp

(

−
(x1 − c1)

2

2s2
1

−
(x2 − c2)

2

2s2
2

)

, (16)

Here A, Af are the amplitudes of these functions, c1, c2 are constants which show the location of the
center of the Gaussian functions, and s1, s2 are constants which show spreading of the functions in x1
and x2 directions.
We produce the mesh with the points (x1 i , x2 j ) such that x1 i = ih, x2 j = jh with h = 1/(N + 1), where
N is the number of the inner points in x1 and x2 directions. The linear system of equations Au = f is
solved then via the LU factorization of the matrix A without pivoting.
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Example 8.2: solution of Poisson’s equation via LU
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Figure: Solution of Poisson’s equation (8) with f (x1, x2) as in (15) and
a(x1, x2) as in (16).
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Example 8.4.4: solution of Poisson’s equation using

Cholesky factorization

f (x1, x2) = 1 + 10e

(

−
(x1−0.25)2

0.02
−

(x2−0.25)2

0.02

)

+ 10e

(

−
(x1−0.75)2

0.02
−

(x2−0.75)2

0.02

)

(17)
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Figure: Solution of Poisson’s equation (8) with f (x1, x2) as in (17).
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