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Course in Numerical Linear Algebra
Organization

Course homepage is in CANVAS, you should register to have access

Course coordinator and examiner: Larisa Beilina, larisa@chalmers.se

Registration for the course: contact studieadministrator

Jeanette Montell, jw@chalmers.se

Course literature: L. Beilina, E. Karchevskii, M. Karchevskii,

Numerical Linear Algebra: Theory and Applications, Springer,

2017. Book is available at Cremona. Matlab and C++ programs
for examples in this book are open access and available for
download from the course homepage: go to the link of the book
and click to “GitHub Page with MATLAB Source Codes” on the
bottom of this page:

https://github.com/springer-math/Numerical_Linear_Algebra_Theory_and_Applications
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Course in Numerical Linear Algebra
Schedule

Day Time Place

Mon 13:15-15:00 Zoom Lecture
Thur 13:15-15:00 Zoom Lecture

Wed 13:15-15:00 Zoom, MVF24,MVF25 Computer Labs
Fr 13:15-15:00 Zoom, MVF24,MVF25 Computer Labs

? October 14.00-18.00 Exam (Campus)
? January 14.00-18.00 Exam (Campus)
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Course in Numerical Linear Algebra
Organization

To pass this course you should pass the written exam and any 2
from 5 computer assignments, see description of comp. assignments
at the course homepage. You will get b.p. for them.

Any 2 from 4 home assignments should be handed in before the
final exam. You will get b.p. for them.

Programs can be written in Matlab or C++/PETSc. Comp.ex. 5
should be done in PETSc. See PETSc programs for solution of
Laplace equation at “GitHub Page with MATLAB Source Codes”.

https://github.com/springer-math/Numerical_Linear_Algebra_Theory_and_Applications

The final exam is compulsory for Master’s students, written. B.p.
will be added to the final grade at exam.

The theory questions will be choosen from the list which is possible
download from the course homepage.
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Course in Numerical Linear Algebra
Organization: computer labs

To pass this course you should do any 2 computer assignments.

You can work in groups by 2 persons.

Sent final report for every computer assignment with description of
your work together with Matlab or C++/PETSc programs to my
e-mail before the date for deadline. Report should have description
of used techniques, tables and figures confirming your
investigations. Analysis of obtained results is necessary to present in
section “Numerical examples” and summarize results in the section
“Conclusion”. You can download latex-template for report from the
course homepage.

Matlab and C++ programs for examples in the course book are
available for download from the course homepage: go to the link of
the course book and click to “GitHub Page with MATLAB Source
Codes” on the bottom of this page.
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Deadlines for homeworks and comp. labs

Deadlines for homeworks and comp.ex.:

Homework 1: 13 September

Homework 2: 20 September

Comp.ex. 1 : 4 October

Homeworks 3 and 4 : 11 October

Comp.ex. 2: 18 October

Comp.ex. 3,4 : 25 October

Comp.ex. 5: at any time later

Comp.ex. can be done in groups by 2 students. Reports for
homeworks and comp.labs (together with programs) should be
downloaded in CANVAS or, in case if it is impossible, sent in the
one *.zip file to my e-mail before the deadline. Hand-written
homeworks can be returned directly to me or putted into the red
box which is located behind my office.
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Grades

Bonuspoints will be added to the points obtained at written exam.
Final grades will be the following:

Grades Chalmers Points

- < 15
3 15-20
4 21-27
5 > 27

Grades GU Points

U < 15
G 15-27
VG > 27

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 1

http://www.math.chalmers.se/~larisa/


Comp.labs in PETSc

Comp.ex.5 should be done in PETSc. PETSc libraries which are a
suite of data structures and routines for the scalable (parallel)
solution of scientific applications.

Link to the PETSc documentation:

http://www.mcs.anl.gov/petsc/documentation/

Template for solution of system of equations Ax = b using PETSc
is available for download from the course homepage. Study Example
12.5 of the course book where is presented solution of the Dirichlet
problem for the Poisson’s equation using PETSc. PETSc programs
for solution of this problem are available download from the course
homepage: go to the link of the course book and click to “GitHub
Page with MATLAB Source Codes” on the bottom of this page:

https://github.com/springer-math/Numerical_Linear_Algebra_Theory_and_Applications
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Course in Numerical Linear Algebra
Organization: Master’s work

Check the course homepage for news.

Some available Master’s works in applied mathematics:

“Classification of skin cancer using regularized neural networks”
for the skin images from the ISIC project (connection with
comp.ex.3).
“Applications of Principal Component Analysis for image
recognition”, connection with comp.ex. 4.
“Efficient implementation of Helmholtz equation with
applications in medical imaging” (connection with comp. ex.
5).
“Optimal control of drugs in a mathematical model of HIV
infection”
“Parameter identification for a mathematical model describing
tumour-macrophages interactions”.
“Determination of parameters in kinetic modelling in positron
emission tomography (PET)”
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Efficient implementation of Helmholtz equation with

applications in medical imaging
Master’s work

In this project we will consider efficient implementation of the Helmholtz
equation

△E + ω2µrεrE = iωµrJ,

lim
|x|→∞

E (x , ω) = 0. (1)

in C++/PETSc in two and three dimensions using different iterative
methods such that

1 - Jacobi’s method,

2 - Gauss-Seidel method,

3 - Successive Overrelaxation method (SOR),

4 - Conjugate Gradient method,

5 - Conjugate Gradient method (Algorithm 12.13),

6 - Preconditioned Conjugate Gradient method,

7 - Preconditioned Conjugate Gradient method (Algorithm 12.14).
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Efficient implementation of Helmholtz equation with

applications in medical imaging

All methods 1- 7 listed above are already implemented, see Example 12.5
of the course book where is described the solution of the Dirichlet
problem for the Poisson’s equation on a unit square using different
iterative methods. C++/PETSc programs for solution of this problem
are available for download from the course homepage: go to the link

https://github.com/springer-math/Numerical_Linear_Algebra_Theory_and_Applications

Choose then

PETSC_code
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PETSc: example of Makefile for running at Chalmers

PETSC_ARCH=/chalmers/sw/sup64/petsc-3.10.4c

include ${PETSC_ARCH}/lib/petsc/conf/variables

include ${PETSC_ARCH}/lib/petsc/conf/rules

MPI_INCLUDE = ${PETSC_ARCH}/include/mpiuni

CXX = g++

CXXFLAGS = -Wall -Wextra -g -O0 -c -Iinclude

-I${PETSC_ARCH}/include -I${MPI_INCLUDE}

LD = g++

LFLAGS =

OBJECTS = cplxmaxwell.o

RUNMAXWELL = runmaxwell

all: $(RUNMAXWELL)

%.o: %.cpp

$(CXX) $(CXXFLAGS) -o $@ $<

$(RUNMAXWELL): $(OBJECTS)

$(LD) $(LFLAGS) $(OBJECTS) $(PETSC_LIB) -o $@

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 1

http://www.math.chalmers.se/~larisa/


Efficient implementation of Helmholtz equation with

applications in medical imaging

a) nx=ny=11 b) nx=ny=21

The C++/PETSc program for some particular solution of the Helmholtz equation (1) with
homogeneous boundary conditions using KSP methods is available for download and testing here:
https://waves24.com/download/. See also figure above for visualisation of this solution in MATLAB.
In the Master’s project, solution of the Helmholtz equation (1) should be implemented and tested in
C++/PETSc by adapting codes for Example 12.5 of the course book and the code on the link
https://waves24.com/download/.
It is expected that application of the obtained software will be for fast detection of small-size tumors
using microwave imaging.

This Master’s work is continuation of the comp.ex. 5 of this course.
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Optimal control of drugs in a mathematical model of HIV

infection
Master’s work

The goal of this Master project is development of the optimization
method for the solution of a parameter identification problem (PIP) for
system of ordinary differential equations (ODE) for the model of HIV
infection with drug treatments. Their dynamics is described by the
following equations:

x(t)t = λx − µxx(t)− βvx(t)v(t)− u1(t)x(t), (2a)

(xp(t))t = u1(t)x(t)− µxxp(t), (2b)

y(t)t = βvx(t)v(t)− µyy(t)− pyy(t)za(t)− u2(t)y(t), (2c)

(yb(t))t = u2(t)y(t)− µyyb(t), (2d)

v(t)t = kvµyy(t)− µvv(t), (2e)

z(t)t = λz − µzz(t)− βzz(t)y(t), (2f)

(za(t))t = βzz(t)y(t)− µzza(t). (2g)
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Optimal control of drugs in a mathematical model if HIV

infection
Master’s work

The problem is: maximize the protected cells xp(t) while also trying to
minimize the drug administrations (u1(t) and u2(t)).
The higher are u1 and u2, then the higher are side effects.
Thus, the optimal control problem is the following (ci > 0, i = 1, 2, 3 are
some constants):

J(α) =
1

2

T
∫

0

(c1x
2

p (t)− c2u
2

1
(t)− c3u

2

2
(t)) dt (3)

The model developed in: D. H. Pastore, R. C. A. Thomé, C. M. Dias, E. F. Arruda, H. M.

Yang, A model for interactions between immune cells and HIV considering drug treatments, Comp.

Apl.Math., 37, 282-295, 2018. https://doi.org/10.1007/s40314-017-0528-8 Related
open-access paper:
Beilina, L., Eriksson, M., Gainova, I. Time-Adaptive Determination of Drug Efficacy in Mathematical

Model of HIV Infection. Differ Equ Dyn Syst (2021). https://doi.org/10.1007/s12591-021-00572-w
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Parameter identification for a mathematical model

describing tumour-macrophages interactions
Master’s work

The goal of this Master project is development of the optimization
method for the solution of a parameter identification problem (PIP) for
system of ordinary differential equations (ODE) which describes dynamics
of the anti-tumour/pro-tumour immune responses generated by M1 and
M2 macrophages. Their dynamics is described by the following
equations:

dxT

dt
= rxT

(

1 −
xT

βT

)

− dm1xM1xT + dm2xM2xT , (4a)

dxM1

dt
= at1xT xM1

(

1 −
xM1 + xM2

βM

)

− δm1xM1 − k12xM1xT (4b)

dxM2

dt
= at2xT xM2

(

1 −
xM1 + xM2

βM

)

− δm2xM2 + k12xM1xT (4c)
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Equation (4a) describes the dynamics of tumour cells under the
assumption of a logistic growth at rate r up to a carrying capacity
βT (to account for the slow-down in tumour proliferation at large
sizes). Tumour cells can be eliminated by the M1 macrophages at a
rate dm1. Moreover, the M2 cells can promote melanoma growth by
enhancing the proliferation of tumour cells, at a rate dm2.

Equation(4b) describes the dynamics of M1 macrophages that are
activated and recruited to tumour site at an average rage at1. The
carrying capacity for the macrophages population is βM . These cells
have a half-life of 1/δm1. The M1 macrophages re-polarise, at a
rate k12, towards an M2 phenotype during tumour progression.

Equation (4c) describes the dynamics of M2 macrophages that are
activated and proliferate in tumour tissue at an average rate at2.
These macrophages have the same carrying capacity as the M2
cells, and a half-life of 1/δm2.
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Parameter identification for a mathematical model

describing tumour-macrophages interactions
Master’s work

To determine the vector function
α(t) = (dm1

(t), dm2
(t), at1(t), at2(t), k12(t)) in PIP we introdice the

Tikhonov functional

J(α) =
1

2

3
∑

i=1

T
∫

0

(xi (t)− gi (t))
2zζ (t) dt +

1

2
γ1

T
∫

0

(dm1
(t)− d0

m1
)2dt

+
1

2
γ2

T
∫

0

(dm2
(t)− d0

m2
)2dt +

1

2
γ3

T
∫

0

(at1(t)− a0

t1
)2dt

+
1

2
γ4

T
∫

0

(at2(t)− a0

t2
)2dt +

1

2
γ5

T
∫

0

(k12(t)− k0

12
)2dt.

(5)
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Determination of parameters in kinetic modelling in positron

emission tomography (PET)
Master’s works

The goal of this Master project is development of the optimization
method for the solution of a parameter identification problem arising in
PET for system of ODE which presents the kinetic model for
measurement of glucose transport and phosphorylation rate. We will use
such-called three-compartment model

∂C1(t)

∂t
= K1C0(t)− (k2 + k3)C1(t) + k4C2(t),

∂C2(t)

∂t
= k3C1(t)− k4C2(t),

C1(0) = C10,C2(0) = C20.

This mathematical model is taken from link below. The goal of the
Master’s project is to develop new algorithms for determination of
different coefficients k2, k3 using measurements of C1(t),C2(t).
Reconstruction algorithms should be formulated and numerically tested.
See more info at http://www.turkupetcentre.net/petanalysis/model_compartmental.html
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ML project related to comp.ex. 3 and 4
Master’s works

Classification of skin cancer using regularized neural network.

For the skin images from the ISIC project, see link

https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main

Application of Principal Component Analysis for image recognition.
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Course in Numerical Linear Algebra
Purpose of the course

Solve Linear systems of equations using Gaussian elimination
with different pivoting strategies and blocking algorithms
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Course in Numerical Linear Algebra
Purpose of the course

Solve Linear systems of equations using Gaussian elimination
with different pivoting strategies and blocking algorithms

Study and use QR decomposition and SVD decomposition
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Course in Numerical Linear Algebra
Purpose of the course

Solve Linear systems of equations using Gaussian elimination
with different pivoting strategies and blocking algorithms

Study and use QR decomposition and SVD decomposition

Solve eigenvalue problems based on transformation techniques
for symmetric and non-symmetric matrices
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Course in Numerical Linear Algebra
Purpose of the course

Solve Linear systems of equations using Gaussian elimination
with different pivoting strategies and blocking algorithms

Study and use QR decomposition and SVD decomposition

Solve eigenvalue problems based on transformation techniques
for symmetric and non-symmetric matrices

Use computer algorithms, programs and software packages
(MATLAB, C++/PETSc)
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Course in Numerical Linear Algebra
Purpose of the course

Solve Linear systems of equations using Gaussian elimination
with different pivoting strategies and blocking algorithms

Study and use QR decomposition and SVD decomposition

Solve eigenvalue problems based on transformation techniques
for symmetric and non-symmetric matrices

Use computer algorithms, programs and software packages
(MATLAB, C++/PETSc)

Solve real physical problems by modelling these problems via
NLA
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Course in Numerical Linear Algebra
Lecture 1: main notions from linear algebra

A linear system is a mathematical model of a system which uses
definition of a linear operator. Linear systems have important
applications in automatic control theory, signal processing, and
telecommunications. For example, the propagation medium for
wireless communication systems can often be modeled by linear
systems.

A general deterministic system can be described by operator, H,
that maps an input, x(t), as a function of t to an output, y(t), a
type of black box description. Linear systems satisfy the properties
of superposition and scaling or homogeneity. Given two valid inputs
x1(t), x2(t) as well as their respective outputs

y1(t) = H {x1(t)} ; y2(t) = H {x2(t)}

a linear system must satisfy to the equation

αy1(t) + βy2(t) = H {αx1(t) + βx2(t)}

for any scalar values of α and β.

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 1

http://www.math.chalmers.se/~larisa/


Example of application of linear systems: image compression

using SVD

Definition SVD Let A be an arbitrary m-by-n matrix with m ≥ n. Then
we can write A = UΣV T , where U is m-by-n and satisfies UTU = I , V
is n-by-n and satisfies V TV = I , and Σ = diag(σ1, . . . , σn), where
σ1 ≥ · · · ≥ σn ≥ 0. The columns u1, . . . , un of U are called left singular

vectors. The columns v1, . . . , vn of V are called right singular vectors.
The σi are called singular values. (If m < n, the SVD is defined by
considering AT .)
Theorem

Write V = [υ1, υ2, . . . , υn] and U = [u1, u2, . . . , un], so
A = UΣV T =

∑n

i=1
σiuiυ

T
i (a sum of rank-1 matrices). Then a matrix

of rank k < n closest to A (measured with || · ||2 is Ak =
∑k

i=1
σiuiυ

T
i

and ||A − Ak ||2 = σk+1. We may also write Ak = UΣkV T where
Σk = diag(σ1, . . . , σk , 0, . . . , 0).
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Example of application of linear systems: image compression

using SVD
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a) Original image b) Rank k=20 approximation
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Example of application of linear systems: image compression

using SVD in Matlab

See path for other pictures:
/matlab-2012b/toolbox/matlab/demos
load clown.mat;
Size(X) = m × n = 320 × 200 pixels.
[U,S,V] = svd(X);
colormap(map);
k=20;
image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)’);
Now: size(U)= m × k , size(V)= n × k .
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Example of application of linear systems: image compression

using SVD in Matlab
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a) Original image b) Rank k=10 approximation
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c) Rank k=20 approximation d) Rank k=50 approximation
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Example of application of linear systems: image compression

using SVD for arbitrary image

To get image on the previous slide, I took picture in jpg-format and
loaded it in matlab like that:
A = imread(’autumn.jpg’);
You can not simply apply SVD to A: svd(A) Undefined function
’svd’ for input arguments of type ’uint8’.
Apply type "double” to A: DA = double(A), and then perform
[U,S,V] = svd(DA);
colormap(’gray’);
k=20;
image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)’);
Now: size(U)= m × k , size(V)= n × k .
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Example of application of linear systems: image deblurring

Original Image Blurred Image

Figure: left: exact matrix X, right: approximated matrix B
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The blurring model

Consider a grayscale image

X: m × n matrix representing the exact image

B: m × n matrix representing the blurred image
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The blurring model

Consider a grayscale image

X: m × n matrix representing the exact image

B: m × n matrix representing the blurred image

Assume linear blurring.

x = vec(X) =







x1

...
xn






∈ R

N , b = vec(B) =







b1

...
bn






∈ R

N

A N × N matrix, with N = m · n

Ax = b

Knowing X and A it is straightforward to compute the blurred
image.
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Motion blur

Motion Blurred Image PSF
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Out-of-focus blur

Blurred Image PSF
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Gaussian blur

Gaussian Blurred Image PSF
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Image deblurring: solution of an inverse problem

Let H be the Hilbert space H1 and let Ω ⊂ R
m,m = 2, 3, be a convex

bounded domain. Our goal is to solve a Fredholm integral equation of
the first kind for x ∈ Ω

∫

Ω

K (x − y)z(x)dx = u(y), (6)

where u(y) ∈ L2(Ω̄), z(x) ∈ H, K (x − y) ∈ C k
(

Ω
)

, k ≥ 0 be the kernel
of the integral equation.
Let us rewrite (6) in an operator form as

A(z) = u (7)

with an operator A : H → L2(Ω̄) defined as

A(z) :=

∫

Ω

K (x − y)z(x)dx . (8)
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Ill-posed problem.

Let the function z(x) ∈ H1 of the equation (6) be unknown in the
domain Ω. Determine the function z(x) for x ∈ Ω assuming the functions
K (x − y) ∈ C k

(

Ω
)

, k ≥ 0 and u(x) ∈ L2(Ω) in (6) are known.
Let δ > 0 be the error in the right-hand side of the equation (6):

A (z∗) = u∗, ‖u − u∗‖L2(σ)
≤ δ. (9)

where u∗ is the exact right-hand side corresponding to the exact solution
z∗.
To find the approximate solution of the equation (6) we minimize the
functional

Mα (z) = ‖Az − u‖
2

L2(Ω) + α‖z‖2

H1(Ω), (10)

Mα : H1 → R,

where α = α (δ) > 0 is the small regularization parameter.
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We consider now more general form of the Tikhonov functional (10). Let
W1,W2,Q be three Hilbert spaces, Q ⊆ W1 as a set, the norm in Q is
stronger than the norm in W1 and Q = W1, where the closure is
understood in the norm of W1. We denote scalar products and norms in
these spaces as

(·, ·) , ‖·‖ for W1,

(·, ·)
2
, ‖·‖

2
for W2

and [·, ·] , [·] for Q.

Let A : W1 → W2 be a bounded linear operator. Our goal is to find the
function z(x) ∈ Q which minimizes the Tikhonov functional

Eα (z) : Q → R, (11)

Eα (z) =
1

2
‖Az − u‖

2

2
+

α

2
[z − z0]

2
, u ∈ W2; z , z0 ∈ Q, (12)

where α ∈ (0, 1) is the regularization parameter. To do that we search
for a stationary point of the above functional with respect to z satisfying
∀b ∈ Q

E ′
α(z)(b) = 0. (13)
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The following lemma is well known for the case W1 = W2 = L2.
Lemma 1. Let A : L2 → L2 be a bounded linear operator. Then the
Fréchet derivative of the functional (10) is

E ′
α (z) (b) = (A∗Az − A∗u, b) + α [z − z0, b] , ∀b ∈ Q. (14)

In particular, for the integral operator (6) we have

E ′
α (z) (b) =

∫

Ω

b (s)





∫

Ω

z (y)





∫

Ω

K (x − y)K (x − s)dx



 dy

−

∫

Ω

K (x − s)u (x) dx
]

ds

(15)

+α [z − z0, b] , ∀b ∈ Q.
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Lemma 2 is also well known, since A : W1 → W2 is a bounded linear
operator. We formulate this lemma only for our specific case.
Lemma 2. Let the operator A : W1 → W2 satisfies conditions of Lemma
1. Then the functional Eα (z) is strongly convex on the space Q with the
convexity parameter κ such that

(E ′
α (x)− E ′

α (z) , x − z) ≥ κ[x − z ]2, ∀x , z ∈ Q. (16)

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 1

http://www.math.chalmers.se/~larisa/


Similarly, the functional Mα(z) is also strongly convex on the
Sobolev space H1:

(

M ′

α
(x)− M ′

α
(z) , x − z

)

H1
≥ κ||x − z ||2H1

, ∀x , z ∈ H1, (17)

Find z via any gradient-like method. For example, perform usual
gradient update

zk+1 = zk + βE ′

α

(

zk
)

(b) . (18)

until ||zk+1 − zk || converges.
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Image deblurring: example

a) b)

Figure: a) Image of the defect in the planar chip. b) result of
reconstruction with bounded total variation functions. Source: [1].

[1] Koshev N.A., Orlikovsky N.A., Rau E.I., Yagola A.G. Solution of the inverse problem of restoring the

signals from an electronic microscope in the backscattered electron mode on the class of bounded

variation functions, Numerical Methods and Programming, 2011, V.11, pp. 362-367 (in Russian).
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Image deblurring: an adaptive refinement, example

a) 7938 elements b) z1, 11270 elements c) z2, 15916 elements

d) z3, 24262 elements e) z4, 40358 elements f) z5, 72292 elements
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Image deblurring: an adaptive refinement, example

g) 7938 elements h) 11270 elements i) 15916 elements

j) 24262 elements k) 40358 elements l) 72292 elements

Figure: Reconstruction from the experimental backscattering data obtained by the microtomograph
[KB].
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Course in Numerical Linear Algebra
Lecture 1: main notions from linear algebra

Notions from linear algebra

Matrices (Identity matrix, triangular, singular, symmetric,
positive definite, conjugate transpose, rank, norm )
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Course in Numerical Linear Algebra
Lecture 1: main notions from linear algebra

Notions from linear algebra

Matrices (Identity matrix, triangular, singular, symmetric,
positive definite, conjugate transpose, rank, norm )

Matrix operations, inverse, transposition, scalar (inner)
product, outer product

Gaussian elimination

Eigenvalues

Norms

LU-factorization, pivoting, row echelon form
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Identity matrix

The identity matrix or unit matrix of size n is the n × n square
matrix with ones on the main diagonal and zeros elsewhere. It is
denoted by In, or simply by I .

I1 =
[

1
]

, I2 =

[

1 0
0 1

]

, · · · , In =











1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1











When A has size m× n, it is a property of matrix multiplication that
ImA = AIn = A.
Using the notation that is sometimes used to concisely describe
diagonal matrices, we can write:
In = diag(1, 1, ..., 1).
It can also be written using the Kronecker delta notation:
(In)ij = δij .
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Triangular matrix

A square matrix is called lower triangular if all the entries above the
main diagonal are zero.

L =

















l1,1 0
l2,1 l2,2

l3,1 l3,2
. . .

...
...

. . .
. . .

ln,1 ln,2 . . . ln,n−1 ln,n

















A square matrix is called upper triangular if all the entries below the
main diagonal are zero.

U =

















u1,1 u1,2 u1,3 . . . u1,n

u2,2 u2,3 . . . u2,n

. . .
. . .

...
. . . un−1,n

0 un,n
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Triangular matrix

A triangular matrix is one that is either lower triangular or upper
triangular.

A matrix that is both upper and lower triangular is a diagonal
matrix.

Dn =











d1,1 0 · · · 0
0 d2,2 · · · 0
...

...
. . .

...
0 0 · · · dn,n
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Singular matrix

A square matrix that does not have a matrix inverse. A matrix is singular
if its determinant is 0. For example, there are 10 2 × 2 singular
(0, 1)-matrices:

[

0 0
0 0

] [

0 0
0 1

] [

0 0
1 0

] [

0 0
1 1

] [

0 1
0 0

]

[

0 1
0 1

] [

1 0
0 0

] [

1 0
1 0

] [

1 1
0 0

] [

1 1
1 1

]
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Symmetric and positive definite matrix

A symmetric matrix is a square matrix that is equal to its transpose.
Let A be a symmetric matrix. Then:

A = AT .

If the entries of matrix A are written as A = (aij), then the
symmetric matrix A is such that aij = aji .

An n × n real matrix M is positive definite if zTMz > 0 for all
non-zero vectors z with real entries (z ∈ R

n), where zT denotes the
transpose of z .

An n × n Hermitian matrix M is positive definite if z∗Mz is real and
positive for all non-zero complex vectors z , where z∗ denotes the
conjugate transpose of z .
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Examples

The following matrix is symmetric:





1 7 3
7 4 −5
3 −5 6



 .

Every diagonal matrix is symmetric, since all off-diagonal entries are
zero.
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Examples

The nonnegative matrix

M0 =

[

1 0
0 1

]

is positive definite.

For a vector with entries

z =

[

z0

z1

]

the quadratic form is

[

z0 z1

]

[

1 0
0 1

] [

z0

z1

]

=
[

z0 · 1 + z1 · 0 z0 · 0 + z1 · 1
]

[

z0

z1

]

= z2

0
+z2

1
;

when the entries z0, z1 are real and at least one of them nonzero,
this is positive.
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A matrix in which some elements are negative may still be
positive-definite. An example is given by

M1 =





2 −1 0
−1 2 −1
0 −1 2



 .

It is positive definite since for any non-zero vector

x =





x1

x2

x3



 ,

we have
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xTM1x =
[

x1 x2 x3

]





2 −1 0
−1 2 −1
0 −1 2









x1

x2

x3





=
[

(2x1 − x2) (−x1 + 2x2 − x3) (−x2 + 2x3)
]





x1

x2

x3





= 2x1
2 − 2x1x2 + 2x2

2 − 2x2x3 + 2x3
2

= x1
2 + (x1 − x2)

2 + (x2 − x3)
2 + x3

2

which is a sum of squares and therefore nonnegative; in fact, each
squared summa can be zero only when x1 = x2 = x3 = 0, so M1 is
indeed positive-definite.
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Conjugate transpose matrix

The conjugate transpose, Hermitian transpose, Hermitian conjugate, or
adjoint matrix of an m-by-n matrix A with complex entries is the n-by-m
matrix A∗ obtained from A by taking the transpose and then taking the
complex conjugate of each entry (i.e., negating their imaginary parts but
not their real parts). The conjugate transpose is formally defined by

(A∗)ij = Aji

where the subscripts denote the i , j-th entry, and the overbar denotes a
scalar complex conjugate. (The complex conjugate of a + bi , where a
and b are reals, is a − bi .)
This definition can also be written as

A∗ = (A)T = AT

where AT denotes the transpose and A, denotes the matrix with complex
conjugated entries.
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The conjugate transpose of a matrix A can be denoted by any of these
symbols:

A∗
or AH,

commonly used in linear algebra.
Example
If

A =

[

3 + i 5 −2i
2 − 2i i −7 − 13i

]

then

A∗ =





3 − i 2 + 2i
5 −i
2i −7 + 13i
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Basic remarks

A square matrix A with entries aij is called Hermitian or self-adjoint
if A = A∗, i.e., aij = aji .

normal if A∗A = AA∗.

unitary if A∗ = A−1. a unitary matrix is a (square) n × n complex
matrix A satisfying the condition A∗A = AA∗ = In, where In is the
identity matrix in n dimensions.

Even if A is not square, the two matrices A∗A and AA∗ are both
Hermitian and in fact positive semi-definite matrices.

Finding the conjugate transpose of a matrix A with real entries
reduces to finding the transpose of A, as the conjugate of a real
number is the number itself.
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Row echelon form

In linear algebra a matrix is in row echelon form if

All nonzero rows (rows with at least one nonzero element) are
above any rows of all zeroes [All zero rows, if any, belong at the
bottom of the matrix]

The leading coefficient (the first nonzero number from the left, also
called the pivot) of a nonzero row is always strictly to the right of
the leading coefficient of the row above it.

All entries in a column below a leading entry are zeroes (implied by
the first two criteria).

This is an example of 3 × 4 matrix in row echelon form:





1 a1 a2 a3

0 2 a4 a5

0 0 −1 a6
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Row echelon form

A matrix is in reduced row echelon form (also called row canonical form)
if it satisfies the additional condition: Every leading coefficient is 1 and is
the only nonzero entry in its column, like in this example:





1 0 0 b1

0 1 0 b2

0 0 1 b3





Note that this does not always mean that the left of the matrix will be an
identity matrix. For example, the following matrix is also in reduced
row-echelon form:





1 0 1/2 0 b1

0 1 −1/3 0 b2

0 0 0 1 b3
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Rank

Column rank of a matrix A is the maximum number of linearly
independent column vectors of A. The row rank of a matrix A is the
maximum number of linearly independent row vectors of A.
Equivalently, the column rank of A is the dimension of the column
space of A, while the row rank of A is the dimension of the row
space of A.

A result of fundamental importance in linear algebra is that the
column rank and the row rank are always equal. It is commonly
denoted by either rk(A) or rank A. Since the column vectors of A
are the row vectors of the transpose of A (denoted here by AT ),
column rank of A equals row rank of A is equivalent to saying that
the rank of a matrix is equal to the rank of its transpose, i.e.
rk(A) = rk(AT ).

The rank of an m × n matrix cannot be greater than m nor n. A
matrix that has a rank as large as possible is said to have full rank;
otherwise, the matrix is rank deficient.
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Cofactor

In linear algebra, the cofactor (sometimes called adjunct, see below)
describes a particular construction that is useful for calculating both the
determinant and inverse of square matrices. Specifically the cofactor of
the (i , j) entry of a matrix, also known as the (i , j) cofactor of that
matrix, is the signed minor of that entry.
Informal approach to minors and cofactors

Finding the minors of a matrix A is a multi-step process:

Choose an entry aij from the matrix.

Cross out the entries that lie in the corresponding row i and column
j.

Rewrite the matrix without the marked entries.

Obtain the determinant Mij of this new matrix.

If i + j is an even number, the cofactor Cij of aij coincides with its minor:
Cij = Mij .
Otherwise, it is equal to the additive inverse of its minor: Cij = −Mij .
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Formal definition of cofactor

If A is a square matrix, then the minor of its entry aij , also known
as the (i , j) minor of A, is denoted by Mij and is defined to be the
determinant of the submatrix obtained by removing from A its i-th
row and j-th column.
It follows:Cij = (−1)i+jMij and Cij is called the cofactor of aij .
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Example

Given the matrix

B =





b11 b12 b13

b21 b22 b23

b31 b32 b33





suppose we wish to find the cofactor C23. The minor M23 is the
determinant of the above matrix with row 2 and column 3 removed.

M23 =

∣

∣

∣

∣

∣

∣

b11 b12 �

� � �

b31 b32 �

∣

∣

∣

∣

∣

∣

yields M23 =

∣

∣

∣

∣

b11 b12

b31 b32

∣

∣

∣

∣

= b11b32 − b31b12

Using the given definition it follows that

C23 = (−1)2+3(M23)

C23 = (−1)5(b11b32 − b31b12)

C23 = b31b12 − b11b32.

Larisa Beilina, http://www.math.chalmers.se/~larisa/ Lecture 1

http://www.math.chalmers.se/~larisa/


Application of cofactors: computation of matrix inversion

Writing the transpose of the matrix of cofactors, known as an adjugate
matrix, can also be an efficient way to calculate the inverse of small
matrices, but this recursive method is inefficient for large matrices. To
determine the inverse, we calculate a matrix of cofactors:

A−1 =
1
∣

∣A
∣

∣

(

CT
)

ij
=

1
∣

∣A
∣

∣

(Cji ) =
1
∣

∣A
∣

∣











C11 C21 · · · Cn1

C12 C22 · · · Cn2

...
...

. . .
...

C1n C2n · · · Cnn











where |A| is the determinant of A,Cij is the matrix of cofactors, and CT

represents the matrix transpose.
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Example: inversion of 2 × 2 matrices

The cofactor equation listed above yields the following result for
2 × 2 matrices. Inversion of these matrices can be done easily as
follows:

A
−1 =

[

a b

c d

]

−1

=
1

det(A)

[

d −b

−c a

]

=
1

ad − bc

[

d −b

−c a

]

.

This is possible because 1/(ad − bc) is the reciprocal of the
determinant of the matrix in question, and the same strategy could
be used for other matrix sizes.
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Example: inversion of 3 × 3 matrices

A computationally efficient 3 × 3 matrix inversion is given by

A
−1 =





a b c

d e f

g h k





−1

=
1

det(A)





A B C

D E F

G H K





T

=
1

det(A)





A D G

B E H

C F K





where the determinant of A can be computed by applying the rule
of Sarrus as follows:
det(A) = a(ek − fh)− b(kd − fg) + c(dh − eg).
If the determinant is non-zero, the matrix is invertible, with the
elements of the above matrix on the right side given by

A = (ek − fh) D = (ch − bk) G = (bf − ce)
B = (fg − dk) E = (ak − cg) H = (cd − af )
C = (dh − eg) F = (gb − ah) K = (ae − bd).
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