
Numerical Linear Algebra
TMA265/MMA600
Computer exercise 5:

Solution of Helmholtz equation

Larisa Beilina, larisa@chalmers.se

TMA265/MMA600 larisa@chalmers.se

Computer exercise 5 (3 b.p.).

0.1 Solution of Helmholtz equation

This exercise can be viewed as part of the Master’s project “Efficient implemen-
tation of Helmholtz equation with applications in medical imaging”, see Master’s
projects homepage for description of this project or go to the link

http://www.math.chalmers.se/Math/Grundutb/CTH/tma265/1617/BOOK/MasterProject_

Helmholtz.pdf

Solve the Helmholtz equation

∆u(x, ω) + ω2ε′(x)u(x, ω) = iωJ,

lim
|x|→∞

u (x, ω) = 0. (0.1)

in two dimensions using C++/PETSC. Here, ε′(x) is the spatially distributed complex
dielectric function which can be expressed as

ε′(x) = εr(x)
1

c2
− iµ0

σ(x)

ω
, (0.2)

where εr(x) = ε(x)/ε0 and σ(x) are the dimensionless relative dielectric permittivity and
electric conductivity functions, respectively, ε0, µ0 are the permittivity and permeability of
the free space, respectively, and c = 1/

√
ε0µ0 is the speed of light in free space, and ω is

the angular frequency.
Take appropriate values for ω, ε′, J . For example, take

ω = {40, 60, 80, 100}, εr = {2, 4, 6};σ = {5, 0.5, 0.05}, J = 1.

Analyze obtained results for different ω, εr, σ, J .
Information about PETSc can be found on the link:
https://www.mcs.anl.gov/petsc/

Hints:

1. Study Example 12.5 of the course book [1] where is presented solution of the Dirichlet
problem for the Poisson’s equation on a unit square using different iterative methods
implemented in C++/PETSc. C++/PETSc programs for solution of this problem are
available for download from the course homepage: go to the link of the book [1] and
click to “GitHub Page with MATLAB R© Source Codes” on the bottom of this page or
go to the link

https://github.com/springer-math/Numerical_Linear_Algebra_Theory_and_Applications

Choose then

PETSC_code

The different iterative methods are encoded by numbers 1-7 in the main program

http://www.math.chalmers.se/Math/Grundutb/CTH/tma265/1617/BOOK/MasterProject_Helmholtz.pdf
http://www.math.chalmers.se/Math/Grundutb/CTH/tma265/1617/BOOK/MasterProject_Helmholtz.pdf
https://www.mcs.anl.gov/petsc/
https://github.com/springer-math/Numerical_Linear_Algebra_Theory_and_Applications

TMA265/MMA600 larisa@chalmers.se

Main.cpp

in the following order:

– 1 - Jacobi’s method,

– 2 - Gauss-Seidel method,

– 3 - Successive Overrelaxation method (SOR),

– 4 - Conjugate Gradient method,

– 5 - Conjugate Gradient method (Algorithm 12.13),

– 6 - Preconditioned Conjugate Gradient method,

– 7 - Preconditioned Conjugate Gradient method (Algorithm 12.14).

Methods 1-5 use inbuilt PETSc functions, and methods 6,7 implement algorithms
12.13, 12.14 of the book [1], respectively. For example, we can run the program
Main.cpp using SOR method as follows:

> nohup Main 3 > result.m

After running the results will be printed in the file result.m and can be viewed in
Matlab using the command

surf(result).

2. Modify PETSc code of the Example 12.5 of [1] such that the equation (0.1) can be
solved. Note that solution of the equation (0.1) is complex. You should include

#include <complex>

to be able work with complex numbers in C++. For example, below is example of
definition of the complex array in C++ and assigning values to the real and imaginary
parts:

complex<double> *complex2d = new complex<double>[nno];

double a = 5.4;

double b = 3.1;

for (int i=0; i < nno; i++)

{

complex2d[i].real() = a;

complex2d[i].imag() = b;

}

delete[] complex2d;

Example of the definition of the complex right hand side in PETSc is presented below:

TMA265/MMA600 larisa@chalmers.se

PetscScalar right_hand_side(const PetscReal x, const PetscReal y)

{

PetscReal realpart, imagpart;

PetscReal pi = 3.14159265359;

realpart = pi*sin(2*pi*x)*cos(2*pi*y);

imagpart = x*x + y*y;

PetscScalar f(rpart, ipart);

return f;

}

3. Example of Makefile for running C++/PETSc code at Chalmers is presented in Ex-
ample 12.5 of [1] and can be as follows:

PETSC_ARCH=/chalmers/sw/sup64/petsc-3.7.4

include ${PETSC_ARCH}/lib/petsc/conf/variables

include ${PETSC_ARCH}/lib/petsc/conf/rules

CXX=g++

CXXFLAGS=-Wall -Wextra -g -O0 -c -Iinclude -I${PETSC_ARCH}/include

LD=g++

LFLAGS=

OBJECTS=Main.o CG.o Create.o DiscretePoisson2D.o GaussSeidel.o

Jacobi.o PCG.o Solver.o SOR.o

Run=Main

all: $(Run)

$(CXX) $(CXXFLAGS) -o $@ $<

$(Run): $(OBJECTS)

$(LD) $(LFLAGS) $(OBJECTS) $(PETSC_LIB) -o $@

To compile PETSc with complex numbers you need to write in Makefile:

PETSC_ARCH=/chalmers/sw/sup64/petsc-3.7.4c

4. Choose the two-dimensional convex computational domain Ω such that Ω = [0, 1] ×
[0, 1]. Choose boundary condition at the boundary of ∂Ω such that the condition
lim|x|→∞ u (x, ω) = 0 is satisfied, for example, take ∂nu = 0.

5. Choose the following boundary condition u(x, ω) = −ωg(x, ω), where g(x, ω) is given
by (0.4). More precisely, solve the Helmholtz equation

∆u(x, ω) + ω2ε(x)u(x, ω) = f(x, ω),

u(x, ω) = −ωg(x, ω).
(0.3)

TMA265/MMA600 larisa@chalmers.se

Take as g(x, ω), x = (x1, x2), the function

u(x1, x2) = sin(2πx1) sin(2πx2) + ix1(1− x1)x2(1− x2) (0.4)

which is the exact solution of the equation (0.3) with the right hand side

f(x1, x2) = −(8π2) sin(2πx1) sin(2πx2)− 2ix1(1− x1)− 2ix2(1− x2)

+ ω2ε(x)(sin(2πx1) sin(2πx2) + ix1(1− x1)x2(1− x2))
(0.5)

6. Try also the following boundary condition ∂nu(x, ω) = −ωg(x, ω).

7. Values of c, µ0, ε0 in (0.2) are known constants.

– Vacuum permittivity, sometimes called the electric constant ε0 and measured in
F/m (farad per meter):

ε0 ≈ 8.85 · 10−12

– The permeability of free space,or the magnetic constant µ0 measured in H/m
(henries per meter):

µ0 ≈ 12.57 · 10−7

– The speed of light in a free space is given by formula c = 1/
√
ε0µ0 and is measured

in m/c (metres per second):

c ≈ 300 000 000

References

[1] L. Beilina, E. Karchevskii, M. Karchevskii, Numerical Linear Algebra: Theory
and Applications, Springer, 2017.

[2] Christopher M. Bishop, Pattern recognition and machine learning, Springer, 2009.

[3] G. S. Fulcher, Analysis of recent measurements of the viscosity of glasses, Journal
of American Ceramic Society, https://doi.org/10.1111/j.1151-2916.1925.
tb16731.x, 1925

[4] Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press,
2016, http://www.deeplearningbook.org

[5] Miroslav Kurbat, An Introduction to Machine Learning, Springer, 2017.

https://doi.org/10.1111/j.1151-2916.1925.tb16731.x
https://doi.org/10.1111/j.1151-2916.1925.tb16731.x
http://www.deeplearningbook.org

	Solution of Helmholtz equation

