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Nonlinear least squares problems

Nonlinear least squares problems

Suppose that for our data points (x;, y;),i = 1,..., m we want to
find the vector of parameters ¢ = (cy, ..., ¢,) which will fit best to
the data y;, i = 1,..., m of the model function f(x;,¢),i =1,...,m.
We consider the case when the model function f : R"™1 — R is
nonlinear now. Our goal is to find minimum of the residual

r =y — f(x,c) in the least squares sense:

m

min (yi — f(x, €))% (1)

i=1
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Nonlinear least squares problems

To solve problem (1) we can still use the linear least squares method if
we can transform the nonlinear function f(x, c) to the linear one. This
can be done if the function f(x, c) can be represented in the form
f(x,c) = Aexp™, A = const. Then taking logarithm of f(x, c) we get:
Inf =In A+ cx, which is already linear function. Then linear least
squares problem after this transformation can be written as

mcin Z(In yi —Inf(x;, €))>. (2)
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Nonlinear least squares problems

Another possibility how to deal with nonlinearity is consider the least
squares problem as an optimization problem. Let us define the residual
r:R"— R™ as

r(c) =yi— f(xi,c), i=1,..m. (3)

Our goal is now minimize the function

1 1
Fc) = 5r(c)r(e) = SlIr(@)]E (@
To find minimum of (4) we should have
_OF(e) _
VF(c) = 9o 0, i=1,..,m. (5)

Direct computations show that the gradient vector VF(c) is

VF(c)= % = JT()r(c), (6)

where JT is the transposed Jacobian matrix of the residual r(c).
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Nonlinear least squares problems

For a sufficiently smooth function F(c) we can write its Taylor expansion
as
F(c) = F(a) + VF(c)(c — @) + O(h?), ()

with |h| = ||c — c]|. Since our goal is to find minimum of F(c), then at
a minimum point ¢* we should have VF(c*) = 0. Taking derivative with
respect to ¢ from (7) we obtain

H(F(c))(c— )+ VF(w) =0, (8)
——
compare with (6)

where H denotes the Hessian matrix of the function F(cp). Using (6) we
also can write

V(@) = (@) = I (@)r() ©
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Nonlinear least squares problems

Using (9) in (8) we obtain
H(F(co))(c — co) + JT(co)r(co) = O, (10)

and from this expression we observe that we have obtained a system of
linear equations

H(F(0))(c — co) = —J " (co)r(co) (11)

which can be solved again using linear least squares method. The
Hessian matrix H(F(cp)) can be obtained from (9)

V() = () = I (@) r(eo). (12)
H(F(e)) = J7 () (o) + D rico) (), (13)
i=1

where H(r;) denotes the Hessian matrix of the residual function r;(c).
These m matrices H(r;) are inconvenient to compute, but since they are
multiplied to the small residuals r;(¢p), the second term in (13) is often
very small at the solution ¢y and this term can be dropped out.
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Nonlinear least squares problems

Then the system (10) is transformed to the following linear system
JT(c0)J(c)(c — co) = =T (co)r(co), (14)

which actually is a system of normal equations for the m x n linear least
squares problem

J(co)(c — o) = —r(co). (15)

The system (14) determines the Gauss-Newton method for the solution
of the least squares problem as an iterative process

K = kK — [T () I ()] T () r(cr), (16)

where k is the number of iteration.
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Nonlinear least squares problems

An alternative to the Gauss-Newton method is Levenberg-Marquardt
method. This method is based on the finding of minimum of the
regularized function

F() = 2r(c)Tr(c) + 33(c — @) (c — @) = I3 + 27llc — al

(17)
where ¢p is a good initial guess for ¢ and -~y is a small regularization
parameter. Then we repeat all steps which we have performed for the
obtaining the Gauss-Newton method, see (6)-(13).
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Nonlinear least squares problems

Finally, In the Levenberg-Marquardt method the linear system which
should be solved at every iteration k is

(JT() ) + ) = ) = —IT(F)r(c"), (18)

and the corresponding linear least squares problem is
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Nonlinear least squares problems

Example 1

Let us consider the nonlinear model equation

=y. (20)

Our goal is to determine parameters A, E and Ty in this equation by
knowing y and T. We rewrite (20) as a nonlinear least squares problem
in the form

AcE/T—To

m

i i — Ael/Ti=To)2, 21
Jmin. '_1(y e ) (21)

We will show how to obtain from the nonlinear problem (21) the linear
one. We take logarithm of (20) to get

InA+ =lIny. (22)

T—To
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Nonlinear least squares problems

Now multiply both sides of (22) by T — Ty to obtain:
INA(T — To) + E=Iny(T — Tp). (23)

and rewrite the above equation as

TInA—ToInA+E+ ToIny=Tlny. (24)
C2 C3 c1

Let now define the vector of parameters ¢ = (cy, ¢, ¢3) with
=Ty, ce=InAczs=E— TolnA. Now the problem (24) can be
written as

alny+aoTlT+a=Tlnhy, (25)

which is already a linear problem. Now we can rewrite (25) denoting by
f(c,y,T)=cilny + c T + c3 as a linear least squares problem in the
form

min Z(T,- Iny; — f(c,yi, T7)* (26)
i-1
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Nonlinear least squares problems

The system of linear equations which is needed to be solved is

In 4t T1 1 T1 In 4t
In Yo T2 1 1 T2 In Yo
A . (27)

nym Tm 1 Tmnym
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Nonlinear least squares problems

Example 2

Suppose that the nonlinear model function is given as
f(x,c) = Ae* + Be®**, A, B = const. > 0, (28)

and our goal is to fit this function using Gauss-Newton method. In other
words, we will use iterative formula (15) for iterative update of
¢ = (c1, c2). The residual function will be

r(c) =y —f(x,c) =y — Ae®™ — Be®, (29)

where y = y;,i = 1,..., m are data points.
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First, we compute Jacobian matrix J(c), where two columns in this
matrix will be given by

Je), | = O Ae™™. i=1, . .m.
il 8C1
or; (30)
J(C)’.72 = TC; = —X,‘BGCZXi, 1= 1, s 1.

If we will take initial guess for the parameters c® = (<9, c0) = (1,0), then
we have to solve the following problem at iteration k = 1:

J()(e = ) = —r(c%), (31)

and the next update for parameters c! = (ci, c1) in the Gauss-Newton
method can be computed as

== [UT(c0)I(co)] T (co)r(co). (32)
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Nonlinear least squares problems

Here, r(c®) and J(co) can be computed explicitly as follows:

r(c®) = yi— f(x, %) = y; — (Ae*™ +Be"™) = y; — Ae® —B,i=1,...,m,

(33)
and noting that c® = (c?, c9) = (1,0) two columns in the Jacobian
matrix J(cp) will be

J(CO),-,l = —xjAe!™M = —x;AeM, i=1,...,m, (34)
J(Co)i,z = _XiBeO.Xi =—-xB, i=1,...,m.
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Substituting (33), (34) into (31) yields following linear system of

equations
—x1Ae*t  —x1B y1 — Ae*t — B
—xAe*2  —x»B Cll _ c? yo — Ae*2 — B
5 Cllacd]-- 5 ()
—XmAe™™  —xnB Ym — Ae* — B
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Nonlinear least squares problems

0

which is solved for ¢! — ¢

-
—x1Ae*t —x1B

—xAe*2  —xB

—XmAe*  —x. B

—XlB—
—XzB

—x1 Ae*?
—X2Ae""‘

using method of normal equations as

—x1Ae*t  —x1B
_ X2 _
X2 Ae x2B [C11 _ Cﬂ
. . |1 0
G -G

—XpAe*m  —x. B

—XmAe*™  —xmB

, (36)
y1 — Ae*t — B
y» — Ae*2 — B
Ym — Ae*» — B

This system can be solved for ¢! — ¢°, and next values ¢! are obtained

by using (32).
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Principal component analysis (PCA)

Outline

@ SVD for image compression

@ Principal component analysis (PCA) formulation (mean, covariance
matrix, computation of eigenvalues and eigenvectors of covariance
matrix)

@ Principal component analysis (PCA) to find patterns, for data
compression and for image orientation
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Principal component analysis (PCA)

@ Principal component analysis (PCA) is a machine learning technique
which is widely used for data compression in image processing (data
visualization) or in the determination of object orientation.

@ PCA problem is closely related to the numerical linear algebra
(NLA) problem of finding eigenvalues and eigenvectors for the
covariance matrix.

@ We will study application of PCA for image compression and object
rotation.
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Principal component analysis (PCA)

Example of application of linear systems: image compression
using SVD

Definition SVD Let A be an arbitrary m-by-n matrix with m > n. Then
we can write A= UXVT, where U is m-by-n and satisfies vtu=1,Vv
is n-by-n and satisfies VTV = I, and ¥ = diag(o1,...,0,), where

01> -->0,>0. The columns ux,...,u, of U are called left singular
vectors. The columns vy, ..., v, of V are called right singular vectors.
The o; are called singular values. (If m < n, the SVD is defined by
considering AT.)

Theorem

Write V = [u1,v2,...,v,] and U = [uy, ua, ..., u,), so

A=UZVT =" ou] (a sum of rank-1 matrices). Then a matrix
of rank k < n closest to A (measured with || - ||2 is Ax = Zﬁ;l a,-u,-v,-T

and ||A — Akl|2 = oky1. We may also write Ay = UL VT where
Zk :diag((fl,...7ak,0,...,0).
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Principal component analysis (PCA)

Example of application of linear systems: image compression
using SVD

a) Original image b) Rank k=20 approximation
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Principal component analysis (PCA)

Example of application of linear systems: image compression
using SVD in Matlab

See path for other pictures:
/matlab-2012b/toolbox/matlab/demos
load clown.mat;

Size(X) = m x n = 320 x 200 pixels.
[U,S,V] = svd(X);

colormap(map);

k=20;
image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)");
Now: size(U)= m X k, size(V)= n x k.

Larisa Beilina, http://www.math.chalmers.se/"larisa/ Lecture 8


http://www.math.chalmers.se/~larisa/

Principal component analysis (PCA)

Example of application of linear systems: image compression
using SVD in Matlab

c) Rank k=20 approximation d) Rank k=50 approximation
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Principal component analysis (PCA)

Example of application of linear systems: image compression
using SVD for arbitrary image

To get image on the previous slide, | took picture in jpg-format and
loaded it in matlab like that:

A = imread('autumn.jpg’);

You can not simply apply SVD to A: svd(A) Undefined function
'svd’ for input arguments of type 'uint8’.

Apply type "double” to A: DA = double(A), and then perform
[U,S,V] = svd(DA);

colormap('gray’);

k=20;

image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)");

Now: size(U)= m x k, size(V)= n x k.
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Principal component analysis (PCA)

Literature

The proposed books in machine learning:

@ Christopher M. Bishop, Pattern recognition and machine learning,
Springer, 2009.

@ lan Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning,
MIT Press, 2016, http://www.deeplearningbook.org

@ Miroslav Kurbat, An Introduction to Machine Learning, Springer,
2017.
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Principal component analysis (PCA)

PCA formulation

Let {x,},n=1,...., N is a data set of observations, where x, is a variable
of the dimension d. The goal in PCA is to project the data onto a space
which has dimension M < d maximizing the variance of the projected
data. Let M =1 and thus, we will consider projection onto
one-dimensional space. Let the vector u; is the direction of this space
such that it is a unit vector and uf u; = 1. Then every point x, is
projected onto a scalar value u] x,. The sample set mean X is defined as

and the variance of the projected data u{ X is

N

1

LS Wl %P = ol S,
n=1

where S is the data covariance matrix
N
1 - T
S= E (X0 — X)(xn — %)=
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Principal component analysis (PCA)

PCA formulation

The next step is maximize the projected variance uf Su; with respect to
up using constrained minimization with the term u u; = 1. To enforce
this constraint, we use Lagrange multiplier A to minimize

L(uy) = uf Sup + (1 — uf )
Now we minimize L'(u1)(&1) = 0 to get
0= L/(Ul)(LTl) = (5u1 — )\1U1)(L71),

what means that
5U1 = )\1U1 (37)
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Principal component analysis (PCA)

PCA formulation

From the equation (37) follows that (A1, u1) is an eigenpair of S. We

observe that
U1T5U1 = )\1

what means that variance is maximum when we set u; to the eigenvector
for the largest eigenvalue A\; which is called the first principal component.
One can obtain all other components in the same way. If we consider
M-dimensional projection space then the optimal linear projection for
which the variance of the projected data will have maximum, will consists
of M eigenvectors uy, ..., up; of the covariance matrix S corresponding to
the M largest eigenvalues A1, ..., Ay.
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Principal component analysis (PCA)

PCA: some notions of statistics

Variance is measure of the spread of data in dataspace which is defined as

) - E08 X

where mean X is defined as

27:1 Xi.

n

)_< =
Standard deviation is defined as

s = Vvar(x) = | 2 XS
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Principal component analysis (PCA)

PCA: some notions of statistics

Let
X (X —X) | (X—X)?
1 -2 | 4
3 0|0
0 319
5 214
6 319
Total 26
Divided by (n—1) 6.5
Deviation, s 2.5495
Table: : ; _ XL (X=X)?
able: Calculation of variance var(X) = === Here, mean
X =15/5=3.
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Principal component analysis (PCA)

PCA: some notions of statistics

Covariance is measure of the spread of data in dataspace which is defined

as
" _ -
COV(X, Y) _ Zi:l(X’ — X)(% — Y)
n—1
Let
X Y| (X=X)[(Y=Y)| (X=X)(Y-Y)
1 9 -2 |54 -10.8
3 1 01-26 0
0 3 -3 | -0.6 1.8
5 5 2114 2.8
6 0 31-36 -10.8
Total -17
Divided by (n— 1) -4.25

Table: Calculation of covariance. Here, X = 3,Y = 3.6.
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PCA: some notions of statistics

Below is definition of the covariance matrix for a set of data which have
dimension n:

cov(Dimy, Dimy) ... cov(Dimy, Dim,)
c_ cov(Dimy, Dimy) ... cov(DImy, Dim,)
cov(Dim,, Dimy) ... cov(Dim,, Dim,)

Here, dim(C) = n x n.
Covariance is always measured between 2 dimensions. For
three-dimensional data sets x,y,z one can compute covariance matrix

cov(x,x) cov(x,y) cov(x,z)

C = |cov(y,x) cov(y,y) cov(y,z)
cov(z,x) cov(z,y) cov(z,z)
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Principal component analysis (PCA)

@ PCA can be thought as a way to find patterns in data in order to
highlight similarity or difference of data. Thus, it is a powerful tool
to analyze data.

@ The main advantage of PCA is as soon as patterns in data is found,
one can compress the data by reducing number of dimensions
without much loss of information. This technique is used in image
compression.
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Principal component analysis (PCA)

PCA: example

Let us analyze how works PCA on two datasets using Matlab program ExamplePCA.m.

%first create our 2D data
x=[2.5,0.5,2.2,1.9,3.1,2.3,2,1,1.5,1.11;
y=[2.4,0.7,2.9,2.2,3.0,2.7,1.6,1.1,1.6,0.9];

% compute mean for x

[ax,bx] =size(x);

mean_x= sum(x)/bx;

% compute mean for y

[ay,by] =size(y);

mean_y = sum(y)/by;

% compute adjusted data

adjust_x = x - mean_x;

adjust_y = y - mean_y;

plot(x,y,’0’,’LineWidth’,2, ’MarkerEdgeColor’,’k’); grid(’on’); hold on;
plot(adjust_x,adjust_y,’o’,’LineWidth’,2, ’MarkerEdgeColor’,’r’);
legend(Poriginal data’, ’adjusted data’);

1 o 1 2 3 4
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Principal component analysis (PCA)

PCA: example

Jicompute covariance matrix
C = cov(adjust_x,adjust_y);
% compute eigenvalues and eigenvectors ov the covariance matrix
[eigvec, eigvall = eig(C);
[U,s,V] = svd(C);
% plotting using svd of the covariance matrix
% first eigenvector via svd: this is the principle component of the data set
% since it’s corresponds to the largest eigenvalue.
% We can call it also as feature vector.
ulx=[2%U(1,1),-2%U(1,1)]1;
uly=[2+U(2,1),-2%U(2,1)];
plot(ulx,uly,’-- b’, ’LineWidth’,2);
% plotting the second eigenvalue vector
u2x=[2%U(2,1),-2%U(2,1)]1;
u2y=[2%U(2,2),-2%U(2,2)];
plot(u2x,u2y,’-- r’, ’LineWidth’,2);

s © cousiedcan
s igenvecior ofcovariance maix
econd sigenvectorof covariance max
1 T 5
N o ,*
08 S o
Sv. o,
0 v
s o~
05 . <
o S
1 o N
o, .

15

Larisa Beilina, http://www.math.chalmers.se/"larisa/ Lecture 8


http://www.math.chalmers.se/~larisa/

Principal component analysis (PCA)

PCA: example

% Now form final rotated data
Data =[adjust_x; adjust_y];
PCA = UxData;
plot(PCA(1,:),PCA(2,:),%0’, LineWidth’,2, ’MarkerEdgeColor’,’r’);
axis([-2,2,-2,2])
legend(Padjusted data’,’first eigenvector of covariance matrix’,’second eigenvector of covariance matrix’
title(’PCA analysis of transformed data using 2 eigenvectors’)

,PCA analysis of transformed data using 2 elgenvectors

0 sousedcan
first egenvecior o covariance marix
15 sacond aiganvecior of covariance mal s
rotated acustod cata ater POA anaysis s
1 S o .0 °
N o,
05 S pie
° ~ 0.
° 3~ 7 o
0 vl o °
° Lo
° o Nl
05 S+ ~.
o’ Se
1 o S
15 -
2
2 15 1 05 o0 05 1 15 2
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Principal component analysis (PCA)

PCA: example

% now we plot out vector with the largest eigenvalue
PCAnewl = U(1,:)#*Data;
plot(PCAnew1,PCAnewl,’0’,’LineWidth’,2, ’MarkerEdgeColor’,’r’);
hold on
PCAnew2 = U(2,:)*Data;
plot(PCAnew2,PCAnew2,’0’,’LineWidth’,2, ’MarkerEdgeColor’,’b’);
grid(Pon’);
legend(’data points for the first eigenvector in U’,’data points for the second eigenvector in U’)
title(’PCA analysis of transformed data using 1 eigenvector ’)

PCA analysis of transformed data using 1 eigenvector

O data poins for he frst egenvector in U °
© _dala poiis or the second eigen

e/~ larisa/ Lecture 8
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Principal component analysis (PCA)

PCA: example

plot(adjust_x,adjust_y,’o’,’LineWidth’,2, MarkerEdgeColor’, ’k’) ;
grid(’on’);

hold on
plot(PCA(1,:),PCA(2,:),%0’, LineWidth’,2, ’MarkerEdgeColor’,’g’);
plot(PCAnew1,PCAnewl,’0’,’LineWidth’,2, ’MarkerEdgeColor’,’r’);
ulx=[5*U(1,1),-5%U(1,1)];
uly=[5%U(2,1),-5%U(2,1)];
plot(uilx,uly,’-- b’, ’LineWidth’,2);
axis([-3,3,-3,3])
legend(’adjusted data’,’rotated adjusted data after PCA analysis’,...
’PCA analysis using the first eigenvector of the covariance matrix’,...
’first eigenvector of the covariance matrix’);

2[ 0 agusted cata
rotated adjusted data ater PCA analysis

© PGA analys's using the first eigenector of the covariance matrix

= = =it eigenvector of the covariance matix

3 2 1 o 1 2 3
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Principal component analysis (PCA)

Computer exercise 4

Use PCA to find patterns (recognize handwritten numbers) in MNIST
Dataset of Handwitten Digits which can be downloaded from the course
homepage.

@ Use Matlab programs

loadmnist_matlab.m
import_mnist.m

on the course homepage to download MNIST Datasets

mnist_test_10.csv
mnist_train.csv

@ Perform PCA analysis for the following problem: given an image
from the dataset

mnist_test_10.csv

check if there exists the same or similar image in the train dataset
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MNIST datasets

5 15 25

a) Dataset in mnist_test 10.csv  b) Images from mnist _train.csv
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PCA to find patterns for MNIST dataset

plot of Xdata

a M‘u‘h‘;ﬂ}fi*ﬁ'\; “

| Ll

300

5 15 25 5 15 25 5 15 25 5 15 25

15 25

plot of u(nx*(j-1)+)

"'lij‘ﬁlurmuw' “‘..

20 IRIRIRLS |

BHET A R ; '-“HE'HI.L.; { !

5 15 25 5 15 25 5 15 25 5 15 2 5 15 25 100 200 300 400 501

I:\‘:\il\

a) Dataset in mnist _test 10.csv b) Matrix of images

Dataset
mnist_test_10.csv

contains 10 images presented in Figure a). This is a test dataset which should be used to recognise
handwritten digits in the dataset

mnist_train.csv
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PCA to find patterns for MNIST dataset

Top image of Figure b) represents matrix array Xdata from the program
plotmnist.m of all 10 images presented in Figure a). Bottom image of
Figure b) is the same array which is read in the another array as

[nx,ny] = size(Xdata)
u = zeros(unx,ny);

for j=1:ny

for i=1:nx

u(nx*(j-1)+i) = Xdata(nx*x(j-1)+i);
end

end

Every row of this array is a vector of the size nx x ny, where nx is the
number of nodes in x direction and ny is the number of nodes in y
direction of every image presented in Figure a). In our case,

nx = 28, ny = 28, and this 28 - 28 = 784 is size of every row of Figure b)
for 10 rows. We have 10 rows and 784 columns for matrix of test images.
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Principal component analysis (PCA)

PCA to find patterns for MNIST dataset

o
o

' I
’I [
a) Matrix of test images b) Matrix of train images

00 500 600 700

We need to perform PCA analysis of matrix of train images and test images. After PCA we will have
original data on terms of eigenvectors and eigenvalues of the covariance matrix.

The next step is to measure difference between the new image and the original image, but not along the
original axes, but along the new axes which are obtained in PCA analysis.

It was shown [1] that these new axes gives better information for the case of image recognition since the
PCA analysis gives the original image in terms of the differences and similarities between data.

[1] J. ZHANG, Y. YAN, M. LADES, Face Recognition: Eigenface, Elastic Matching, and Neural Nets,
Proc. IEEE, 1997.
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