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Classification problems

Classification problem

The goal of regression is to predict the value of one or more continuous
target variables t = {ti}, i = 1, ...,m by knowing the values of input
vector x = {xi}, i = 1, ...,m. Usually, classification algorithms are
working well for linearly separable data sets.

Definition
Let A and B are two data sets of points in an n-dimensional Euclidean
space. Then A and B are linearly separable if there exist n + 1 real
numbers ω1, ..., ωn, l such that every point x ∈ A satisfies

∑n
i=1 ωixi > l

and every point x ∈ B satisfies
∑n

i=1 ωixi < −l .

The classification problem is as follows:

Suppose that we have data points {xi}, i = 1, ...,m which are
separated into two classes A and B. Assume that these classes are
linearly separable.

The goal is to find the decision line which will separate these two
classes. This line will also predict in which class will the new point
fall.
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Non-regularized classification problem

The non-regularized classification problem is formulated as a standard
least squares problem.
In the non-regularized classification problem the goal is to find optimal
weights ω = (ω1, ..., ωM), M is the number of weights, in the functional

F (ω) =
1
2
‖t − y(ω)‖22 =

1
2

m∑
i=1

(ti − yi (ω))2 (1)

with m data points. Here, t = {ti}, i = 1, ...,m, is the target function
with known values, y(ω) = {yi (ω)} := {y(xi , ω)}, i = 1, ...,m, is the
classifiers model function.
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Regularized classification problem

In the regularized classification problem to find optimal vector of weights
ω = {ωi}, i = 1, ...,M, to the functional (1) is added the regularization
term such that the functional is written as

F (ω) =
1
2
‖t−y(ω)‖22 +

1
2
γ‖ω‖22 =

1
2

m∑
i=1

(ti−yi (ω))2 +
1
2
γ

M∑
j=1

|ωj |2. (2)

Here, γ is the regularization parameter, ‖ω‖22 = ωTω = ω2
1 + ...+ ω2

M , M
is the number of weights. In order to find the optimal weights in (1) or in
(2), the following minimization problem should be solved

min
ω

F (ω). (3)

Thus, we seek for a stationary point of (1) or (2) with respect to ω such
that

F ′(ω)(ω̄) = 0, (4)

where F ′(ω) is the Fréchet derivative acting on ω̄.
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More precisely, for the functional (2) we get

F ′(ω)(ω̄) =
M∑
i=1

F ′ωi
(ω)(ω̄i ),

∂F

∂ωi
(ω)(ω̄i ) := F ′ωi

(ω)(ω̄i ) = −(t − y) · y ′ωi
(ω̄i ) + γωi (ω̄i ), i = 1, ...,M.

(5)

The Fréchet derivative of the functional (1) is obtained by taking γ = 0
in (5). To find optimal vector of weights ω = {ωi}, i = 1, ...,M can be
used least squares or machine learning algorithms.
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Least squares for classification

The linear regression is similar to the solution of linear least squares
problem and can be used for classification problems appearing in machine
learning algorithms. We will revise solution of linear least squares
problem in terms of linear regression.
The simplest linear model for regression is

f (x , ω) = ω0 · 1 + ω1x1 + ...+ ωMxM . (6)

Here, ω = {ωi}, i = 0, ...,M are weights with bias parameter ω0,
{xi}, i = 1, ...,M are training examples. Target values (known data) are
{ti}, i = 1, ...,N which correspond to {xi}, i = 1, ...,M. Here, M is the
number of weights and N is the number of data points. The goal is to
predict the value of t in (1) for a new value of x in the model function
(6).
The linear model (6) can be written in the form

f (x , ω) = ω0 · 1 +
M∑
i=1

ωiϕi (x) = ω0 + ωTϕ(x), (7)

where ϕi (x), i = 0, ...,M are known basis functions with ϕ0(x) = 1.
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Non-regularized least squares problem

In non-regularized linear regression or least squares problem the goal is to
minimize the sum of squares

E (ω) =
1
2

N∑
n=1

(tn− f (x , ω))2 =
1
2

N∑
n=1

(tn−ωTϕ(xn))2 :=
1
2
‖t−ωTϕ(x)‖22

(8)
to find

min
ω

E (ω) = min
ω

1
2
‖t − ωTϕ(x)‖22. (9)

The problem (9) is a typical least squares problem of the minimizing the
squared residuals

min
ω

1
2
‖r(ω)‖22 = min

ω

1
2
‖t − ωTϕ(x)‖22 (10)

with the residual r(ω) = t − ωTϕ(x).
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The test functions ϕ(x) form the design matrix A

A =


1 ϕ1(x1) ϕ2(x1) . . . ϕM(x1)
1 ϕ1(x2) ϕ2(x2) . . . ϕM(x2)
1 ϕ1(x3) ϕ2(x3) . . . ϕM(x3)
...

...
. . . . . .

...
1 ϕ1(xN) ϕ2(xN) . . . ϕM(xN)

 , (11)

and the regression problem (or the least squares problem) is written as

min
ω

1
2
‖r(ω)‖22 = min

ω

1
2
‖Aω − t‖22, (12)

where A is of the size N ×M with N > M, t is the target vector of the
size N, and ω is vector of weights of the size M.
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To find minimum of the error function (12):

min
ω

1
2
‖r(ω)‖22 = min

ω

1
2
‖Aω − t‖22,

and derive the normal equations, we look for the ω where the gradient of
the norm ‖r(ω)‖22 = ||Aω − t||22 = (Aω − t)T (Aω − t) vanishes, or where
(‖r(ω)‖22)′ω = 0. To derive the Fréchet derivative, we consider the
difference ‖r(ω + e)‖22 − ‖r(ω)‖22 and single out the linear part with
respect to ω. See details in Lecture 6 for derivation.
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Regularized linear regression

Let now the matrix A will have entries
aij = φj(xi ), i = 1, ...,N; j = 1, ...,M. Recall, that functions
φj(x), j = 0, ...,M are called basis functions which should be chosen and
are known. Then the regularized least squares problem takes the form

min
ω

1
2
‖r(ω)‖22 +

γ

2
‖ω‖22 = min

ω

1
2
‖Aω − t‖22 +

γ

2
‖ω‖22. (13)

To minimize the regularized squared residuals (13) we will again derive
the normal equations. Similarly as was derived the Fréchet derivative for
the non-regularized regression problem (12), we look for the ω where the
gradient of 1

2 ||Aω − t||22 + γ
2 ‖ω‖

2
2 = 1

2 (Aω − t)T (Aω − t) + γ
2ω

Tω
vanishes.
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In other words, we consider the difference
(‖r(ω + e)‖22 + γ

2 ‖ω + e‖22)− (‖r(ω)‖22 + γ
2 ‖ω‖

2
2), then single out the

linear part with respect to ω to obtain:

0 =
1
2

lim
‖e‖→0

(A(ω + e)− t)T (A(ω + e)− t)− (Aω − t)T (Aω − t)

||e||2

+ lim
‖e‖→0

γ

2
(ω + e)T (ω + e)− γ

2
ωTω

||e||2

=
1
2

lim
‖e‖→0

‖(Aω − t) + Ae‖22 − ‖Aω − t‖22
||e||2

+ lim
‖e‖→0

γ

2
(‖ω + e‖22 − ‖ω‖22)

‖e‖2

=
1
2

lim
‖e‖→0

‖Aω − t‖22 + 2(Aω − t) · Ae + ‖Ae‖22 − ‖Aω − t‖22
||e||2

+
γ

2
lim
‖e‖→0

‖ω‖22 + 2eTω + ‖e‖22 − ‖ω‖22
||e||2

=
1
2

lim
‖e‖→0

2eT (ATAω − AT t) + eTATAe

||e||2
+
γ

2
lim
‖e‖→0

2eTω + eT e

||e||2
.
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The term

lim
‖e‖→0

|eTATAe|
||e||2

≤ lim
‖e‖→0

||A||22||e||22
||e||2

= lim
‖e‖→0

||A||22||e||2 → 0. (14)

Similarly, the term

lim
‖e‖→0

|eT e|
||e||2

= lim
‖e‖→0

||e||22
||e||2

→ 0. (15)

We finally get

0 = lim
‖e‖→0

eT (ATAω − AT t)

||e||2
+
γeTω

||e||2
.

The expression above means that the factor ATAω − AT t + γω must
also be zero, or

(ATA + γI )ω = AT t,

where I is the identity matrix. This is a system of M linear equations for
M unknowns, the normal equations for regularized least squares.
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The normal equations for regularized least squares

(ATA + γI )ω = AT t,

for the square matrix dim(ATA + γI ) = M ×M are solved as usual
system of linear equations to find vector of weights ω of the size M:

ω = (ATA + γI )−1AT t,

The regularization parameter γ can be chosen by the same methods
which are used for the solution of ill-posed problems [1,3,4] or by machine
learning methods [2]. For different Tikhonov’s regularization strategies
for the solution of ill-posed problems look [1,3,4]. We will discuss main
methods of Tikhonov’s regularization which follows ideas of [1,3,4]

[1] A.B. Bakushinsky, M.Yu. Kokurin and A. Smirnova, Iterative methods for ill-posed problems,
de Gruyter, 2011.

[2] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press,
http://www.deeplearningbook.org, 2016

[3] K. Ito, B. Jin, Inverse Problems: Tikhonov theory and algorithms, Series on Applied
Mathematics, V.22, World Scientific, 2015.

[4] Tikhonov, A.N., Goncharsky, A., Stepanov, V.V., Yagola, A.G., Numerical Methods for the
Solution of Ill-Posed Problems, ISBN 978-94-015-8480-7, 1995.
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Figure: Examples of linear regression for classification for different
number of input points.

Figure 1 shows that the linear regression or least squares minimization
minω ‖Aω − t‖22 for classification is working fine when it is known that
two classes are linearly separable. Here the linear model equation in the
problem (10) is

f (x , y , ω) = ω0 + ω1x + ω2y (16)
and the target values of the vector t = {ti}, i = 1, ...,N in (10) are

ti =

{
1 red points,
0 green points. (17)
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The elements of the design matrix (11) are given by

A =


1 x1 y1
1 x2 y2
1 x3 y3
...

...
. . .

1 xN yN

 . (18)

Here, (xi , yi ) are coordinates (x , y) for all (red and green) points.
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Polynomial fitting to data in two-class model

Let us consider the least squares classification in the two-class model in
the general case. Let the first class consisting of l points with coordinates
(xi , yi ), i = 1, ..., l is described by it’s linear model

f1(x , c) = c1,1φ1(x) + c2,1φ2(x) + ...+ cn,1φn(x). (19)

Let the second class consisting of k points with coordinates
(xi , yi ), i = 1, ..., k is also described by the same linear model

f2(x , c) = c1,2φ1(x) + c2,2φ2(x) + ...+ cn,2φn(x). (20)

Here, basis functions are φj(x), j = 1, ..., n.
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Polynomial fitting to data in two-class model

Our goal is to find the vector of parameters c = ci,1 = ci,2, i = 1, ..., n of
the size n which will fit best to the data yi , i = 1, ...,m,m = k + l of
both model functions, f1(xi , c), i = 1, ..., l and f2(xi , c), i = 1, ..., k with
f (x , c) = [f1(xi , c), f2(xi , c)] such that the minimization problem

min
c
‖y − f (x , c)‖22 = min

c

m∑
i=1

(yi − f (xi , c))2 (21)

is solved with m = k + l .
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If the function f (x , c) in (21) is linear then we can reformulate the
minimization problem (21) as the following least squares problem

min
c
‖Ac − y‖22, (22)

where the matrix A in the linear system

Ac = y

will have entries aij = φj(xi ), i = 1, ...,m; j = 1, ..., n, i.e. elements of the
matrix A are created by basis functions φj(x), j = 1, ..., n. Solution of
(22) can be found by the method of normal equations derived in Section
8:

c = (ATA)−1ATb = A+b (23)

with pseudo-inverse matrix A+ := (ATA)−1AT .
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For creating of elements of A different basis functions can be chosen.
The polynomial test functions

φj(x) = x j−1, j = 1, ..., n (24)

have been considered in the problem of fitting to a polynomial in Lecture
6.
The matrix A constructed by these basis functions is a Vandermonde
matrix, and problems related to this matrix we discussed in Lecture 6.
Linear splines (or hat functions) and bellsplines also can be used as basis
functions, see Lecture 6.
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Figures 2 present examples of polynomial fitting to data for two-class
model with m = 10 using basis functions φj(x) = x j−1, j = 1, ..., d ,
where d is degree of the polynomial.

Figure: Least squares in polynomial fitting to data for different degree of
polynomial in the test functions (24).
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Machine learning linear and polynomial classifiers

Let us start with considering of an example: determine the decision line
for points presented in the Figure. Two classes are separated by the linear
equation with three weights ωi , i = 1, 2, 3, given by

ω1 + ω2x + ω3y = 0. (25)

Figure: Decision lines computed by the perceptron learning algorithm for
separation of two classes using Iris dataset. Test Matlab program to
generate this figures on the course page.
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In common case, two classes can be separated by the general equation

ω0 + ω1x1 + ω2x2 + ...+ ωnxn = 0 (26)

which also can be written as

ωT x =
n∑

i=0

ωixi = 0 (27)

with x0 = 1. If n = 2 then the above equation defines a line, if n = 3 -
plane, if n > 3 - hyperplane. The problem is to determine weights ωi and
the task of machine learning is to determine their appropriate values.
Weights ωi , i = 1, ..., n determine the angle of the hyperplane, ω0 is
called bias and determines the offset, or the hyperplanes distance from
the origin of the system of coordinates.
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Perceptron learning for classification

The main idea of perceptron is binary classification. The perceptron
computes a sum of weighted inputs

y(x , ω) = sign(ωT x) = sign(
n∑

i=0

ωixi ) (28)

and uses the binary classification to compute weights ωi :

sign(ωT x) =

{
1, if

∑n
i=1 ωixi + ω0 > 0,

0, otherwise, (29)

When weights are computed, the linear classification boundary is defined
by

ωT x = 0.
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Perceptron learning for classification

Binary classifier decides whether or not an input x belongs to some
specific class:

sign(ωT x) =

{
1, if

∑n
i=1 ωixi + ω0 > 0,

0, otherwise, (30)

where ω0 is the bias. The bias does not depend on the input value x and
shifts the decision boundary. If the learning sets are not linearly separated
the perceptron learning algorithm does not terminate and will never
converge and classify data properly.
The algorithm which determines weights via binary classification can be
reasoned by minimization of the regularized residual

F (ω) = ‖r(x , ω)‖22 +
1
2
γ‖w‖22 = ‖(t − y(x , ω))ξδ(x)‖22 +

1
2
γ‖w‖22, (31)

where ξδ(x) for a small δ is a data compatibility function to avoid
discontinuities and γ is the regularization parameter. Taking γ = 0
algorithm will minimize the non-regularized residual (31).
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Perceptron learning for classification

Alternative, it can be minimized the residual

r(x , ω) = −tT y(x , ω) = −
∑
i∈M

tiyi (32)

over the set M ⊂ {1, ...,m} of the currently miss-classified patterns.
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Perceptron learning for classification

In the Perceptron learning algorithm which we will study in update of
weights is used the following regularized functional

F (ω) =
1
2
‖(t − y(x , ω))ξδ(x)‖22 +

1
2
γ‖w‖22

=
1
2

m∑
i=1

((ti − yi (x , ω))ξδ(x))2 +
1
2
γ

n∑
i=1

w2
i .

(33)

Here, γ is the regularization parameter, t is the target function, or class c
in the algorithm, which takes values 0 or 1.
To find optimal weights in (33) we need to solve the minimization
problem in the form (3)

F ′(ω)(ω̄) = 0, (34)

where F ′(ω) is a Frechet derivative acting on ω̄. To derive F ′(ω) for (31)
we seek the ω where the gradient of 1

2 ||r(x , ω)||22 + γ
2 ‖ω‖

2
2 vanishes.
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Perceptron learning for classification
Let us consider the difference (‖r(x, ω + e)‖22 + γ

2 ‖ω + e‖22)− (‖r(x, ω)‖22 + γ
2 ‖ω‖

2
2) for

y(x, ω) =
∑

i∈M ωi xi . We single out the linear part with respect to ω to obtain:

0 =
1

2
lim
‖e‖→0

‖(t − y(x, ω + e))ξδ(x)‖22 +
γ

2
‖ω + e‖22 − ‖(t − y(x, ω))ξδ(x)‖22 −

γ

2
‖ω‖22

||e||2

=
1

2
lim
‖e‖→0

‖(t −
n∑

i=0
ωi xi −

n∑
i=0

ei xi )ξδ(x)‖22 − ‖(t − y(x, ω))ξδ(x)‖22

||e||2
+ lim
‖e‖→0

γ

2
(ω + e)T (ω + e)−

γ

2
ω
T
ω

||e||2

=
1

2
lim
‖e‖→0

‖(t − y(x, ω)− eT x)ξδ(x)‖22 − ‖(t − y(x, ω))ξδ(x)‖22
||e||2

+ lim
‖e‖→0

γ

2
(ω + e)T (ω + e)−

γ

2
ω
T
ω

||e||2

=
1

2
lim
‖e‖→0

‖(t − y(x, ω)) ξδ(x)‖22 − 2(t − y(x, ω)) · eT x ξδ(x) + ‖eT x ξδ(x)‖22
||e||2

−
1

2
lim
‖e‖→0

‖(t − y(x, ω)) ξδ(x)‖22
||e||2

+ lim
‖e‖→0

γ

2
(ω + e)T (ω + e)−

γ

2
ω
T
ω

||e||2

=
1

2
lim
‖e‖→0

− 2(t − y(x, ω)) · eT x ξδ(x) + ‖eT x ξδ(x)‖22
||e||2

+
γ

2
lim
‖e‖→0

2eTω + eT e

||e||2
.
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Perceptron learning for classification

The second part in the last term of the above expression is estimated as
in (15). The second part in the first term is estimated as

lim
‖e‖→0

|(eT x ξδ(x))T eT x ξδ(x)|
||e||2

= lim
‖e‖→0

|(xT e ξδ(x))T xT e ξδ(x)|
||e||2

≤ lim
‖e‖→0

||x ξδ(x)||22||e||22
||e||2

= lim
‖e‖→0

||x ξδ(x)||22||e||2 → 0.

(35)

We finally get

0 = lim
‖e‖→0

−
xT e(t − y(x , ω)) ξδ(x)

||e||2
+
γeTω

||e||2
.
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Perceptron learning for classification

The expression above means that the factor
−xT (t − y(x , ω)) ξδ(x) + γω must also be zero, or

F ′(ω)(ω̄) =
n∑

i=1

F ′ωi
(ω)(ω̄i ),

F ′ωi
(ω)(ω̄i ) = −(t − y) · ξδ(x) · y ′ωi

(ω̄i ) + γωi

= −(t − y) · xi · ξδ(xi ) + γωi , i = 1, ..., n.

(36)

The non-regularized version of the perceptron algorithm is obtained
taking γ = 0 in (36).
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Perceptron learning for classification

Step 1: Initialization:

Assume that every training example x = (x1, ..., xn) is described by n attributes.

Label examples of the first class with c(x) = 1 and examples of the second class as c(x) = 0.

Let us denote by h(x) the classifier’s hypothesis which will have binary values h(x) = 1 or
h(x) = 0. Initialize h(x) = 0 for examples c(x) = 1 and h(x) = 1 for examples c(x) = 0.

Assume that all examples of the first class where c(x) = 1 are linearly separable from examples of
the second class where c(x) = 0.

Initialize weights ω0 = {ω0
i }, i = 1, ...,M to small random numbers. Compute the sequence of

ωi
m for all m > 0 in the following steps.

Step 2: If
∑n

i=0 ω
m
i xi > 0 we will say that the example belongs to the first class and h(x) = 1.

Step 3: If
∑n

i=0 ω
m
i xi < 0 we will say that the example belongs to the second class and h(x) = 0.

Step 4: Update weight ω := ωm+1 = {ωm+1
i }, i = 1, ...,M using

ω
m+1
i = ω

m
i + η · ([c(x)− h(x)] · xi + γ · ωm

i ), (37)

where η is the learning rate usually taken as η = 0.5.

Step 5: If c(x) = h(x) for all learning examples - stop. Otherwise set m := m + 1 and return to
step 2.
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Perceptron learning for classification: polynomial of the
second order

Coefficients of polynomials of the second order can be obtained by the
same technique as coefficients for linear classifiers. The second order
polynomial function is:

ω0 + ω1 x1︸︷︷︸
z1

+ω2 x2︸︷︷︸
z2

+ω3 x2
1︸︷︷︸
z3

+ω4 x1x2︸︷︷︸
z4

+ω5 x2
2︸︷︷︸
z5

= 0. (38)

This polynomial can be converted to the linear classifier if we introduce
notations:

z1 = x1, z2 = x2, z3 = x2
1 , z4 = x1x2, z5 = x2

2 .

Then equation (38) can be written in new variables as

ω0 + ω1z1 + ω2z2 + ω3z3 + ω4z4 + ω5z5 = 0 (39)

which is already the linear function.
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Thus, the Perceptron learning algorithm can be used to determine
weights ω0, ..., ω5 in (39).
Suppose that weights ω0, ..., ω5 in (39) are computed. To present the
decision line one need to solve the following quadratic equation for x2:

ω0 + ω1x1 + ω2x2 + ω3x
2
1 + ω4x1x2 + ω5x

2
2 = 0 (40)

with known weights ω0, ..., ω5 and known x1 which can be rewritten as

ω5︸︷︷︸
a

x2
2 + x2 (ω2 + ω4x1)︸ ︷︷ ︸

b

+ω0 + ω1x1 + ω3x
2
1︸ ︷︷ ︸

c

= 0, (41)

or in the form
ax2

2 + bx2 + c = 0 (42)

with known coefficients a = ω5, b = ω2 + ω4x1, c = ω0 + ω1x1 + ω3x
2
1 .

Solutions of (42) will be

x2 =
−b ±

√
D

2a
,

D = b2 − 4ac .
(43)
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Thus, to present the decision line for polynomial of the second order, first
should be computed weights ω0, ..., ω5, and then the quadratic equation
(41) should be solved the solutions of which are given by (43).
Depending on the classification problem and set of admissible parameters
for classes, one can then decide which one classification line should be
presented, see Figure.

Figure: Perceptron learning algorithm for separation of two classes by
polynomials of the second order.
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WINNOW learning algorithm

Here we present one more learning algorithm which is very close to the
perceptron and called WINNOW. Here is described the simplest version
of this algorithm without regularization. Perceptron learning algorithm
uses additive rule in the updating weights, while WINNOW algorithm
uses multiplicative rule: weights are multiplied in this rule. The
WINNOW algorithm which we study is written for c = t and y = h in
(36). We will again assume that all examples where c(x) = 1 are linearly
separable from examples where c(x) = 0.

Figure: Comparison of two classification algorithms for separation of two
classes: Perceptron learning algorithm (red line) and WINNOW (blue
line).

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 7

http://www.math.chalmers.se/~larisa/


Classification problems

WINNOW for classification

Step 1: Initialization:

Assume that every training example x = (x1, ..., xn) is described by n attributes.

Label examples of the first class with c(x) = 1 and examples of the second class as c(x) = 0.
Assume that all examples of the first class where c(x) = 1 are linearly separable from examples of
the second class where c(x) = 0.

Initialize the classifier’s hypothesis h(x) = 0 for examples c(x) = 1 and h(x) = 1 for examples
c(x) = 0.

Choose parameter α > 1, usually α = 2.

Initialize weights ω0 = {ω0
i }, i = 1, ...,M to small random numbers. Compute the sequence of

ωi
m for all m > 0 in the following steps.

Step 2: If
∑n

i=0 ω
m
i xi > 0 we will say that the example is positive and h(x) = 1.

Step 3: If
∑n

i=0 ω
m
i xi < 0 we will say the the example is negative and h(x) = 0.

Step 4: Update every weight using the formula

ω
m+1
i = ω

m
i · α

(c(x)−h(x))·xi .

Step 5: If c(x) = h(x) for all learning examples - stop. Otherwise set m := m + 1 return to step 1.
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Methods of Tikhonov’s regularization

We consider the following Tikhonov functional for regularized
classification problem

Jγ(ω) =
1
2
‖y(ω)− t‖2L2

+
γ

2
‖ω‖2L2

:= ϕ(ω) +
γ

2
ψ(ω), (44)

where terms ϕ(ω), ψ(ω) are considered in L2 norm which is the classical
Banach space and γ is the regularization parameter.
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Methods of Tikhonov’s regularization

To solve the regularized classification problem the regularization
parameter γ can be chosen by the same methods which are used for the
solution of ill-posed problems.
The regularization term γ

2ψ(ω) encodes a priori available information
about the unknown solution such that sparsity, smoothness,
monotonicity, etc... Regularization term γ

2ψ(ω) can be chosen in
different norms, for example:

γ
2ψ(ω) = γ

2 ‖ω‖
p
Lp , 1 ≤ p ≤ 2.

γ
2ψ(ω) = γ

2 ‖ω‖TV , TV means “total variation”.
γ
2ψ(ω) = γ

2 ‖ω‖BV , BV means “bounded variation”, a real-valued
function whose TV is bounded (finite).
γ
2ψ(ω) = γ

2 ‖ω‖
2
H1 .

γ
2ψ(ω) = γ

2 (‖ω‖L1 + ‖ω‖2L2).
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We will discuss following rules for choosing γ in (44):

A-priori rule (Tikhonov’s regularization)

For ‖t − t∗‖ ≤ δ a priori rule requires (see details in [1]):

lim
δ→0

γ(δ)→ 0, lim
δ→0

δ2

γ(δ)
→ 0.

A-posteriori rules:

Morozov’s discrepancy principle [2,3].
Balancing principle [2]

A-priori rule and Morozov’s discrepancy are most popular methods for the
case when there exists estimate of the noise level δ in data t. Otherwise
it is recommended to use balancing principle or other a-posteriori rules
presented in [2].

A.B. Bakushinsky, M.Yu. Kokurin and A. Smirnova, Iterative methods for ill-posed problems, de
Gruyter, 2011.

K. Ito, B. Jin, Inverse Problems: Tikhonov theory and algorithms, Series on Applied
Mathematics, V.22, World Scientific, 2015.

Tikhonov, A.N., Goncharsky, A., Stepanov, V.V., Yagola, A.G., Numerical Methods for the
Solution of Ill-Posed Problems, ISBN 978-94-015-8480-7, 1995.
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A-priori rule (Tikhonov’s regularization)

For ‖t − t∗‖ ≤ δ a priori rule requires (see details in [1]):

lim
δ→0

γ(δ)→ 0, lim
δ→0

δ2

γ(δ)
→ 0. (45)

To ensure (45) one can choose, for example

γ (δk) = Cδµk , µ ∈ (0, 2) , C = const. > 0, δ ∈ (0, 1). (46)

Other choices of γ which satisfy conditions (45) are also possible.
In [1] was proposed following iterative update of the regularization
parameters γk which satisfy conditions (45):

γk =
γ0

(k + 1)p
, p ∈ (0, 1], (47)

where γ0 can be computed as in (46).
A.B. Bakushinsky, M.Yu. Kokurin and A. Smirnova, Iterative methods for ill-posed problems, de
Gruyter, 2011.
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Morozov’s discrepancy principle

The principle determines the regularization parameter γ = γ(δ) in (44)
such that

‖y(ωγ(δ))− t‖ = cmδ, (48)

where cm ≥ 1 is a constant. Relaxed version of a discrepancy principle is:

cm,1δ ≤ ‖y(ωγ(δ))− t‖ ≤ cm,2δ, (49)

for some constants 1 ≤ cm,1 ≤ cm,2. The main feature of the principle is
that the computed weight function ωγ(δ) can’t be more accurate than the
residual ‖y(ωγ(δ))− t‖.
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Morozov’s discrepancy principle

For the Tikhonov functional

Jγ (ω) =
1
2
‖y(ω)− t‖22 + γ‖ω‖22 = ϕ(ω) + γψ(ω), (50)

the value function F (γ) : R+ → R is defined as

F (γ) = inf
ω
Jγ(ω). (51)

If there exists F ′γ(γ) at γ > 0 then from (50) and (51) follows that

F (γ) = inf
ω
Jγ (ω) = ϕ′(ω)︸ ︷︷ ︸

ϕ̄(γ)

+γ ψ′(ω)︸ ︷︷ ︸
ψ̄(γ)

. (52)

Since F ′γ(γ) = ψ′(ω) = ψ̄(γ) then from (52) follows

ψ̄(γ) = F ′γ(γ), ϕ̄(γ) = F (γ)− γF ′γ(γ). (53)
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Morozov’s discrepancy principle

The main idea of the principle is to compute discrepancy ϕ̄(γ) using the
value function F (γ) and then approximate F (γ) via model functions. If
ψ̄(γ) ∈ C (γ) then the discrepancy equation (48) can be rewritten as

ϕ̄(γ) = F (γ)− γF ′γ(γ) =
δ2

2
. (54)

The goal is to solve (54) for γ. Main methods for solution of (54) are the
model function approach and a quasi-Newton method presented in details
in [1].

K. Ito, B. Jin, Inverse Problems: Tikhonov theory and algorithms, Series on Applied
Mathematics, V.22, World Scientific, 2015.

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 7

http://www.math.chalmers.se/~larisa/


Classification problems

Balancing principle

The balancing principle (or Lepskii) finds γ > 0 such that following
expression is fulfilled

ϕ̄(γ) = Cγψ̄(γ), (55)

where C = a0/a1 is determined by the statistical a priori knowledge from
shape parameters in Gamma distributions [1]. When C = 1 the method
is called zero crossing method.

K. Ito, B. Jin, Inverse Problems: Tikhonov theory and algorithms, Series on Applied
Mathematics, V.22, World Scientific, 2015.
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Balancing principle

Below is presented the fixed point algorithm for solution of (55).

Step 1. Start with the initial approximations γ0 (for example,
compute γ0 via (46)) and compute the sequence of γk in the
following steps.

Step 2. Compute the value function F (γk) = infω Jγk (ω) for (50)
and get ωγk .

Step 3. Update the reg. parameter γ := γk+1 as

γk+1 =
‖ϕ̄(ωγk )‖2
‖ψ̄(ωγk )‖2

Step 4. For the tolerance 0 < θ < 1 chosen by the user, stop
computing reg.parameters γk if computed γk are stabilized, or
|γk − γk−1| ≤ θ. Otherwise, set k := k + 1 and go to Step 2.
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Example: least squares (LS) and Perceptron learning
algorithm

a) b)

Figure: Comparison of least squares (LS) and Perceptron learning
algorithm for separation of two classes using Grey Seal database
https://waves24.com/download/.
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Example: least squares (LS) and Perceptron learning
algorithm

Figure: Comparison of least squares (LS) and Perceptron learning
algorithm on Iris dataset
https://en.wikipedia.org/wiki/Iris_flower_data_set.
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