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Computer exercise 1 (1 b.p.)

Solution of least squares problem

Consider the nonlinear model equation

y(T ) = A · exp
E

T−T0

presenting one of the models of the viscosity of glasses (see paper [3] G. S. Fulcher, “ANALY-
SIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES” on the course
homepage). Here, T is the known temperature, y(T ) is the known output data. Determine
parameters A,E, T0 which are positive constants by knowing T and output data y(T ).

Hints:

1. Transform first the nonlinear function y(T ) to the linear one and formulate then the
linear least squares problem. Discretize T by N points and compute discrete values
of y(T ) as yi = y(Ti) for the known values of parameters A,E, T0. Then forget about
these parameters (we will call them exact parameters A∗, E∗, T ∗

0 ) and solve the linear
least squares problem to recover these exact parameters.

2. You can choose exact parameters A∗, E∗, T ∗
0 as well as the interval for the temper-

ature T as some positive constants accordingly to the Table II of the paper G. S.
Fulcher, “ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF
GLASSES”.

For example, take E∗ = 6 · 103, A∗ = exp−2.64, T ∗
0 = 400, T = 750 + 10 ∗ i, i = 1, ..., N ,

where N is the number of discretization points. Interval for T can be, for example,
T = [750, 2000].

3. Investigate effect of random initialization noise δ in data Y (T ) obtained after trans-
formation procedure, on the reconstruction of parameters A,E, T0.

Random noise δ to data Y (T ) can be added using the formula

Yδ(T ) = Y (T )(1 + δα), (0.1)

where α ∈ (−1, 1) is randomly distributed number and δ ∈ [0, 1] is the noise level. For
example, if noise in data is 5%, then δ = 0.05. You can use several Matlab’s functions
to test adding of the noise. Below is an example of the Matlab code which shows how
to add noise for solution of Poisson’s equation (example of section 8.4.4 of the course
book [1]) (see Figure 0.1):

r = randi([-1 1],size(u),1)

for j=1:n

for i=1:n

udelta(n*(i-1)+j) = u(n*(i-1)+j)*(1 + 0.1*r(n*(i-1)+j));

end

end
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Try also add normally distributed Gaussian noise

N(y|µ, σ2) =
1

σ
√

2π
e

−(y−µ)2

2σ2 .

Here, µ is mean, σ2 is variance, σ is standard deviation.

Below is example how to add Gaussian noise N(y|µ, σ2) with mean µ = 0 and variance
σ2 = 0.01 to matrix A in MATLAB:

Anoise = A + 0.01*randn(size(A)) + 0;

4. Solve the linear least squares problem using the method of normal equations, QR and
then SVD decompositions. Analyze obtained results by computing the relative errors
eA, eE , eT0 in the computed parameters depending on the different noise level δ ∈ [0, 1]
in data Yσ(T ) for every method.

The relative errors eA, eE , eT0
in the computed parameters A,E, T0 compute as:

eA =
|A−A∗|
|A∗|

,

eE =
|E − E∗|
|E∗|

,

eT0
=
|T0 − T ∗

0 |
|T ∗

0 |
.

(0.2)

Here, A∗, E∗, T ∗
0 are exact values and A,E, T0 are computed one. Present results how

relative errors (0.2) depend on the random noise δ ∈ [0, 1] in graphical form and in
the corresponding table.

5. Choose different number of discretization points N in the interval for temperature
T and present results of computations in graphical form and in the corresponding
table. More precisely, present how relative errors (0.2) depend on the number of
measurements N if you solve the linear least squares problem using 3 methods: the
method of normal equations, QR and then SVD decomposition.

6. Using results obtained in items 4 and 5, analyze, what is the minimal number of
observations N to get reasonable reconstruction of parameters A,E, T0 within the
noise level σ ?
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Figure 0.1: Top figures: Solution of Poisson’s equation (example of section 8.4.4 of the
course book [1]). Middle figures: Noisy solution obtained via (0.1). Bottom figures: noisy
solution obtained via adding normally distributed Gaussian noise N(y|0, 0.01).
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